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Abstract
Neurodegenerative diseases represent a significant and growing challenge to public health worldwide. 
Current therapeutic strategies often fall short in halting or reversing disease progression, highlighting the 
urgent need for novel approaches. Extracellular vesicles (EVs) have garnered attention as potential 
therapeutic agents due to their role in intercellular communication and their ability to transport bioactive 
cargo, including proteins, nucleic acids, and lipids. This review provides a comprehensive overview of the 
biology of EVs, their involvement in neurodegenerative diseases, and the potential for EV-based therapies. 
We discuss the different types of EVs, their biogenesis, and their cargo composition, emphasizing their 
relevance to neurological processes such as protein misfolding, neuroinflammation, and oxidative stress. 
Preclinical studies investigating EVs as carriers of therapeutic cargo and their ability to promote neuronal 
survival and regeneration are examined, with a focus on evidence from animal models of 
neurodegenerative disorders. We explore the use of EVs in the treatment of neurodegenerative diseases, 
including ongoing clinical trials, methods for EV isolation and modification, and future perspectives on 
personalized EV-based therapies designed to meet the unique needs of individual patients. Overall, this 
review highlights the potential of EVs as a promising avenue for neurodegenerative disease therapy, while 
also addressing key research gaps and translational hurdles that need to be overcome for their successful 
clinical implementation.
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Graphical abstract.  EVs are a promising avenue for neurodegenerative disease therapy. Some icons are designed by 
Freepik (http://www.freepik.com/). Icon made by dDara from www.flaticon.com; Icon made by Freepik from www.flaticon.com; 
Icon made by AomAm from www.flaticon.com; Icon made by Flat Icons from www.flaticon.com; Icon made by Graficon from 
www.flaticon.com; Icon made by Parzival’ 1997 from  www.flaticon.com; Icon made by Leremy from  www.flaticon.com

Introduction
Neurodegenerative diseases encompass a wide array of conditions distinguished by progressive 
dysfunction, loss of neurons, and inflammation in the central nervous system (CNS) or peripheral nervous 
system (PNS). These conditions have significant implications for public health, affecting millions of 
individuals worldwide and imposing substantial economic burdens on healthcare systems. Alzheimer’s 
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and 
multiple sclerosis (MS) are the most common neurodegenerative diseases.

Overview of neurodegenerative diseases

AD is the leading cause of dementia, characterized by the accumulation of amyloid-beta (Aβ) plaques and 
tau protein tangles in the brain, which progressively result in cognitive decline and memory loss [1]. PD 
manifests through the depletion of dopamine-producing neurons within the substantia nigra area of the 
brain, leading to motor manifestations like tremors, rigidity, and bradykinesia [2]. HD is a hereditary 
disorder caused by a mutation in the huntingtin gene, leading to progressive motor dysfunction, cognitive 
decline, and psychiatric symptoms [3]. ALS represents a motor neuron disorder marked by the 
deterioration of both upper and lower motor neurons, resulting in muscle weakness, paralysis, and 
respiratory failure [4]. MS is an autoimmune condition impacting the CNS, leading to inflammation, 
demyelination, and neurodegeneration, resulting in a wide range of neurological symptoms [5]. These 
neurodegenerative diseases share common features such as protein misfolding, neuroinflammation, 
oxidative stress, mitochondrial dysfunction, and synaptic loss, contributing to progressive neuronal damage 
and functional impairment.

Current challenges in therapy development

Despite extensive research efforts and advances in understanding the molecular mechanisms underlying 
neurodegenerative diseases, developing effective therapies remains a daunting challenge. Several key 
challenges impede progress in therapy development: 1) Complexity of neurological processes: 
Neurodegenerative diseases are multifactorial and heterogeneous, involving intricate interactions between 
genetic, environmental, and lifestyle factors. Targeting multiple pathological pathways simultaneously 
presents a formidable challenge. 2) Limited disease-modifying treatments: Most available treatments focus 
on managing symptoms and providing temporary relief rather than halting or reversing disease 
progression. There is a critical need for disease-modifying therapies that can slow or stop 
neurodegeneration. 3) Blood-brain barrier (BBB) impediments: The BBB restricts the passage of 
therapeutics and limits their access to the CNS, posing a significant barrier to drug delivery and efficacy in 
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neurodegenerative disorders. 4) Early diagnosis and biomarkers: Lack of reliable biomarkers for early 
disease detection and monitoring disease progression hinders timely intervention and personalized 
treatment strategies.

Rationale for exploring extracellular vesicles as a therapeutic approach

In recent years, extracellular vesicles (EVs) have emerged as promising candidates for neurodegenerative 
disease therapy due to their unique properties and functions [6]. EVs are membrane-bound vesicles 
released by various cell types, including neurons, glial cells, and immune cells, into the extracellular 
environment [7, 8]. EVs play crucial roles in cell-to-cell communication by transferring bioactive molecules, 
including proteins, lipids, nucleic acids (such as miRNAs), and signaling molecules [9]. The rationale for 
exploring EVs as a therapeutic approach stems from several key factors: 1) Intercellular communication: 
EVs serve as vehicles for intercellular communication, allowing the transfer of biomolecules between cells 
in a paracrine or endocrine manner. This communication network plays a vital role in maintaining tissue 
homeostasis and regulating physiological processes [10]. 2) Cargo delivery: EVs encapsulate a diverse cargo 
of biomolecules, including growth factors, neurotrophic factors, antioxidants, anti-inflammatory agents, and 
genetic material. This cargo can modulate cellular functions, promote cell survival, repair damaged tissues, 
and regulate immune responses [11, 12]. 3) Crossing biological barriers: EVs can traverse biological 
barriers, including the BBB, enabling targeted delivery of therapeutic cargo to the CNS. This property is 
crucial for accessing the brain and spinal cord, which are often challenging to target with conventional drug 
delivery methods [13, 14]. 4) Natural biocompatibility: EVs are derived from cells and exhibit natural 
biocompatibility, reducing the risk of immune rejection or adverse reactions compared to synthetic drug 
delivery systems. They can also be engineered or modified to enhance their therapeutic properties and 
targeting specificity [15, 16]. 5) Disease-modifying potential: Preclinical studies have demonstrated the 
disease-modifying potential of EV-based therapies in various neurodegenerative disease models. EVs 
derived from regulatory T cells and stem cells, such as mesenchymal stem cells (MSCs) and neural 
progenitor cells (NPCs), show neuroprotective, anti-inflammatory, antioxidant, and regenerative effects in 
vitro and in vivo [17, 18]. 6) Clinical translation: EV-based therapies have advanced into clinical trials for 
neurodegenerative diseases, demonstrating safety, feasibility, and preliminary efficacy in early-phase 
studies [19]. These trials pave the way for further exploration of EVs as a viable therapeutic strategy in 
clinical settings.

