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Abstract
In the last years, multiple efforts have been made to accurately predict neoantigens derived from somatic 
mutations in cancer patients, either to develop personalized therapeutic vaccines or to study immune 
responses after cancer immunotherapy. In this context, the increasing accessibility of paired whole-exome 
sequencing (WES) of tumor biopsies and matched normal tissue as well as RNA sequencing (RNA-Seq) 
has provided a basis for the development of bioinformatics tools that predict and prioritize neoantigen 
candidates. Most pipelines rely on the binding prediction of candidate peptides to the patient’s major 
histocompatibility complex (MHC), but these methods return a high number of false positives since they lack 
information related to other features that influence T cell responses to neoantigens. This review explores 
available computational methods that incorporate information on T cell preferences to predict their activation 
after encountering a peptide-MHC complex. Specifically, methods that predict i) biological features that 
may increase the availability of a neopeptide to be exposed to the immune system, ii) metrics of self-similarity 
representing the chances of a neoantigen to break immune tolerance, iii) pathogen immunogenicity, and 
iv) tumor immunogenicity. Also, this review describes the characteristics of these tools and addresses their 
performance in the context of a novel benchmark dataset of experimentally validated neoantigens from 
patients treated with a melanoma vaccine (VACCIMEL) in a phase II clinical study. The overall results of the 
evaluation indicate that current tools have a limited ability to predict the activation of a cytotoxic response 
against neoantigens. Based on this result, the limitations that make this problem an unsolved challenge in 
immunoinformatics are discussed.
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Introduction
Neoantigens are defined as patient-specific antigens that arise from tumor-specific genetic variations 
such as somatic mutations, gene fusions, and alternative splicing variants [1]. Other variants that 
expand the repertoire of targetable neoantigens for cancer immunotherapy are derived from aberrant 
transcription-induced chimeric RNAs, generated from trans-splicing of precursor mRNAs or via cis-splicing of 
adjacent genes [2, 3], post-translational modifications [4, 5], and transposable elements [6]. In consequence, 
neoantigens are only expressed in tumor tissues and thus, the immune response against them is highly 
tumor-specific. Multiple studies have demonstrated that T cells can recognize these neoantigens and 
distinguish tumor cells from normal cells [7]. In this scenario, targeting strong immunogenic neoepitopes 
has relevant therapeutic potential. Highly mutated tumors allow the emergence of more neoepitopes to 
be recognized by T cells and indeed, have a better response to immunotherapy with monoclonal antibodies 
that block immune checkpoints (ICI). This has been demonstrated in melanoma as well as in lung cancer, 
urothelial cancer [8], and in mismatch repair-deficient tumors [9]. But even if tumor mutational burden (TMB) 
is high, major histocompatibility complex (MHC) allele homozygosis or the expression of MHCs with highly 
similar recognition motifs can limit the number of presented peptides in a given individual [10].

However, the generation of immunogenic neoepitopes is not the only factor that influences whether a 
variant results in clinically relevant tumor cell recognition and lysis by T cells. Proteins containing mutated 
peptides must be efficiently transcribed, translated, processed by the antigen-processing cells, and loaded 
onto MHC molecules for presentation on the cell surface to be recognized by a T cell (Figure 1). Alterations 
in genes that modulate these processes, as well as downregulation of MHC expression in tumor cells, can 
abrogate the immunogenicity of neoepitopes in cancer patients [11, 12].

Figure 1. Steps involved in antigen processing, presentation, and T cell recognition. Four categories of computational 
predictive tools that address each aspect were defined, which are displayed in the lower panels. This figure was created 
with BioRender.com. iPCPS: improved proteasome cleavage prediction server; IEDB: Immune Epitope Database; 
INeo-Epp: immunogenic epitope/neoepitope prediction; TA predictor: tumor antigen predictor; PRIME: Predictor of Immunogenic 
Epitopes; iTTCA-RF: Identification of Tumor T cell Antigens-Random Forest

Accurate neoepitope prediction pursues several purposes: i) to design personalized cancer treatments, 
such as neoantigen-targeted vaccines [13–15] and adoptive cell therapies [16], where the immune system 
is stimulated to recognize neoantigens, increasing the frequency of specific CD8+ T cells and potentially 
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eliciting the selective destruction of tumor cells; ii) to develop tools for the screening of neoantigen-specific 
T cells in samples of patients receiving immunotherapies, such as cancer vaccines [17], tumor infiltrating 
lymphocytes (TILs) [18] or ICI [19]. As such, immunoinformatic tools are currently applied to guide scientists 
to select the best potential neoepitope candidates, for instance, to elaborate vaccines, however, their 
immunogenicity must be experimentally verified after patient treatment.

