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Introduction
The main challenge in neuroprotection is to demonstrate in humans the efficacy of any neuroprotective 
therapy. Exploration of Neuroprotective Therapy (ENT) highlights interest in the classical pharmacology, 
in sophisticated techniques such as deep brain stimulation and in traditional medicine tools (herbal 
medication, meditation...), etc.

While Alzheimer’s disease (AD) and Parkinson’s disease (PD) require neuroprotective interventions to 
reduce neuronal death whereas amyotrophic lateral sclerosis, spinal cord injuries, autism, etc. may require 
restoration or both protection and restoration. The challenges are manifold and the 21st century should be 
able to provide answers to many of the diseases that currently do not have an effective therapy to treat of 
slow down disease progression.

Nervous system diseases’ diversity, risk assessment and the discovery of 
successful therapeutic strategies
Diseases affecting the peripheral or central nervous system share some features: alteration of energetic 
balance, and/or local depletion of a given neurotransmitter, and/or alteration of brain circuits and/or 
neuronal death and/or glial cell death, etc. Similarly, measuring the effectiveness of a given intervention is 
a challenge whose solution may vary from one nervous system disease (NSD) to another, but there may be 
shared parameters to measure, e.g., the level of glucose in the cerebrospinal fluid (CSF).

Omics approaches provide a large amount of data that, in fact, provides valuable information. In terms of 
NSD, genomics provides risk factors. For late-onset degenerative diseases (e.g., non-inherited AD and PD) it is 
questionable whether knowing the risk is desirable or not [1-9]. Personally, I would not want to live knowing 
that I am at high risk for AD to live in fear and end up with a healthy brain but a fatal heart attack.
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The two phases in NSDs
In some NSDs in which neuronal death occurs, two phases appear that may require differential therapeutic 
approaches. Although targeting neurons may be good in prevention and first clinical stages, targeting glial 
cells is instrumental at advanced stages. Among them microglia, upon activation, may be proinflammatory 
(M1 phenotype) or neuroprotective (M2 phenotype) [10]. Time may be a factor convert M1 into M2 cells 
and, also, there is in vitro evidence of interventions that can skew the M1 into the M2 phenotype. Combining 
these two discoveries it would be interesting to explore time windows of therapeutic intervention.

Positron emission tomography (PET) is advancing to detect neuroinflammation in the human brain 
through the use of probes that interact with microglial molecules. As far as we know, these procedures are 
not routine, that is, they are already in the experimental phase [11-20]. The development of M1 and M2 
PET ligands would help decide when therapies should temper neuroinflammation and when they should be 
addressed to boost neuroprotection.

Learning from other diseases
Along with age-related neurodegenerative diseases, three other common diseases are on the rise in recent 
decades, namely diabetes (type II), hypertension, and hypercholesteremia. There are interventions for all of 
them that do not cure the underlying cause, but allow patients to enjoy relatively normal lives. Parameters to 
evaluate the efficacy of therapies to combat these therapies are well defined.

Centuries back when nobody knew what a carbohydrate was, diabetes was diagnosed by the sweetness 
of the urine. After discovering that sweetness was due to sugars, and that glucose was the culprit, the last two 
centuries allowed progress in simple tests to determine glucose in blood urine and CSF [21, 22]. It should be 
also noted that it is possible to assess whether the patient has the disease under control by measuring A1c 
glycosylated hemoglobin [23-26].

Can surrogate parameters for NSD be found in blood? This is one of the main questions although the 
answer is likely not. Desirable but very difficult. Therefore, other body fluids should be considered and the 
field must be open to develop strategies to measure parameters in the CSF.

Telemetry and nanotechnology to measure CSF components
In the case of NSDs, the two legs to support the therapeutic corpus are neuroscience and bioengineering. 
While advances in neuroscience are difficult to predict, engineers can design and build almost any device. 
The results of Neuroscience in the case of some NSDs have been poor, but the technological advances in 
Medicine have been notable. ENT welcomes articles from neuroscientists who think of useful devices to 
address neuroprotection/neurorestoration and that can be built by bioengineers. Telemetry (see below) 
is one of the techniques that show potential and neuroscience must benefit of telemetry and any other 
technological advance that is deemed necessary. The diabetes research field is gaining momentum due to 
tools that allow real-time measurement of glucose levels by telemetry [27-30] thus avoiding changes due to 
stress in animal handling, circadian rhythms, etc. Who would not want to know whether CSF glucose levels, 
that in a healthy individual are 60-70% of those in blood, are altered in neurodegeneration and are restored 
by a given neuroprotective therapy?

Technology has advanced enormously in the last decades and the Neuroscience field must take 
advantage of its present and future possibilities. ENT journal will welcome papers showing bioengineers and 
nanotechnology researchers the way to assess parameters measuring the efficacy of neuroprotective therapies.

Longitudinal studies
Coffee/tea consumption reduces the risk of suffering from PD or AD; there are solid longitudinal studies show 
that natural methylxanthines: caffeine in coffee (or cola drinks) and theophylline in tea are neuroprotective 
(via blockade of adenosine G protein-coupled receptors) [31-41].
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Natural compounds or approved drugs considered as nootropics, i.e. those that improve brain function, 
must be subjected to longitudinal studies to show neuroprotective potential [42-50]. Ideally these studies 
should be performed in humans but ENT is open to receive submissions of epidemiological-like longitudinal 
studies in animals. Taking AD models, which require time to manifest cognitive deficits: could these deficits 
manifest themselves later in animals that consume nootropics?

Finally, another version of longitudinal studies to address neuroprotective potential is to analyze data 
of aged people that take pills (antihypertensive, antidiabetic, etc.). Do some pills reduce/increase the age 
at which a certain NSD occurs? Do patients on memantine have accelerated cognitive decline or live longer 
or shorter than patients taking another anti-AD drug? The data is there, and Governments, Institutions and 
Hospitals should make possible access to the data (preserving the identity of the individuals). Similarly, do 
ethnic groups present less impact from NSDs due to their lifestyle? Do societies that started few years ago to 
take pills have more/less affectation of NSDs?

Conclusions
ENT is born with the spirit of serving as a platform to accelerate the translation of therapies to patients 
with diseases of the peripheral or central systems. The added value of the journal consists of going beyond 
the publication of an article. The journal will be successful to the extent that published studies, opinions, 
reviews, etc. take into account the greatest challenge in the field, namely how the efficacy of therapy may be 
demonstrated. Certainly, articles that convincingly show advances in any therapeutic aspect related to NSDs 
are welcome. Reports on potential biomarkers whose measurement can be carried out in a living human 
being (rather than in postmortem tissue) will be critical in overcoming the challenges of demonstrating the 
efficacy of neuroprotective therapies. Articles in which novel strategies to determine efficacy are pursued, 
e.g., longitudinal trials in humans and/or animal models, are very welcome. Finally, the journal would like 
to include innovative ideas on technological developments to discover biomarkers that can be measured in 
living humans, e.g., using probes and nanotechnology or telemetry to detect in real-time glucose and oxygen 
levels in the cerebrospinal fluid.
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