Overall, the unique properties of EVs make them attractive candidates for developing innovative and 
targeted therapies for neurodegenerative diseases. Understanding the biology of EVs, including their roles 
in intercellular communication, cargo composition, delivery mechanisms, and therapeutic potential, is 
essential for harnessing their benefits in combating neurodegeneration and improving patient outcomes. 
Continued research efforts and collaborative initiatives are needed to overcome the challenges in EV-based 
therapy development and facilitate their clinical translation into effective treatments for neurodegenerative 
disorders.

Biology of EVs
Types of EVs

EVs are a heterogeneous group of membrane-bound vesicles released by cells into the extracellular 
environment and play essential roles in intercellular communication, carrying bioactive molecules that can 
modulate cellular functions and responses. EVs can be broadly classified into three main types based on 
their biogenesis and size: exosomes, microvesicles (also known as ectosomes or shedding vesicles), and 
apoptotic bodies.

Exosomes

Exosomes are small EVs (30–150 nm in diameter) originating from the endosomal pathway [20]. Exosomes 
are formed through a series of intracellular processes involving the endosomal sorting complex required 
for transport (ESCRT) machinery and lipid raft-dependent mechanisms [8]. Exosomes are typically released 
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from cells upon the fusion of multivesicular bodies (MVBs) with the plasma membrane. Exosomes contain a 
diverse cargo of proteins, lipids, nucleic acids (including miRNAs, mRNAs, and long non-coding RNAs), and 
signaling molecules [21]. Exosomes are involved in cell-to-cell communication, immune regulation, tissue 
repair, and disease pathogenesis [22–24].

Microvesicles

Microvesicles are larger (100–1,000 nm in diameter) EVs that bud directly from the plasma membrane 
[25]. Microvesicles are generated by outward budding and fission of the plasma membrane, leading to the 
release of vesicles into the extracellular space [26]. Microvesicles carry a similar cargo as exosomes, 
including proteins, lipids, and nucleic acids. They play roles in cell signaling, coagulation, inflammation, 
angiogenesis, and cancer progression. Microvesicles are distinct from exosomes in their biogenesis pathway 
and size range, although there can be some overlap in cargo composition between these two EV types [27].

Apoptotic bodies

Apoptotic bodies are larger EVs (1–5 μm in diameter) released by cells undergoing programmed cell death 
(apoptosis) [28]. During apoptosis, the cell undergoes structural changes, condenses its contents, and forms 
apoptotic bodies containing cellular organelles, DNA fragments, and cytoplasmic components. Apoptotic 
bodies are phagocytosed by neighboring cells or macrophages, contributing to the clearance of dying cells 
and maintaining tissue homeostasis. While apoptotic bodies are not typically considered traditional EVs 
involved in intercellular communication, they are important in the context of cell death and immune 
regulation.

Biogenesis and release mechanisms

The biogenesis of EVs involves complex cellular processes that vary depending on the type of EV and the 
cellular context (Figure 1). Here, we discuss the general mechanisms of EV biogenesis and release: 1) 
Exosome biogenesis: Exosomes originate from the endosomal pathway, starting with the formation of early 
endosomes from the inward budding of the plasma membrane. These early endosomes mature into late 
endosomes or MVBs through a process involving the ESCRT proteins [20]. The ESCRT machinery facilitates 
the sorting of cargo molecules into intraluminal vesicles (ILVs) within MVBs. Subsequently, MVBs can 
either fuse with lysosomes for cargo degradation or fuse with the plasma membrane for exosome release 
into the extracellular space. ESCRT-independent mechanisms, such as ceramide-mediated budding and 
tetraspanin-enriched microdomains, also contribute to exosome biogenesis. 2) Microvesicle formation: 
Microvesicles are formed by outward budding and shedding of the plasma membrane. This process 
involves cytoskeletal remodeling, membrane lipid rearrangements, and membrane curvature generation. 
Specific proteins, such as ADP-ribosylation factor 6 (ARF6), phospholipase D (PLD), and ESCRT 
components, participate in microvesicle biogenesis. Upon budding, microvesicles are released into the 
extracellular milieu, where they can interact with neighboring cells or distant targets [29]. Ciliary 
ectosomes, or ciliary microvesicles, are a specialized type of microvesicles that are released from the cilia of 
cells [30]. Cilia are small, finger-like projections found on the surface of many cell types, and they play 
essential roles in cell signaling, movement, and sensory perception [31, 32]. When cilia release ectosomes, 
these vesicles can carry specific cargo that reflects the unique composition and function of ciliary 
membranes [33]. The ectosome cargo often includes ciliary membrane proteins, signaling molecules, and 
other biomolecules involved in cilia-related processes. 3) Apoptotic body release: Apoptotic bodies are 
generated during programmed cell death (apoptosis), a highly regulated process involving caspase 
activation, DNA fragmentation, and cytoplasmic condensation [34]. As cells undergo apoptosis, they form 
apoptotic bodies containing cellular debris, organelles, and fragmented DNA. These apoptotic bodies are 
then released into the extracellular space through membrane blebbing and vesiculation. Phosphatidylserine 
exposure on the outer membrane of apoptotic bodies facilitates their recognition and phagocytosis by 
macrophages or neighboring cells, promoting the clearance of dying cells and maintaining tissue integrity 
[35–37]. Additionally, autophagy is a critical process in the biogenesis of EVs, including microvesicles, 
exosomes, and apoptotic bodies [38–40]. While autophagy is primarily known for degrading cellular 
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components, it also facilitates the packaging of cellular debris, misfolded proteins, and nucleic acids into 
EVs. Thus, EVs serve as carriers of bioactive molecules, playing significant roles in intercellular 
communication and disease processes. Furthermore, lipid rafts, and cholesterol- and sphingolipid-enriched 
microdomains within the plasma membrane are essential for EV formation [41, 42]. They act as 
organizational platforms for signaling molecules and mediate the selective sorting of cargo, ultimately 
shaping the composition, function, and biological activity of EVs. This interplay between autophagy and 
lipid raft-mediated mechanisms highlights the complexity of EV biogenesis and their functional diversity in 
physiological and pathological contexts.