Since the introduction of paired whole-exome sequencing (WES) of tumor/normal tissue and RNA 
sequencing (RNA-Seq) technologies, along with the development of refined bioinformatics tools applied 
to predict candidate neoepitopes, the field has accelerated considerably fueling precision oncology. The 
neoepitope prediction strategy involves somatic alteration identification and annotation from paired 
sequencing data of tumor and normal DNA or RNA, prediction of neopeptides presentation in the context of 
the patient’s MHC alleles, and prioritization among candidate neopeptides [20]. Examples of well-established 
pipelines that perform these tasks for mutation-based neoantigens are personalized variant antigens by 
cancer sequencing (pVAC-Seq) [21], mutant peptide extractor and informer (MuPeXi) [22], prioritizing tumor 
neoantigens (pTuneos) [23], and Neopepsee [24]. Further, there are methods such as INTEGRATE-neo [25], 
NeoFuse [26], nextflow neoantigen prediction pipeline (nextNEOpi) [27], and deFuse-Trinity [28] designed 
to detect gene fusion and/or aberrant transcription-induced chimeric RNAs-based neoantigens. In particular, 
methods developed to predict the binding of peptides to MHC molecules are very precise and have contributed 
to facilitating neoantigen prediction. The binding of these neopeptides to MHC molecules is critical to inducing 
an effective immune response but it is not the only factor determining immunogenicity. For this reason, 
pipelines relying on MHC binding still return a considerable amount of false positive predictions [29, 30]. 
In addition, every single mutation can generate different peptides that vary in length and frame, which may 
bind to any of the six patient’s MHC class I molecules [31]. In this context, prioritization of reliable neoepitope 
candidates becomes critical.

Assuming high-affinity binding to MHC alleles for mutated peptides, evaluation of additional features, 
such as gene expression and detection of variants in RNA-Seq, variant allele frequencies, neoepitope 
enrichment within a particular intracellular compartment, microbial sequence similarity, neopeptide binding 
and stability to MHC and/or peptide processing, may increase the specificity and sensitivity of neoantigen 
prediction [32]. To address the suppressive response that may be activated if the recognized antigen 
shares similarity to a self antigen, self-similarity metrics have been also proposed to improve neoantigen 
prediction [33]. Additionally, only a few neopeptides are actually recognized by T cells [13, 34, 35] at the 
immune synapse and the prediction of the multiple requirements for the effective interaction between the 
peptide-MHC (pMHC) and T cell receptor (TCR) is still challenging.

This review explores and compares some of the most relevant or recent computational methods that 
account for T cell preferences to predict their activation after the encounter with a pMHC complex, and these 
methods could be used after the application of the mentioned WES pipelines to refine neoantigen candidate 
selection. This review also includes features that may impact on the immune response, such as protein 
processing or abundance. In each section, reviewed tools will appear in order by date of publication. Of 
note, it is not intended to give an exhaustive revision covering all tools, but rather focus on covering some 
of the most representative tools within each domain. This article focuses on MHC class I presented 
peptides (usually 8–11 mers) since the role of CD8+ T cells is central in antitumor immune response and 
peptide binding prediction to MHC class I can be more accurately established with the methodology 
currently developed [36]. Finally, with a novel dataset of experimentally validated neoepitopes from 
melanoma patients that were treated with a therapeutic vaccine (VACCIMEL) in a phase II clinical 
study [37, 38], the tools were evaluated in an unbiased way.

