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Abstract
Linker for activation of T cells (LAT) is a central adaptor protein in proximal T cell activation. A key element 
of its adaptor function is the efficiency with which LAT interacts with its binding partners. Such efficiency 
is controlled by the local concentration of LAT as well as the vicinity to up- and downstream interaction 
partners, i.e. LAT localization. Several factors control LAT localization. LAT is a palmitoylated transmembrane 
protein and traffics between vesicular compartments and the plasma membrane. Membrane heterogeneity 
and protein-protein interactions can drive LAT clustering, at scales from a few to hundreds if not more 
molecules. LAT vesicular trafficking through the small, crowded cytoplasm of a T cell and the commonly 
nm scale clusters are difficult to access experimentally, in particular in the physiological interaction of T 
cells binding to antigen presenting cells (APCs) with a highly undulating interface. Only in recent years 
have technological advances begun to provide better access. Based on such advances, three elements of LAT 
localization are discussed in conjunction: vesicular trafficking as it regulates LAT transport towards, insertion 
into, and removal from the plasma membrane; LAT clustering as it increases local LAT concentrations; 
LAT-anchored supramolecular signaling complexes as they embed LAT in a dense network of interaction 
partners. Consistent with the important role of LAT localization for its function, each of these processes 
regulates LAT activity and the efficiency of T cell activation.

Keywords
T cell, linker for activation of T cells, vesicular trafficking, microcluster, supramolecular

Background
Linker for activation of T cells (LAT) is required for T cell activation from thymocyte development through 
T cell effector function. LAT mutations can lead to substantial immune disease [1]. LAT is a transmembrane 
protein with two palmitoylation sites. It links the activation of lymphocyte-specific protein tyrosine kinase 
(Lck) and zeta-chain-associated protein kinase-70 (ZAP-70) upon ligand engagement of the T cell receptor 
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(TCR) to a host of downstream signaling processes [2, 3]. The key signaling motifs of LAT are four tyrosine 
residues that can be phosphorylated by ZAP-70. A LAT proline-rich motif allows Lck to recruit LAT to the TCR 
and ZAP-70 through its Src homology 3 (SH3) domain [4]. The phosphorylated LAT tyrosine residues 
then serve as docking sites for various SH2 domain-containing signaling intermediates. LAT, thus, is the central 
signal distribution point in proximal TCR signaling.

In addition to the biochemical generation of binding motifs for SH2-containing signaling intermediates, 
the phosphorylation of the four key tyrosine residues, LAT function is regulated by its localization. Local 
concentrations of signaling intermediates, as governed by localization, control proximity to up- and 
downstream interaction partners and the efficiency of interaction with them. Three mechanisms that control 
LAT localization. As a transmembrane protein, LAT traffics through vesicles. Its amount and localization are 
discussed at the plasma membrane depend on the extent and localization of plasma membrane insertion 
of vesicles carrying LAT and on its removal from the plasma membrane by endocytosis. In addition, the 
localization of LAT as a transmembrane protein is also regulated by plasma membrane heterogeneity in 
conjunction with protein-protein interactions which promote clustering and spatial segregation. Finally, 
as a tetravalent signaling intermediate LAT nucleates highly crosslinked networks of multiple signaling 
intermediates which have the potential to grow to supramolecular dimensions. The investigation of LAT 
localization is technically challenging as it requires the resolution of nm scale structures in the crowded 
small cytoplasm and on the undulating plasma membrane of T cells interacting with antigen presenting 
cells (APCs), i.e. at the immunological synapse. Despite substantial recent progress, the investigation of LAT 
localization remains limited by experimental accessibility. Therefore, approaches used including potential 
limitations and key questions left unanswered are highlighted.