Figure 1. Types and biogenesis of extracellular vesicles. Extracellular vesicles (EVs) can be broadly categorized into three 
main types: (a) Exosomes originate within the endosomal network and are released upon fusion of multi-vesicular bodies with 
the plasma membrane. Exosomes typically range in size from 30 to 150 nm; (b) Microvesicles/microparticles/ectosomes formed 
through outward budding and fission of the plasma membrane or ciliary membrane. Microvesicles typically measure between 
100 and 1,000 nm in size; and (c) Apoptotic bodies exhibit heterogeneity in size ranging from 1 to 5 μm. These apoptotic bodies 
are released as blebs from cells undergoing apoptosis. Icon made by Freepik from www.flaticon.com

Composition of EV cargo

EVs carry diverse biomolecules, encompassing proteins, nucleic acids, lipids, and metabolites. The 
composition of EV cargo reflects the cellular origin, physiological state, and environmental cues. Here, we 
highlight the major components of EV cargo: 1) Proteins: EVs contain a wide range of proteins derived from 
the parent cells, including membrane proteins, cytosolic proteins, and signaling molecules. These proteins 
play diverse roles in cell signaling, immune modulation, cell adhesion, and tissue repair. EVs are enriched in 
specific protein families, such as tetraspanins (CD9, CD63, CD81), heat shock proteins (HSP70, HSP90), 
integrins, major histocompatibility complex (MHC) molecules, and cytoskeletal proteins [43]. The protein 
cargo of EVs can vary depending on the cellular context, activation state, and cargo sorting mechanisms. 
Autoantigens play a crucial role in the pathogenesis of autoimmune diseases. EVs can carry autoantigens to 
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immune cells, including dendritic cells, B cells, and T cells, stimulating immune responses and driving the 
production of autoantibodies [24, 44]. This process can amplify inflammatory pathways and contribute to 
the breakdown of immune tolerance. The active involvement of EVs in autoimmunity highlights their 
significance as key mediators of intercellular communication and underscores their potential as therapeutic 
targets for addressing immune dysregulation, which is often observed in neurodegenerative diseases. 2) 
Nucleic acids: EVs contain various nucleic acids, including mRNAs, miRNAs, long non-coding RNAs, transfer 
RNAs (tRNAs), and genomic DNA fragments. These nucleic acids are encapsulated within EVs and protected 
from degradation, allowing them to be transferred between cells and modulate gene expression. miRNAs 
carried by EVs can regulate target gene expression post-transcriptionally, influencing cellular processes 
such as proliferation, apoptosis, inflammation, and differentiation. EV-mediated transfer of nucleic acids 
contributes to intercellular communication, genetic exchange, and functional modulation of recipient cells 
[8]. 3) Lipids: EVs contain a lipid bilayer membrane derived from the parent cell plasma membrane or 
endosomal compartments. This lipid membrane encapsulates the cargo molecules within EVs and provides 
stability and protection during vesicle trafficking and uptake. Lipid composition analysis of EVs reveals 
enrichment in specific lipid species, including phospholipids, cholesterol, sphingolipids, and 
glycerophospholipids. Lipid rafts and microdomains within EV membranes play roles in cargo sorting, 
vesicle budding, and cellular uptake processes. Lipid molecules carried by EVs can modulate membrane 
dynamics, cell signaling pathways, and cellular responses in recipient cells [45]. 4) Metabolites and small 
molecules: EVs can also transport metabolites, small molecules, and bioactive compounds derived from 
cellular metabolism. These include amino acids, sugars, nucleotides, vitamins, enzymes, neurotransmitters, 
and secondary messengers. The presence of metabolites in EV cargo reflects the metabolic activity, nutrient 
status, and functional state of the parent cells [46, 47]. EV-mediated transfer of metabolites can regulate 
metabolic pathways, energy metabolism, cellular signaling, and physiological responses in recipient cells, 
influencing cellular functions and homeostasis.

Overall, the composition of EV cargo is diverse and dynamic, reflecting the complex interplay of cellular 
processes, environmental cues, and physiological conditions. The cargo molecules carried by EVs contribute 
to their functional effects on recipient cells and tissues, influencing cellular signaling, gene expression, 
metabolic pathways, immune responses, and tissue homeostasis. Understanding the composition and 
functional significance of EV cargo is crucial for elucidating the roles of EVs in intercellular communication, 
disease pathogenesis, and therapeutic applications. Continued research efforts are needed to characterize 
the cargo diversity, regulatory mechanisms, and functional implications of EV-mediated cargo transfer in 
health and disease.