Biological and immunological features associated with neopeptide immunogenicity
The availability of neopeptides at the surface of target cells and/or antigen-presenting cells (APC) is essential 
for T cell recognition. For this to happen, a mutated protein must be transcribed and translated by the tumor 
cell, cleaved by specific proteases, and processed through the antigen-processing machinery of the cell to 
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produce peptides that are translocated to the endoplasmic reticulum lumen by transporter associated with 
antigen-processing (TAP) molecules, to form a complex with the MHC molecule. In the cases of MHC class I 
antigen cross-presentation and exogenous MHC class II antigen presentation, mutated proteins from tumor 
cells must be captured by the APC and then presented to activate peptide-specific naive T cells. Thus, the use 
of bioinformatics tools that predict proteasome cleavage, immunoproteasome processing, TAP affinity, and 
MHC binding may help to select better candidate neopeptides [39]. The initial limitation to the generation 
of peptides during antigen processing consists of the source protein degradation into smaller peptides. 
Each processing pathway generates its specific peptidome by means of different proteolytic enzymes, and 
consequently, research has focused on different approaches to predict proteasome cleavage sites [40, 41]. 
In this regard, the class I pathway involves the proteasome (and immunoproteasome) machinery, while 
the class II involves, for instance, cathepsins activity. Besides, antigen abundance (the expression level of 
the mutated gene) [42] and pMHC stability (pMHC-I complex half-life) [43] can be extremely diverse and 
strongly influence neopeptide availability to specific T cells. Another feature to consider is the inherent tumor 
heterogeneity, meaning that poorly represented variants in the tumor would have a lower probability to 
elicit an effective immune response against them. In that sense, variant allele frequency or clonality can be 
considered to prioritize the best neopeptide candidates [44]. Specific tools accounting for these features 
may serve to better select candidate neopeptides and some are reviewed below (Table 1).

Table 1. Predictive tools reviewed in this study

Model Category Performance AUC Year/Citation
ProteaSMM c/i i 0.71/0.74 2005 [39]
NetCTLpan i 0.94 2010 [40]
NetMHCstabpan i 0.97* 2016 [43]
HLAthena i N/A 2020 [44]
iPCPS i N/A 2020 [45]
MHCflurry BA/AP i 0.91/0.85 2020 [46]
NetCleave i 0.58† 2021 [47]
NetMHCpanexp i 0.82* 2022 [50]
NetMHCpan N/A 0.99* 2017 [55]
MixMHCpred N/A 0.98* 2017 [54]
Kernel ii 0.8§ 2012 [64]
Antigen.garnish dissimilarity/IEDB score ii 0.85/0.70† 2019 [65]
Pairwise sequence similarity ii N/A‡ 2019 [20]
IEDB immunogenicity iii 0.61† 2013 [66]
DeepNetBim iii 0.94§ 2021 [70]
DeepImmuno iii 0.85† 2021 [72]
DeepHLApan iv 0.81* 2019 [75]
INeo-Epp iv 0.78† 2020 [76]
TA predictor iv 0.82† 2021 [77]
PRIME iv 0.81† 2021 [80]
iTTCA-RF iv 0.78† 2021 [81]
Tools are grouped by categories established in this article (i: biological features; ii: similarity metrics; iii: pathogen immunogenicity; 
iv: tumor immunogenicity), and sorted by year of publication. The AUCs were reported by the authors in the original articles. The 
performance corresponds to independent evaluations on epitope or neoepitope datasets, if available. If multiple evaluations were 
made, the average AUC is displayed. *: These methods have been evaluated with datasets that contain immunogenic peptides 
as positives, and other peptides as negatives. The latter may not bind to MHC molecules; †: These methods have been evaluated 
with datasets that contain immunogenic peptides as positives and non-immunogenic peptides as negatives, but both categories 
may have the same likelihood of binding to MHC. This approach is comparable to the evaluation performed in this work; ‡: This 
method was evaluated and included in the pTuneos pipeline. For this reason, its performance can not be assessed individually; 
§: The AUC corresponds to performance in cross validation; N/A: not applicable; AUC: area under the curve

ProteaSMM: For most MHC I ligands, proteasomal cleavage at the C-terminus is the first step in antigen 
processing [45]. ProteaSMM [46] is a tool that uses the stabilized matrix method (SMM) algorithm for 
predicting proteasomal cleavages. The authors constructed two different matrices that account for digests 
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with the constitutive proteasome and the immunoproteasome respectively. The methods were developed 
based on in vitro experiments characterizing proteasomal cleavage, transport by TAP molecules, and MHC 
class I binding. Validation of the predictive algorithms was performed using a set of 390 endogenously 
processed MHC class I ligands, which were identified by elution mass spectrometry (MS) from different 
renal cell carcinomas and cell lines with known proteasome composition. ProteaSMM predicts cleavages of 
small peptides, whole-protein digests or the C-termini of MHC I ligands. The combined prediction model is 
available at http://tools.iedb.org/processing/.