LAT vesicular trafficking
Using imaging approaches, it is estimated that 30–75% of the cellular pool of LAT resides in vesicles that 
are clearly separate from the plasma membrane [5–7]. Additional vesicles close to or docked at the plasma 
membrane are unlikely to be included in this quantification as they are within the diffraction limit of detection 
in light microscopy. Vesicular trafficking of LAT thus has to be a key regulator of LAT localization. In T cells 
vesicular trafficking is exceedingly difficult to study as individual vesicles and their movement cannot be 
resolved as separate objects by fluorescence microscopy in the small and densely packed cytoplasm of the 
T cell. As discussed in molecular detail below, most insight has been generated by colocalizing clusters of 
LAT-containing vesicles with key vesicular markers and regulators of trafficking at single time points. Further 
data were generated by biochemical purification of LAT-containing vesicles and dynamic imaging of the 
plasma membrane and vesicles directly associated with it by total internal reflection fluorescence (TIRF) 
microscopy in the activation of T cells by flat APC substitutes. The complementary strengths and limitations 
of these studies generate an initial picture of LAT trafficking (Figure 1).
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Figure 1. Vesicular trafficking of LAT. (1) Palmitoylation of LAT and the ability of its transmembrane domain to mediate association with 
lipid-ordered domains are required for Golgi exit. (2) LAT trafficking to the vicinity of the plasma membrane is regulated by Rab27a, Rab37, 
Golgi-microtubule-associated protein of 210 kDa (GMAP210), and vesicle-associated membrane protein 7 (VAMP7). Given the role of 
Rab27a, VAMP7, and the ciliary transport machinery in the trafficking of lysosome-derived secretory vesicles, LAT may traffic with such 
vesicles. (3) IFT20 mediates the fusion of docked LAT vesicles at the plasma membrane. It is uncertain which fraction of docked vesicles 
fuse. (4) It is likely that both LAT embedded in the plasma membrane and localized on docked vesicles can contribute to proximal signal 
transduction. (5) LAT is endocytosed in vesicles associated with Rab7. It is uncertain which fraction of these vesicles uses the recycling 
endosome pathway to reinsert into the plasma membrane is uncertain. Similarly, the long-term fate of docked but not fused vesicles is 
unresolved. (6) Part of endocytosed LAT uses retrograde traffic to the Golgi as regulated by Rab6, vacuolar protein sorting-associated 
protein 35 (VSP35), and syntaxin-16. Part of endocytosed LAT is degraded in a ubiquitin-dependent fashion

Specifically, the palmitoylation of LAT and the ability of its transmembrane domain to mediate association 
with lipid-ordered domains are required for exit from the Golgi apparatus to the plasma membrane [8, 9]. 
Exocytic LAT vesicles are distinct from vesicles carrying TCRζ and Lck. They are characterized by association 
with Rab27a, Rab37, and the vesicle soluble N-ethylmaleimide sensitive factor attachment complex receptor 
(SNARE) vesicle-associated membrane protein 7 (VAMP7) [5]. The association of LAT-containing vesicles 
with Rab27a is intriguing, as Rab27a plays a key role in the docking of lysosome-derived lytic granules with 
the plasma membrane in cytotoxic T cells [10]. LAT may thus travel with such vesicles. VAMP7 is required 
for the docking of LAT-containing vesicles at the plasma membrane [11]. VAMP7 is associated with 
lysosome-derived secretory vesicles in B cells and NK cells [12, 13], again suggesting that LAT could travel 
with such vesicles in T cells. It is still unclear how many of the LAT-containing vesicles docked at the plasma 
membrane subsequently fuse with the plasma membrane. Biochemical studies suggest that such fusion 
is slow and not substantial within 30 min of T cell activation but detectable after hours [11]. Imaging studies 
as detailed below though provide direct evidence for some vesicle fusion within minutes. Nevertheless, even 
without fusion docked LAT-containing vesicles can associate with clusters of the TCR and the downstream 
adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) at the cytoplasmic side of the plasma 
membrane [6] and, thus, could contribute to signal transduction. Combined TIRF and confocal imaging studies 
show that intraflagellar transport 20 (IFT20), a key component of the ciliary transport machinery, regulates 
the fusion of LAT-containing vesicles with the plasma membrane but not their transport to the vicinity of the 
plasma membrane [14]. Further supporting the role of the ciliary transport machinery in LAT trafficking, the 
expression of LAT, but not TCRζ in a ciliated inner medullary collecting duct cell line results in its transport 
to the cilium [15]. As the ciliary transport machinery plays a key role in T cell synapse organization including 
that of cytotoxic T cells [16], these data are again consistent with the role of lysosome-derived granules in the 
delivery of LAT to the plasma membrane. Linking various stages in LAT transport, Golgi exit, ciliary transport, 
and secretory vesicles, Golgi-microtubule-associated protein of 210 kDa (GMAP210) marks vesicles that are 
positive for LAT, VAMP7, and IFT20 and is required for LAT transport to the plasma membrane [15]. LAT 
is removed from the plasma membrane by endocytosis. A fraction of LAT vesicles contain the endosomal 
markers transferrin [17] and, up to 70%, Rab7 [6]. At least some of these vesicles engage in retrograde 
transport to the Golgi. Biochemical purification of LAT-containing vesicles demonstrates enrichment of the 
retrograde transport markers Rab6, vacuolar protein sorting-associated protein 35 (VSP35), and the target 
SNARE syntaxin-16 [18]. Such transport is dependent on TCR engagement. Some of the internalized LAT is 
degraded in a ubiquitin-dependent fashion [19].