Role of EVs in neurodegenerative diseases
EV involvement in intercellular communication

EVs function as conveyors of bioactive molecules, enabling them to transmit information among cells and 
regulate cellular activities. In the context of neurodegenerative diseases, EV-mediated communication is 
implicated in disease pathogenesis, progression, and potential therapeutic interventions [48, 49]. 1) Cell-to-
cell signaling: EVs serve as vehicles for cell-to-cell signaling, enabling the transfer of signaling molecules, 
growth factors, cytokines, and neurotransmitters between neurons, glial cells, and immune cells. This 
communication network regulates neuronal survival, synaptic plasticity, neurogenesis, and immune 
responses in the CNS [50, 51]. Dysregulation of EV-mediated signaling pathways can contribute to 
neurodegenerative processes and neuronal dysfunction [11, 22]. 2) Neuronal network modulation: EVs 
participate in the modulation of neuronal networks by influencing synaptic transmission, neuronal 
excitability, and synaptic plasticity. EVs can carry synaptic proteins, neurotransmitters, and synaptic vesicle 
components, affecting synaptic function and connectivity. EV-mediated communication between neurons 
and glial cells regulates neuronal homeostasis, neuronal support, and responses to neuronal injury and 
stress [52, 53]. 3) Immune regulation: EVs derived from immune cells, such as microglia, astrocytes, and 
peripheral immune cells, play roles in immune regulation and neuroinflammation. EVs carry 
immunomodulatory factors, cytokines, chemokines, and antigens that regulate immune cell activation, 
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polarization, migration, and interactions with neurons and glial cells. EV-mediated immune responses in 
neurodegenerative diseases can have both protective and detrimental effects, depending on the context and 
balance of pro-inflammatory and anti-inflammatory signals [54–56]. 4) Neurotrophic support: EVs derived 
from neural stem cells, MSCs, and glial cells can provide neurotrophic support, promote neuronal survival, 
and enhance neurodegeneration. EVs carry growth factors (e.g., brain-derived neurotrophic factor, nerve 
growth factor), neurotrophic factors, and extracellular matrix components that support neuronal growth, 
axonal regeneration, and synaptogenesis. EV-mediated neurotrophic effects contribute to neuroprotective 
mechanisms and tissue repair in neurodegenerative conditions [57–59].

Overall, EVs are key players in intercellular communication within the nervous system, regulating 
neuronal functions, immune responses, and tissue homeostasis. Understanding the roles of EV-mediated 
communication in neurodegenerative diseases is essential for elucidating disease mechanisms and 
developing targeted therapeutic strategies.

EV-mediated transfer of pathological proteins (e.g., tau, alpha-synuclein)

Neurodegenerative diseases are characterized by the accumulation and spread of pathological proteins, 
such as tau, alpha-synuclein, Aβ, and huntingtin, in the CNS [60–63]. EVs have been implicated in the 
intercellular transfer and propagation of these pathological proteins, contributing to disease progression 
and neuronal dysfunction. The transfer of pathological proteins via EVs has significant implications for 
disease pathogenesis, protein aggregation, neurotoxicity, and potential therapeutic interventions. 1) Tau 
protein propagation: Tau protein is a microtubule-associated protein that undergoes abnormal 
hyperphosphorylation and aggregation in neurodegenerative diseases such as AD and frontotemporal 
dementia (FTD) [64]. EVs released from neurons and glial cells can carry pathological forms of tau, 
including hyperphosphorylated tau and tau oligomers [65]. EV-associated tau species can be transferred 
between cells, promoting the seeding and spread of tau pathology in the brain. EV-mediated tau 
propagation contributes to neuronal dysfunction, synaptic impairment, and cognitive decline in tauopathies 
[66–68]. 2) Alpha-synuclein spreading: Alpha-synuclein is a presynaptic protein implicated in PD and 
related synucleinopathies. Abnormal aggregation of alpha-synuclein leads to the formation of Lewy bodies 
and Lewy neurites, contributing to dopaminergic neuron degeneration and motor symptoms in PD [69, 70]. 
EVs released from neurons and glial cells can transport alpha-synuclein aggregates, oligomers, and fibrils, 
facilitating the intercellular spread of alpha-synuclein pathology [71, 72]. EV-mediated alpha-synuclein 
spreading contributes to neuronal toxicity, synapse dysfunction, and neuroinflammation in 
synucleinopathies [73]. 3) Prion-like mechanisms: The transfer of pathological proteins via EVs exhibits 
prion-like properties, involving templated protein misfolding and seeding of protein aggregates in recipient 
cells [74, 75]. EV-associated pathological proteins can induce conformational changes, nucleate protein 
aggregation, and propagate neurotoxicity in a prion-like manner [76, 77]. This prion-like spreading 
mechanism contributes to the progressive nature of neurodegenerative diseases and the amplification of 
protein pathology across brain regions. 4) EV cargo sorting and regulation: The sorting of pathological 
proteins into EVs involves specific mechanisms, including protein-protein interactions, post-translational 
modifications, and cargo sorting machinery [78, 79]. Cells regulate the packaging and release of 
pathological proteins into EVs, influencing the composition and neurotoxicity of EV cargo [80]. Modulating 
EV cargo sorting pathways and protein quality control mechanisms may represent therapeutic targets for 
inhibiting the propagation of pathological proteins in neurodegenerative diseases.

Understanding the mechanisms underlying EV-mediated transfer of pathological proteins is critical for 
developing strategies to block protein spreading, disrupt prion-like propagation, and mitigate neurotoxicity 
in neurodegenerative disorders. Targeting EV-mediated protein transfer pathways may offer novel 
therapeutic approaches for slowing disease progression and preserving neuronal function.