NetCTLpan: This method [47] is a pan-specific MHC class I epitope predictor that integrates predictions 
of proteasomal cleavage from NetChop 3.0 [41], TAP transport efficiency from [48], and MHC class I binding 
affinity from NetMHCpan 2.3, into a MHC class I pathway likelihood score. NetCTLpan performs predictions 
for all MHC molecules with known protein sequences and allows predictions for 8–11 mer peptides. 
The predictive performance of NetCTLpan method is validated on datasets that include ligands from the 
SYFPEITHI [49] and Los Alamos human immunodeficiency virus (HIV) (http://www.hiv.lanl.gov/) databases. 
The method is available to download and as a web server at https://services.healthtech.dtu.dk/service.
php?NetCTLpan-1.1.

NetMHCstabpan: Both the strength of the interaction between peptide and MHC class I, and the stability 
of the pMHC complex contribute to peptide immunogenicity. NetMHCstabpan [50] was developed 
to combine both features and improve peptide immunogenicity prediction. The neural network-based 
pan-specific predictor of pMHC complex stability was trained with 28,166 novel measures of pMHC stability. 
This tool integrates the stability predictor with NetMHCpan-2.8 in the final model with an 80% weight 
on affinity and 20% weight on stability. The model achieved a better prediction of MHC ligands and T cell 
epitopes, as compared to any of the two features alone. The method is available to download and as a web 
server at https://services.healthtech.dtu.dk/service.php?NetMHCstabpan-1.0.

HLAthena: Sarkizova et al. [51] used MS to obtain a large dataset of > 185,000 eluted ligands 
representing numerous MHC class I alleles. From this data, the authors identified peptide motifs per MHC 
allele and developed neural network-based models to predict MS intrinsic peptide features. HLAthena also 
integrates peptide cleavability, transcript abundance, and gene presentation bias in logistic regression 
models. Predictions with these tools were validated with data from MHC-bound peptides that were 
observed experimentally in 11 patient-derived tumor cell lines of various origins, verifying the correct 
identification of > 75% of bound peptides. The HLAthena predictors are available to use online for research 
purposes at http://hlathena.tools/.

iPCPS: iPCPS, is a web-based tool developed to predict proteasome cleavage sites [52]. Modeling 
cleavage sites resemble modeling grammatical rules and thus iPCPS used n-grams to model and 
predict immunoproteasome cleavage sites [40]. The proteasome model was trained on eluted MHC 
class I ligands, and the immunoproteasome model was trained with epitopes. The latter was evaluated 
for its ability to discriminate T cell epitopes using a dataset consisting of 844 unique virus-specific 
CD8+ T cell epitopes and their source proteins. iPCPS is available as a web server for free public use at 
http://imed.med.ucm.es/Tools/pcps/.

MHCflurry: In addition to elucidating MHC binding motifs, MHC ligands also reflect the antigen 
processing steps that occur prior to MHC binding. MHCflurry is an integrated predictor of MHC class I 
presentation that incorporates models for MHC class I binding and antigen processing [53]. The authors 
first trained a pan-allele MHC class I binding predictor on available MHC class I ligand data, including both 
affinity measurements and MS datasets. This data was also used as a training set for a model of antigen 
processing by combining MS-identified peptides (hits) with unobserved peptides (decoys), where both 
hits and decoys are predicted by the binding predictor to bind the relevant MHC class I alleles. The antigen 
processing predictor thus models the residual allele-independent sequence properties that were not learned 
by the first predictor. The processing predictor favored peptides consistent with previously documented 
motifs [53] for key antigen processing steps. Both predictors were integrated into a logistic regression 
model, resulting in a presentation score. All the models were evaluated on curated MS datasets. MHCflurry 2.0 
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is available to download at https://github.com/openvax/mhcflurry or it can be executed without installation at 
https://colab.research.google.com/github/openvax/mhcflurry/blob/master/notebooks/mhcflurry-colab.ipynb.

NetCleave: This is an open-source algorithm for predicting C-terminal antigen processing for 
MHC class I and class II molecules [54]. NetCleave architecture consists of a feed-forward neural 
network trained with 46 different physicochemical publicly available descriptors of the cleavage site 
amino acids [55, 56]. NetCleave predictions achieved great predictive power towards class I isotypes 
although a more modest performance was found for class II isotypes. This method is freely available at 
https://github.com/pepamengual/NetCleave.