Together these studies paint a picture of LAT trafficking in three key steps (Figure 1). (i) Newly 
synthesized LAT and LAT retrieved through retrograde transport are moved from the Golgi to the 
immunological synapse, possibly in lysosome-derived secretory vesicles. (ii) LAT-containing vesicles docked 
at the immunological synapse can fuse to insert LAT into the plasma membrane or function as non-fused 
distinct vesicular signaling sites. (iii) LAT is removed from the immunological synapse by endocytosis 
for degradation or retrieval through retrograde transport with an uncertain role of recycling endosomes. 
Turnover through all these steps is enhanced by TCR signaling.

To determine the importance of vesicular transport for LAT and T cell function, regulators of vesicular 
transport associated with LAT have been deleted. While such deletion likely affects the transport of large 
numbers of proteins in addition to LAT, a consistent picture is emerging across these studies. Deletion of 
various components of the LAT vesicle transport machinery, e.g., VAMP7, Rab6, and ITF20, consistently leads 
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to diminished LAT amounts at the immunological synapse and less efficient T cell activation [11, 14, 18]. 
LAT vesicular transport thus is critical for LAT function.

Important questions remain. Which fraction of docked LAT-containing vesicles fuse with the plasma 
membrane? Is there a preferred localization of LAT vesicle docking and fusion? Can LAT in docked vesicles 
participate in T cell signal transduction? Which fraction of plasma membrane-localized LAT is endocytosed 
during T cell activation? Does LAT continue to signal after endocytosis? Which fraction of endocytosed LAT 
engages with retrograde transport to the Golgi as opposed to direct reinsertion into the plasma membrane 
through recycling endosomes or lysosomal degradation?

LAT clustering in the plasma membrane
The local concentrations of signaling intermediates govern their interaction probabilities and thus the 
efficiency of signaling processes. Clustering at the nm scale enhances local concentrations and thus is an 
important determinant of signaling function. Historically, such clustering could only be resolved by electron 
microscopy (EM), requiring extensive sample processing. However, more recent single molecule localization 
microcopy approaches, as discussed in detail below, have made molecular clustering accessible in gently 
fixed or even live cells. Nevertheless, these highly data-rich imaging approaches are more readily executed in 
a single imaging plane rather than in three dimensions. Therefore, a substantial part of the single molecule 
imaging data is generated in T cells activated on flat surfaces, cover slips coated with antibodies, or supported 
lipid bilayers. Based on such studies, LAT is not evenly distributed in the plasma membrane but undergoes T 
cell activation-regulated clustering. However, it remains uncertain how such data apply to T cell APC 
couples with their highly undulating, deformable interface [20].

Specifically, pioneering EM work on plasma membrane sheets of a mast cell line before and after 
activation through the Fcϵ receptor has demonstrated LAT clusters smaller than 20 molecules before 
activation that grow to 50 to 150 molecules upon mast cell activation. LAT clusters are adjacent to but not 
mixed with Fcϵ receptor clusters, thus forming separate signaling islands in the plasma membrane [21]. 
Initial spinning disk confocal microscopy of T cells activated on flat surfaces established dynamic LAT 
clustering at the scale of 0.5–1 µm [22]. Subsequent single molecule localization microscopy showed that only 
a fraction of LAT was in such clusters, 8% before and 24% after T cell activation [23]. Such clusters increase 
in size and number upon T cell activation as at least in part driven by lateral LAT recruitment within the 
plasma membrane, as opposed to vesicular insertion [24]. LAT clusters only partially overlap with upstream 
TCR clusters and downstream SLP-76 clusters [23, 25], extending the concept of LAT signaling islands 
to T cells. Single molecule tracking showed that individual LAT molecules can integrate into clusters of the 
costimulatory receptor cluster designation 2 (CD2) or bounce off the edges of such clusters [26]. The lack of 
cluster entry is consistent with the existence of discreet signaling islands; integration of some LAT molecules 
into the CD2 clusters illustrates a potential means of communication between clusters. A detailed analysis of 
fluorescence intensity as a function of the distance from the plasma membrane allows a distinction between 
LAT in the plasma membrane versus vesicles close to it. Such work showed a 2.7-fold increase in LAT amounts 
in the plasma membrane upon T cell activation with enhanced LAT clustering to a cluster size of 30 to 50 
molecules as largely driven by the insertion of vesicular LAT [27]. The dynamics and relative contributions 
to LAT cluster formation of lateral diffusion versus insertion from VAMP7+ vesicles were further investigated 
by a combination of advanced imaging approaches, lattice light sheet microscopy, structured illumination 
TIRF microscopy, and correlative light EM with focused ion beam scanning EM as the three-dimensional 
EM component [28]. Within 2 min of T cell activation LAT clusters formed in the plasma membrane with 
very few vesicles in their vicinity. At 5 min of T cell activation, VAMP7+ vesicles are abundant in the LAT 
cluster vicinity with evidence of LAT plasma membrane insertion from the vesicles [28]. It remains uncertain 
what drives LAT clustering. One suggestion is plasma membrane heterogeneity, where proteins are driven 
into membrane islands of 30–300 nm that are cholesterol-enriched as characterized by EM of T cell plasma 
membrane sheets [29]. Again, LAT was found to be pre-clustered, clusters grow in size upon T cell activation 
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and are adjacent but distinct from TCR clusters [25]. Extending a potential role of membrane heterogeneity 
to vesicles, LAT-containing vesicles show a weak but significant correlation with higher lipid order [30].