Impact of EVs on neuroinflammation and oxidative stress

Neuroinflammation and oxidative stress are hallmark features of neurodegenerative diseases, contributing 
to neuronal damage, synaptic dysfunction, and disease progression [81–83]. EVs play diverse roles in 
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modulating neuroinflammatory responses, oxidative stress pathways, and immune-mediated mechanisms 
in the CNS [84–86]. Understanding the impact of EVs on neuroinflammation and oxidative stress is crucial 
for elucidating disease mechanisms and developing targeted therapeutic interventions. 1) 
Immunomodulatory effects: EVs derived from immune cells, glial cells, and neurons can modulate immune 
responses and neuroinflammatory processes in the CNS [54, 87]. EVs carry immunomodulatory factors, 
cytokines, chemokines, and miRNAs that regulate immune cell activation, polarization, migration, and 
cytokine production [18, 88]. EV-mediated communication between immune cells and neural cells 
influences neuroinflammatory signaling pathways, microglial activation states, astrocyte reactivity, and 
immune cell infiltration into the brain. Dysregulation of EV-mediated immunomodulation contributes to 
neuroinflammatory cascades, neurotoxicity, and neuronal damage in neurodegenerative diseases. 2) 
Oxidative stress regulation: EVs regulate oxidative stress responses and redox signaling pathways in 
neuronal and glial cells, as EVs carry antioxidant enzymes [e.g., superoxide dismutase (SOD), catalase], 
redox regulators, and molecules involved in cellular antioxidant defense mechanisms. EV-mediated transfer 
of antioxidant molecules and signaling factors modulates oxidative stress pathways, mitochondrial 
function, and cellular redox balance [89–91]. EVs released in response to oxidative stress can also contain 
damage-associated molecular patterns (DAMPs), reactive oxygen species (ROS), and oxidative stress-
related proteins, contributing to oxidative damage, cellular senescence, and neurodegeneration [92]. The 
balance between oxidative stress and antioxidant responses mediated by EVs influences neuronal survival, 
synaptic integrity, and disease progression in neurodegenerative conditions [90]. 3) BBB dysfunction: EVs 
can influence BBB integrity, permeability, and neurovascular interactions in neurodegenerative diseases. 
EVs derived from endothelial cells, pericytes, astrocytes, and immune cells carry molecules involved in BBB 
regulation, vascular homeostasis, and endothelial function [93–97]. EV-mediated transfer of BBB-
modulating factors, inflammatory mediators, and miRNAs can disrupt BBB integrity, promote endothelial 
dysfunction, and enhance neuroinflammatory responses. BBB dysfunction mediated by EVs contributes to 
neuroinflammation, neurovascular pathology, and neuronal damage in neurodegenerative disorders. 4) 
Neuroprotective effects: Despite their pro-inflammatory roles, EVs can also exert neuroprotective effects 
and promote neuronal survival in neurodegenerative diseases. EVs derived from stem cells, NPCs, and glial 
cells carry neurotrophic factors, growth factors, anti-inflammatory molecules, and antioxidant enzymes that 
support neuronal viability, axonal regeneration, and synaptic plasticity [98–101]. EV-mediated 
neuroprotection involves the modulation of cellular stress responses, trophic support mechanisms, and 
tissue repair processes. Harnessing the neuroprotective potential of EVs may offer therapeutic strategies 
for mitigating neuroinflammation, oxidative stress, and neurodegeneration in CNS disorders. 5) 
Therapeutic potential: EVs represent promising therapeutic candidates for modulating neuroinflammation 
and oxidative stress in neurodegenerative diseases. Engineered EVs and EV-derived nanoparticles can be 
designed to deliver therapeutic cargo, anti-inflammatory agents, antioxidants, and neuroprotective 
molecules to target cells in the CNS. Strategies for enhancing the therapeutic efficacy, targeting specificity, 
and bioavailability of EV-based therapies are under investigation for neurodegenerative disorders. EV-
based interventions aimed at modulating neuroinflammation, oxidative stress, and immune responses hold 
the potential for slowing disease progression, preserving neuronal function, and improving clinical 
outcomes [48].

In summary, EVs play multifaceted roles in neuroinflammation, oxidative stress, immune regulation, 
and neuroprotection in neurodegenerative diseases. Their impact on neuronal homeostasis, glial activation, 
BBB function, and cellular responses contributes to disease pathogenesis and potential therapeutic 
interventions. Further research is needed to elucidate the mechanisms underlying EV-mediated effects on 
neuroinflammation and oxidative stress, optimize EV-based therapeutic strategies, and translate these 
findings into clinical applications for neurodegenerative disorders.

Preclinical studies utilizing EVs
EVs have garnered significant interest as potential therapeutic tools for neurodegenerative diseases due to 
their ability to transfer bioactive molecules and modulate cellular functions [18]. Preclinical studies have 
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explored various aspects of EV-based therapies, including their role as carriers of therapeutic cargo, 
strategies for promoting neuronal survival and regeneration, and evidence from animal models of 
neurodegeneration [15, 102, 103].

EVs as carriers of therapeutic cargo (RNA, small molecules, etc.)