NetMHCpanExp: One feature that can strongly influence the repertoire of MHC-presented ligands 
is antigen abundance. For this aim, NetMHCpanExp was developed integrating MHC binding and gene 
expression values derived from RNA-Seq experiments [57]. This model demonstrated that the incorporation 
of antigen abundance improved prediction accuracy for both MHC class I ligands and cancer neoantigen 
epitopes. Although better results are obtained by use of sample-specific abundance information, also reference 
expression data (i.e. The Human Protein Atlas) can be applied without a significant decrease in prediction 
efficiency. The tool is available at https://services.healthtech.dtu.dk/service.php?NetMHCpanExp-1.0.

Prediction of MHC binding and MHC antigen presentation
Binding of peptides to MHC molecules is the single most selective step in the recognition and processing of 
antigens by the cellular immune system. It has been estimated that only 1 in 200 peptides will bind to a given 
MHC class I molecule with sufficient strength to elicit an immune response [58]. Given this essential role, 
most neoepitope selection pipelines rely on the prediction of binding of neopeptides to the MHCs present in 
a given individual. The field of peptide binding to MHC prediction is vast, and has been reviewed in several 
recent publications [59, 60]. In short, prediction methods for MHC binding can broadly be divided into two 
methods: methods trained on in vitro binding data and methods trained on MS eluted ligands. The former 
methods are capable of predicting peptide binding affinity, whereas the latter methods, due to the nature of 
the MS eluted ligands, predict a likelihood of MHC antigen presentation integrating information related 
to antigen processing, MHC binding and stability. In general, methods trained on eluted ligand data have 
been demonstrated to be superior compared to binding affinity methods predicting epitopes [61, 62]. It is 
beyond the scope of this manuscript to give a comprehensive review of all methods, and some of them are 
described below.

NetMHCpan: This is one of the earlier developed tools that are still within the top performing [63]. The 
current version of NetMHCpan [36] is trained to integrate binding affinity and eluted ligand data, allowing 
to predict both peptide binding affinity and MHC antigen presentation likelihood with the performance 
of both prediction modes being boosted by the information leveraging between the two data types [61]. 
The output from the tool comprises raw prediction values and associated percentile rank scores. In the 
original article, NetMHCpan achieved a high performance when evaluated with epitopes and their source 
proteins. Benchmark studies have demonstrated that a percentage rank threshold of 0.5% “will identify 
~70% of the epitopes while discarding up to 99.5% of non-immunogenic peptides” independent of the 
human leukocyte antigen (HLA) type [61, 64, 65]. Most neoepitope selections are thus conducted at 
this threshold (examples include [66, 67]). The method is available to download, and as a web server, at 
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1.

MixMHCpred: Bassani-Sternberg et al. [62] developed MixMHCpred to identify MHC binding 
preferences from MS data. For this aim, the authors generated novel immunopeptidomic datasets and 
also collected publicly available data of this kind. Allele-specific position weight matrices (PWMs) were 
constructed and evaluated with cancer-derived neoantigens. The method is available to download at 
https://github.com/GfellerLab/MixMHCpred.

Other publicly available state-of-the-art tools within this field include MHCFlurry [53], and HLAthena [51] 
which are described in other sections of this paper.
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Strategies to account for pathogen-similarity and self-similarity
Since self-reactive T cell clones are deleted at the thymus, neopeptides must be different to self-peptides to 
be recognized by circulating T cell clones. Since most neoantigens arise from mutated self-peptides, their 
sequences are more similar to the normal counterpart compared to pathogen-derived epitopes. Further, it is 
important to evaluate the similarity between the mutated peptide not only with the wild type counterpart, 
but also with the rest of the proteome. This is particularly important since T cell clones recognizing dissimilar 
peptides should escape from the central tolerance mechanism and thus be available to recognize them. On 
the contrary, cross-reactivity of T cells tolerant to neoepitopes similar to the wild-type peptides could trigger 
a harmful autoreactive immune response [68]. It has been further proposed that neoantigen similarity to 
pathogenic-derived epitopes could favor immunogenicity [69, 70]. Several methods have been proposed to 
assess these peptide similarity properties and some of them are described in Table 1.