Concepts developed in separate work on TCR clustering may be applicable to LAT. TCR clustering was 
verified to occur on T cells in vivo [31]. Signaling-active TCRs were shown to be enriched in TCR clusters [32], 
consistent with the idea that molecular clustering enhances signaling efficiency. Finally, a careful reanalysis 
of single molecule localization microscopy data suggests that technical limitations can lead to overcounting 
of TCR clusters [33]. Contrary to previous work, TCRs were found not to be clustered prior to T cell 
activation but only thereafter. Together the studies on LAT and the TCR paint a picture where LAT may or 
may not be clustered in resting T cells. Upon T cell activation LAT clusters are formed and/or grow into 
distinct LAT signaling islands with distinct contributions from LAT lateral diffusion and vesicular insertion. 
LAT phosphorylation is enhanced in such islands. LAT islands are adjacent to clusters of the TCR and other 
signaling intermediate, prominently SLP-76, such that individual molecules at the edges of the clusters can 
move between them to connect the various signaling processes (Figure 2).

Figure 2. LAT clustering upon T cell activation. (1) Prior to T cell activation, some LAT clustering has been described. Parallel work on 
TCR clustering raises doubts that technical challenges in single molecule localization microscopy may overestimate such clustering. 
(2) T cell activation, as dominated by TCR engagement, leads to LAT phosphorylation. For clarity TCR engagement is not depicted. It is 
unclear to which extent non-clustered LAT molecules are phosphorylated. (3) Upon T cell activation, LAT forms signaling islands where 
LAT activation is likely enhanced. It is unclear whether all LAT molecules in such clusters are equally phosphorylated. The extent to which 
docked LAT-containing vesicles are part of such islands is unresolved. LAT islands are adjacent to but rarely mix with TCR clusters. 
(4) Upon strong T cell activation including costimulation through CD28 LAT clusters into supramolecular signaling complexes that are 
enriched in a substantial number of signaling intermediates and associated with increased membrane undulations. The extent to which 
LAT-containing vesicles are part of such complexes is unresolved

Important questions remain. Is LAT signaling restricted to LAT islands or only more efficient in them? 
How do LAT clusters look in the undulating plasma membrane at the interface between T cells and APCs? 
Can LAT clusters form on vesicles adjacent to the plasma membrane? Are LAT clusters retained upon 
endocytosis? How is the association of downstream signaling intermediates with LAT changing when 
LAT clusters?

Supramolecular LAT complexes
Complexes of mutually interacting signaling intermediates can reach ‘supramolecular’ dimensions of 
hundreds of molecules or more [34–37]. The key driving forces of supramolecular protein complex assembly 
are high local concentrations and high valence of the interacting signaling intermediates. In supramolecular 
assemblies, interactions can become more efficient through the formation of reaction crucibles, be limited 
through phase separation-driven sequestration, and the nature of protein interactions can qualitatively 
change [34, 37]. While supramolecular complexes formed by a small number of components are often 
characterized by defined structures such as lipid droplets or protein fibers [37], structural properties of 
supramolecular assemblies built from a large number of components remain largely undefined. In such 
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supramolecular assemblies, the same set of components likely assembles into a spectrum of complexes with 
somewhat varying stoichiometry and size. Nevertheless, because of their size supramolecular complexes are 
a comparatively accessible element of LAT localization, as they can commonly be detected as discreet objects 
in light microscopy.