One of the key advantages of EVs is their ability to encapsulate and deliver therapeutic cargo to target cells 
within the CNS [13, 23, 104–106]. Preclinical studies have demonstrated the potential of EVs as carriers of 
various types of therapeutic molecules, including RNA (such as miRNAs, mRNAs, and siRNAs), small 
molecules, proteins, and lipids (Figure 2). These studies have highlighted the efficacy of EV-mediated 
delivery in modulating cellular pathways, gene expression, and disease progression in neurodegenerative 
disorders. 1) RNA-based therapies: EVs can transport different forms of RNA, including miRNAs that 
regulate gene expression post-transcriptionally [8, 107]. Preclinical studies have shown that EVs loaded 
with specific miRNAs can modulate neuronal survival, synaptic plasticity, inflammation, and 
neuroprotection in neurodegenerative diseases. For example, EVs carrying miR-124a, miR-29b, or miR-
133b have been investigated for their neuroprotective effects in AD, PD, and HD models [108–112]. EV-
based RNA therapies hold promise for targeted interventions and disease-modifying strategies. 2) Small 
molecule delivery: EVs can also transport small molecules, such as neuroprotective compounds, 
antioxidants, anti-inflammatory agents, and signaling modulators [113, 114]. Preclinical studies have 
explored the use of EVs loaded with small molecules to mitigate oxidative stress, reduce 
neuroinflammation, promote neurogenesis, and enhance synaptic function in neurodegenerative 
conditions. Examples include EVs loaded with curcumin, resveratrol, epigallocatechin gallate (EGCG), or N-
acetylcysteine (NAC) for neuroprotection and disease-modifying effects in AD, PD, and ALS models [115–
119]. 3) Protein therapeutics: EVs have the capacity to carry proteins, peptides, growth factors, and 
enzymes that exert neuroprotective, neurotrophic, or regenerative effects. Preclinical studies have 
investigated EV-mediated delivery of neurotrophins (e.g., brain-derived neurotrophic factor, nerve growth 
factor), growth factors (e.g., insulin-like growth factor 1, fibroblast growth factor), and anti-apoptotic 
proteins (e.g., Bcl-2, XIAP) for promoting neuronal survival, axonal regeneration, and functional recovery in 
neurodegenerative diseases [120, 121]. EV-based protein therapeutics offer targeted delivery and 
sustained release kinetics, enhancing their therapeutic potential.

Overall, preclinical studies utilizing EVs as carriers of therapeutic cargo have demonstrated the 
feasibility, efficacy, and versatility of EV-based delivery systems for neurodegenerative diseases. These 
studies provide insights into the mechanisms of EV-mediated cargo transfer, biodistribution, cellular 
uptake, and therapeutic effects in animal models, laying the foundation for translational research and 
clinical applications.

Evidence from animal models of neurodegeneration

Animal models play a critical role in preclinical research to investigate the therapeutic potential of EVs in 
neurodegenerative diseases. These models recapitulate key aspects of disease pathology, molecular 
mechanisms, and behavioral phenotypes, allowing researchers to assess the efficacy, safety, and 
translational relevance of EV-based therapies (Table 1). Evidence from animal models provides valuable 
insights into the therapeutic effects of EVs on neuronal function, disease progression, and neuroprotective 
mechanisms. 1) AD models: Animal models of AD, such as transgenic mice expressing amyloid precursor 
protein (APP) and presenilin mutations, have been used to study the therapeutic effects of EVs on Aβ 
pathology, tau pathology, synaptic dysfunction, and cognitive impairment. EVs carrying medicine, miRNAs 
targeting tau pathology, or neurotrophic factors have shown neuroprotective effects, reduced amyloid 
deposition, improved synaptic plasticity, and cognitive enhancement in AD models [122, 123]. EV-based 
therapies targeting Aβ clearance, tau phosphorylation, and neuroinflammatory pathways hold promise for 
AD treatment [123–128]. 2) PD models: Animal models of PD, including toxin-induced models (e.g., MPTP, 
rotenone) and genetic models (e.g., alpha-synuclein transgenic mice), have been utilized to investigate EV-
mediated neuroprotection, dopaminergic neuron survival, motor function, and mitochondrial dynamics. 
EVs carrying neurotrophic factors, antioxidants, mitochondrial enhancers, or alpha-synuclein-targeting 
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Figure 2. Extracellular vesicles as carriers of therapeutic cargo. Extracellular vesicles (EVs) are capable of transporting and 
delivering a diverse range of therapeutic agents, including RNA-based therapies, small molecule drugs, protein therapeutics, 
and lipid-based treatments. EGCG: epigallocatechin gallate; NAC: N-acetylcysteine

Table 1. Preclinical studies of EVs as delivery vehicles in neurodegenerative disorders

Disease EV source or cargo Animal models Effects References

Mesenchymal stem cells (MSCs)-
derived EVs

APP/PS1 and icv-STZ 
mice

Alleviate Aβ-induced iNOS and 
inflammation

[124, 126]

Adipose-derived mesenchymal 
stem cells (ADSCs)-derived EVs

APP/PS1 mice Reduce Aβ deposition and 
decrease microglia activation

[125]

Neural stem cell-derived exosomes APP/PS1 and 5xFAD 
mice

Promote mitochondrial 
biogenesis and restore 
abnormal protein distribution

[127, 128]

Alzheimer’s 
disease

EVs-mediated delivery of CB2 
receptor agonist

APP/PS1 mice Enhance neuronal regeneration [123]

CCR2-enriched mesenchymal 
stem cell-derived EVs (MSCCCR2-
EVs)

MPTP-induced PD mice Block the infiltration of 
peripheral inflammatory cells

[129]

Human umbilical cord 
mesenchymal stem cell-derived 
exosomes (HucMSC-EVs)

6-OHDA-induced PD 
mice

Activate the Wnt/β-catenin 
pathway and reduce autophagy

[130]

Human umbilical cord blood-
derived mononuclear cells (hUCB-
MNCs) enriched with miR-124-3p 
(miR-124-3p sEVs)

6-OHDA-induced PD 
mice

Induce neuronal differentiation 
and protect N27 dopaminergic 
cells

[131]

Parkinson’s 
disease

Human neural stem cell-derived 
EVs

6-OHDA-induced PD 
mice

Reduce intracellular reactive 
oxygen species (ROS) and 
associated apoptotic pathways