Kernel: The Kernel metric is used to compare the degree of similarity between two peptides without 
performing a sequence alignment [71]. The method compares subsequences (or kmers) of all possible 
lengths within the peptides, which are weighted using a blocks of amino acid substitution matrix (BLOSUM). 
In the original article, the Kernel was evaluated with MHC ligands. This method was also applied by 
Bjerregaard et al. [65] to demonstrate that peptide similarity between mutant and wild-type peptides was 
a predictor for antigenicity in the cases where MHC binding potential was conserved between the two 
peptide variants.

Antigen.garnish: This method was designed to assess neoantigen quality towards likelihood of 
immunogenicity [72]. For this aim, Richman et al. [72] collected five clinical datasets from 318 cancer 
patients, and explored several quality metrics, such as pMHC binding affinity, differential agretopicity 
index (DAI, the ratio of the mutant peptide MHC binding to the non-mutated peptide MHC binding), 
similarity to known immunogenic epitopes, as well as the use of dissimilarity to the non-mutated proteome. 
Similarity and dissimilarity scores were calculated using Basic Local Alignment Search Tool (BLAST) over 
the human proteome and Immune Epitope Database (IEDB) derived epitopes respectively. The similarity 
metrics proposed in antigen.garnish demonstrated a good performance when evaluated with neoepitopes 
and non-immunogenic neopeptides, both being experimentally confirmed MHC ligands. Independent of 
the prediction of MHC binding, the authors found that the presence of neoantigens highly dissimilar to the 
human self proteome or enriched with hydrophobic amino acids, was associated with survival following 
anti-programmed cell death protein-1 (PD-1) checkpoint therapy in non-small cell lung cancer. This method 
is available at https://github.com/immune-health/antigen.garnish.

Pairwise sequence similarity: pTuneos [23] is a neoepitope prediction pipeline that incorporates 
pairwise sequence similarity to rank the best candidates, among other features. Its pairwise sequence 
similarity module uses the BLOSUM62 matrix to calculate a similarity score between paired tumors and 
normal peptides. Since these scores vary depending on the amino acid peptide composition, normalization 
is performed dividing the values derived from the comparison with BLOSUM62 by the similarity score of the 
neoantigen tested against itself. pTuneos and the code to execute the pairwise sequence similarity can be 
obtained from https://github.com/bm2-lab/pTuneos.

Prediction of pathogen-associated antigen immunogenicity
This section describes methods that predict peptide immunogenicity, but are not restricted to cancer 
antigens because the training was performed with epitopes from multiple sources, mostly viral pathogens. 
Based on peptide sequences, these methods are able to detect the binding preferences of TCRs to 
pathogen-associated pMHC. It could be hypothesized that these interaction rules are general and therefore, 
applicable to neoepitopes. Relevant examples of these tools are mentioned in Table 1.

IEDB Immunogenicity: Calis et al. [73] analyzed 2,509 peptides with predicted binding to MHC class 
I that were experimentally validated for T cell response. The dataset was obtained from IEDB [74] and 
complemented with peptides from Coxiella burnetii and Vaccinia virus. With the data, the authors 
validated that positions (P)4–6 within peptides as well as large aromatic side chains are associated with 
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immunogenicity. Based on these findings, they developed a model by computing the sum of log enrichment 
amino acids in non-MHC anchor positions, weighted according to the importance of the position. This model 
was validated on Dengue-derived peptides tested for immune responses. IEDB Immunogenicity is one of 
the most used immunogenicity prediction models [32, 75, 76]. The method is available to download and as a 
web server at http://tools.iedb.org/immunogenicity/.

DeepNetBim: Yang et al. [77] combined MHC binding and T cell response of pMHC pairs to 
develop a convolutional neural network (CNN) based model. The binding (n = 88,913 pMHC) 
and immunogenicity (n = 24,193 pMHC) datasets used to train two separate models were 
obtained from IEDB [74]. The evaluation of the combined method was performed over a public 
neoepitope dataset from [78] and IEDB independent data. The method is available to download at 
https://github.com/Li-Lab-Proteomics/DeepNetBim.