LAT valence depends on the extent of tyrosine phosphorylation as determined by the strength of a T cell 
stimulus. Fully phosphorylated LAT is tetravalent. Even delayed phosphorylation of a single of these tyrosine 
residues has already functional consequences in the response to attenuated T cell stimulation [38]. Through 
the association of LAT with the adaptor proteins growth factor receptor-bound protein 2 (Grb2)-related 
adaptor protein 2 (Gads) and SLP-76 the number of binding sites for downstream signaling intermediates 
and thus the valence of a LAT-based signaling complex is further increased [39]. In addition, Gads can 
dimerize [40]. Interaction partners of a LAT-based signaling complex themselves can be multivalent. For 
example, Grb2 together with Son of sevenless 1 (Sos1) has been shown to oligomerize LAT [41, 42]. In such 
oligomerization, Grb2 can be replaced or complex formation can be further enhanced by the addition of 
phospholipase Cγ1 or its SH2-SH2-SH3 domains [43]. As such highly interconnected and multivalent protein 
interaction network LAT-based signaling complexes have the properties required for supramolecular 
complex assembly. Using in vitro reconstitution of signaling complexes with purified proteins as initiated 
by membrane-associated LAT, supramolecular complexes can be formed with different compositions, LAT, 
Grb2, Sos1 or LAT, Gads, SLP-76, non-catalytic region of tyrosine kinase (Nck) [44]. Such complex formation 
is dependent on the number of phosphorylated tyrosine residues in LAT and the concentration of the 
interaction partners. Reconstitution of a LAT Grb2 Sos1 complex in giant unilamellar vesicles triggers lipid 
segregation into more and less ordered phases [45]. Such segregation can further stabilize the supramolecular 
complexes and allows for the more effective recruitment of lipid phase-segregated signaling intermediates, 
prominently K-Ras [45]. In such reconstitution experiments, LAT Grb2 Sos1 aggregates form in two steps, 
a very rapid linear association of cross-linked LAT molecules followed by slower aggregation into 
two-dimensional structures [46].

In T cells activated on supported lipid bilayers presenting major histocompatibility complex (MHC) 
peptide and the costimulatory ligand intercellular cell adhesion molecule-1 (ICAM-1) a single MHC peptide 
complex could trigger a LAT condensate of 258 ± 65 [standard deviation (SD)] molecules [47]. In T cell APC 
couples stimulated emission depletion microscopy has detected LAT-associated signaling complexes up to 
a volume of 1 µm3 associated with plasma membrane undulations [48]. LAT mobility in these complexes 
is reduced, their formation is diminished upon the attenuation of T cell simulation and complex formation can 
be enhanced through the synthetic increase of LAT valence, all key properties of supramolecular complexes. 
The composition of these LAT-based complexes changes dynamically during T cell activation [48]. Many 
signaling intermediates, prominently SLP-76, only associate with the LAT complexes during 2 min of T cell 
activation. Complex formation during that time was associated with efficient interleukin-2 (IL-2) generation. 
Together these data suggest that LAT-based signaling complexes can reach supramolecular dimensions in 
live T cells that mediate efficient signal transduction in response to strong stimuli.

Important questions remain. Is all LAT in supramolecular complexes embedded in an undulating 
plasma membrane or are LAT-containing vesicles part of these complexes? Is LAT complex formation 
associated with the formation of a lipid-ordered phase in cells? What drives the dissociation of key signaling 
intermediates, prominently SLP-76, from these complexes after only 2 min of T cell activation? Do these 
complexes simply make LAT signaling more efficient or do they convey new signaling properties?

Outlook
LAT function is regulated at two interlinked levels: biochemically through the extent of phosphorylation of 
its key four cytoplasmic tyrosine residues and through the control of its subcellular localization in vesicular 
trafficking, clustering, and supramolecular complex formation. Moving forward, three questions seem 
pertinent. How are the biochemical and localization-based mechanisms of the regulation of LAT function 
integrated? How do these mechanisms play out in the physiological interaction of primary T cells with APCs? 
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How are these mechanisms employed when LAT function adapts to the multitude of functional T cell states 
in health and disease? Despite an extensive existing literature, there is plenty left to discover about LAT.
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