[132]

Young serum-exosomes R6/2 mice model Reduce mHTT aggregation 
protein and apoptotic signaling

[133]

Human cord blood-derived EVs 3-NP-induced HD rats Reduce neuroinflammation [134]
DNAJB6b-enriched neural stem 
cells (NSCs)-derived EVs

R6/2 mice model Reduce mHTT aggregation [135]

Huntington’s 
disease

Fibroblast-derived EVs HD-derived neuron 
cultures

Increase the density of inhibitory 
synapses

[136]

Mesenchymal stroma-/stem-like 
cells-derived EVs

SOD1(G93A) transgenic 
primary motor neurons

Antioxidant and anti-apoptotic 
pathways

[137]

Adipose-derived stem cell-derived 
exosomes (ASC-exosomes)

SOD1(G93A) mice Improve motor performance; 
protect lumbar motoneurons; 
and decrease glial activation

[138]

Amyotrophic 
lateral sclerosis
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Table 1. Preclinical studies of EVs as delivery vehicles in neurodegenerative disorders (continued)

Disease EV source or cargo Animal models Effects References

Adipose-derived stem cell 
exosomes

Neuronal cells from 
G93A ALS mice

Reduce cytosolic SOD1 level [139]

Regulatory T cell-derived EVs SOD1 mice Increase survival, and modulate 
inflammation

[140]

Oligodendrocyte precursor cell-
derived exosomes

Experimental 
autoimmune 
encephalomyelitis (EAE) 
mice

Reduce microgliosis and 
astrogliosis

[141]

Amniotic fluid stem cell-derived 
EVs

EAE mice Reprogramming inflammatory 
cDC2s

[142]

Mesenchymal stem cell-derived 
EVs containing miR-181a-5p

EAE mice Inhibit microglial inflammation 
and pyroptosis through the 
USP15-mediated RelA/NEK7 
axis

[143]

Multiple 
sclerosis

Adipose mesenchymal stem cell-
derived EVs

EAE mice Target inflamed lymph nodes [144]

molecules have shown therapeutic effects, reduced neuroinflammation, and improved motor behavior in 
PD models [129–132]. EV-based strategies for promoting dopaminergic neuron viability, mitochondrial 
function, and neuroregeneration are under investigation for PD therapy. 3) HD models: Animal models of 
HD, such as transgenic mice expressing mutant huntingtin protein (mHTT), have been employed to study 
EV-based therapies targeting mHTT aggregation, oxidative stress, synaptic dysfunction, and neuronal 
degeneration. EVs carrying miRNAs targeting mHTT expression, neuroprotective factors, or gene editing 
tools have shown potential for reducing mHTT levels, improving neuronal survival, and ameliorating motor 
deficits in HD models [133–136]. EV-mediated delivery of disease-modifying agents, neurotrophic factors, 
and RNA-based therapeutics holds promise for HD treatment strategies. 4) ALS models: Animal models of 
ALS, including transgenic mice expressing mutant SOD1 or TDP-43 mutations, have been utilized to 
investigate EV-mediated neuroprotection, motor neuron survival, neuromuscular function, and disease 
progression. EVs carrying anti-inflammatory molecules, growth factors, mitochondrial enhancers, or RNA-
based therapies have shown therapeutic effects, reduced neuroinflammation, and improved motor 
performance in ALS models [137–140]. EV-based strategies for promoting motor neuron viability, axonal 
integrity, and neuroregeneration are being explored for ALS therapy. 5) MS models: Animal models of MS, 
such as experimental autoimmune encephalomyelitis (EAE) in rodents, have been used to study EV-
mediated immunomodulation, neuroprotection, remyelination, and functional recovery. EVs carrying 
immunomodulatory factors, anti-inflammatory molecules, myelin repair proteins, or regulatory miRNAs 
have shown therapeutic effects, reduced neuroinflammation, and improved neurological outcomes in MS 
models [141–144]. EV-based strategies for modulating immune responses, promoting oligodendrocyte 
function, and enhancing neural repair hold promise for MS treatment approaches.

In conclusion, preclinical studies utilizing animal models have provided valuable insights into the 
therapeutic potential of EVs across a wide range of neurodegenerative disorders, including 
neurodegenerative diseases [140, 145, 146]. These studies have demonstrated the efficacy, safety, and 
mechanisms of EV-mediated neuroprotection, neurodegeneration, immune modulation, and functional 
recovery in various CNS conditions. Continued research efforts are needed to optimize EV-based therapies, 
validate their efficacy in clinical trials, and advance toward personalized medicine approaches for 
neurodegenerative disorders.

Future perspectives and conclusions
EVs have gained significant attention as promising therapeutic agents and diagnostic tools for 
neurodegenerative diseases. Table 2 summarizes ongoing clinical trials utilizing EVs for the treatment of 
these conditions. Most trials employ EVs derived from MSCs, leveraging their regenerative and anti-
inflammatory properties. Common delivery routes include intravenous (iv), intranasal, and localized 
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injections, tailored to the target disease and desired therapeutic efficiency. Although the field of EV-based 
therapies is still emerging, the number of trials specifically focused on neurodegenerative diseases remains 
limited. With advancements in emerging technologies, novel therapeutic targets, and personalized medicine 
approaches, EV research continues to evolve rapidly. Future progress in EV isolation and characterization, 
the exploration of innovative therapeutic strategies, and the development of personalized EV-based 
therapies hold immense potential to revolutionize the management of neurodegenerative diseases.

Table 2. Clinical trials investigating the use of extracellular vesicles in the treatment of neurodegenerative diseases

Disease Source of EVs Route of 
administration

Dose Duration Clinical 
trial phase

Recruitment 
status

ClinicalTrial ID

Alzheimer’s disease Allogenic 
adipose 
mesenchymal 
stem cells

Nasal drip 5–20 μg Twice a 
week for 
12 weeks

Phase 1/2 Unknown 
status

NCT04388982

Multiple 
neurodegenerative 
diseases

Human umbilical 
cord 
mesenchymal 
stem cells

Nasal drops Not 
specified

Not 
specified

Phase 1 Not yet 
recruiting

NCT06607900

Amyotrophic lateral 
sclerosis (ALS)

Human umbilical 
cord blood 
mesenchymal 
stem cells

Nasal drops Dose-
escalation

Twice a 
week for 
two weeks

Phase 1/2 Recruiting NCT06598202

Depression, anxiety, 
and dementias

Healthy, full-term 
cesarean section 
amniotic fluid

Focused 
ultrasound and 
intravenous 
infusion

Not 
specified

Not 
specified

Not 
applicable

Suspended NCT04202770

Exploration of novel therapeutic targets and strategies based on EV biology holds immense potential 
for developing targeted interventions, disease-modifying treatments, and regenerative therapies in 
neurodegenerative disorders. Future research directions include: 1) EV cargo engineering: Engineering EV 
cargo, such as miRNAs, siRNAs, small molecules, proteins, and therapeutic peptides, offers precise control 
over therapeutic payload delivery, target specificity, and therapeutic efficacy [15, 147]. Strategies for 
loading, modifying, and functionalizing EV cargo enable tailored therapeutic interventions, gene silencing 
mechanisms, and molecular interactions with disease-specific pathways. 2) EV-directed drug delivery: 
Utilizing EVs as drug delivery vehicles for neuroprotective agents, neurotrophic factors, gene editing tools, 
or disease-modifying drugs enhances targeted delivery, sustained release, and therapeutic potency within 
the CNS [48]. EV-based drug delivery systems overcome BBB limitations, improve bioavailability, and 
reduce off-target effects, optimizing treatment outcomes and minimizing systemic toxicity. 3) EV-mediated 
immunomodulation: EV-based immunomodulation strategies modulate immune responses, enhance tissue 
repair mechanisms, and promote neuroprotection in neurodegenerative diseases [148]. 4) EV-based 
neuroregeneration: Exploiting EV-mediated neuroregenerative properties, including neural stem cell 
differentiation, axonal growth promotion, and synaptogenesis enhancement, supports neuronal repair, 
functional recovery, and neural circuit remodeling in neurodegenerative conditions [15]. EV-based 
neuroregeneration strategies stimulate endogenous repair mechanisms, enhance neuroplasticity, and 
restore neuronal connectivity, offering potential for restoring lost functions and improving patient 
outcomes. 5) EV-mediated neuroprotection: Targeting EV-mediated neuroprotective mechanisms, such as 
antioxidant activity, mitochondrial support, and anti-apoptotic effects, provides neuroprotection, neuronal 
survival, and resilience against neurodegenerative insults. EV-based neuroprotective strategies mitigate 
oxidative stress, enhance cellular viability, and preserve neuronal function, contributing to disease 
modification and symptom alleviation in neurodegenerative disorders.

The efficiency of EVs as drug carriers is often limited by their biological properties, such as short 
circulation half-life, low targeting efficiency, and limited drug-loading capacity. To address these challenges, 
various strategies have been developed to modify and engineer EVs, enhancing their therapeutic potential 
[149]. One approach is chemical conjugation, where molecules are attached to the surface of EVs using 
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techniques like click chemistry. This method is highly efficient, specific, and biocompatible, enabling the 
attachment of targeting ligands such as antibodies or peptides for targeted drug delivery [150]. Another 
strategy is genetic modification, which involves altering the genetic material of EV-producing cells to 
express specific proteins or peptides on the EV surface. For instance, RVG-modified EVs loaded with 
therapeutics have shown improved efficacy in disease models, including AD [151, 152], major depressive 
disorder (MDD) [146] and neuroinflammation [147]. Physical modification methods, such as liposome 
fusion and membrane permeabilization, have also been employed to enhance EV drug-loading capacity and 
targeting efficiency [153]. These techniques can be combined with genetic modification, allowing further 
customization of EV-cell interactions by altering lipid composition or properties [154]. In summary, the 
modification and engineering of EVs for drug delivery represent a promising area of research with broad 
therapeutic applications. While current methods each have their strengths and limitations, the 
development of more efficient and precise techniques will be essential to fully realize the therapeutic 
potential of EVs.

Overall, future perspectives and directions in EV research for neurodegenerative diseases encompass 
technological advancements, novel therapeutic targets, and personalized medicine approaches. Leveraging 
emerging technologies for EV isolation and characterization, exploring new therapeutic strategies based on 
EV biology, and harnessing the potential for personalized EV-based therapies offer transformative 
opportunities for improving patient outcomes, disease management, and healthcare advancements in 
neurodegenerative disorders. Characterizing patient-specific EV profiles, biomarker signatures, and 
disease-associated EV cargoes enables precision diagnostics, treatment selection, and therapeutic 
monitoring tailored to individual patient needs. Integrating multi-omics data, imaging biomarkers, and 
clinical phenotypes facilitates personalized medicine approaches and prognostic assessments in 
neurodegenerative disorders [15, 155]. Continued research, interdisciplinary collaborations, and 
translational efforts are essential for realizing the full potential of EV-based interventions in 
neurodegeneration.

In conclusion, EVs hold tremendous potential as a therapeutic frontier for neurodegenerative diseases, 
offering novel insights, personalized treatment strategies, and transformative opportunities for improving 
patient outcomes and advancing neurodegenerative disease treatment paradigms. Continued research 
efforts, collaborative initiatives, and translational endeavors are essential for unlocking the full therapeutic 
potential of EV-based therapies and shaping the future of neurodegenerative disease management.
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