DeepImmuno: Li et al. [79] developed a method to predict immunogenicity based on peptide sequence 
and MHC, but independent from predictions of MHC binding. To build the training dataset they retrieved 
~9,000 peptides tested for immunogenicity from IEDB and used a beta-binomial probabilistic model 
to account for variable immunogenic potential of each peptide, which is determined by the number of 
subjects that developed an immune response against the given peptide. Afterwards, they developed a 
predictive model based on a CNN architecture, which was evaluated on experimentally tested immunogenic 
and non-immunogenic peptides from viral infections and cancer [80]. This model captures P4–6 as the 
most relevant positions within peptides for immunogenicity. The method is available as a web server at 
https://deepimmuno.research.cchmc.org and can be downloaded from https://github.com/frankligy/DeepImmuno.

Prediction of tumor-specific antigen immunogenicity
This section reviews tools that have been developed to detect tumor antigens (Table 1). Tumor antigens 
comprise neoantigens and tumor associated antigens (TAA) that are non-mutated but can be highly 
immunogenic due to their high or ectopic expression in tumors (i.e. melanocytic differentiation antigens and 
cancer testis) [81]. Since these tools are trained and/or validated with epitopes from cancer studies, they 
should be more accurate in defining specific rules derived from antitumoral immune responses. A critical 
limitation is the scarcity of this kind of data.

DeepHLApan: This tool was developed to detect neoantigens [82]. Wu et al. [82] combined the prediction 
of MHC binding and immunogenicity into a recurrent neural network (RNN) with an attention module. 
Datasets were retrieved from IEDB, comprising 327,178 ligands to train a MHC binding model and 32,785 
peptides validated for T cell response to train an immunogenicity predictor [74]. MS independent datasets 
and neoantigen data from [78] were obtained for the evaluation of DeepHLApan performance. The 
method is available as a web server at http://biopharm.zju.edu.cn/deephlapan, as a docker container and 
downloadable repository at https://github.com/jiujiezz/deephlapan.

INeo-Epp: Wang et al. [83] collected multiple peptidic features associated with immunogenicity to 
train a random forest classifier. These features are the frequency and type of amino acids within the center 
of the peptide, peptide entropy, and predicted binding to MHC. The authors also included features related 
to the impact of a mutation, to develop a separated specialized neoantigen prediction model. The training 
data comprised 8,316 T cell validated peptides of any disease from IEDB. Neoantigen validation datasets 
were collected from several published independent studies [65], as well as viral derived antigens, consisting 
of 577 non-immunogenic peptides and 85 immunogenic epitopes. Both methods are available as web 
servers at http://www.biostatistics.online/ineo-epp/neoantigen.php.

TA predictor: Herrera-Bravo et al. [84] developed a tool to predict antitumor antigens using a 
quadratic discriminant analysis (QDA) algorithm. For this aim, immunogenic tumor peptides were 
collected from TANTIGEN database [85], and curated non-tumor peptides from IEDB. TANTIGEN not only 
contains neoantigens, but also shared non-mutated tumor antigens that are expressed in normal tissue, 
and are highly immunogenic. This data was splitted to train and evaluate the models, and multiple machine 
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learning algorithms were tested. The final model relies on amino acid properties extracted from the 
AAindex database [86].

PRIME: Schmidt et al. [87] developed a predictor of neoepitope immunogenicity. To detect relevant 
positions within peptides, the authors analyzed ligands obtained with MS and selected positions within the 
center of the peptides for further analysis. The authors identified that tryptophan (W), phenylalanine (F), 
and tyrosine (Y) were enriched within this region in immunogenic peptides. Based on the pMHC predicted 
affinity with MixMHCpred [62] and the frequencies of the 20 amino acids at selected positions, the authors 
trained a logistic regression model. The training dataset of PRIME combined peptides experimentally 
tested for T cell response derived from pathogens or cancer testis antigens (n = 1,629), as well as cancer 
mutations (n = 3,329), and random negatives. The predictive performance of PRIME was assessed in a 
mouse-derived neopeptide dataset which was experimentally tested for immune response. Additionally, 
the authors observed that structural determinants of TCR recognition of pMHC are correlated with PRIME 
predictions. The method is available as a web server at http://prime.gfellerlab.org and as a downloadable 
code at https://github.com/GfellerLab/PRIME.

iTTCA-RF: Jiao et al. [88] developed a method for the identification of tumor T cell antigens based on 
a random forest algorithm. Tumor epitopes were obtained from TANTIGEN and TANTIGEN 2.0 [89] and 
non-tumor epitopes from IEDB, and this data was randomly separated to train and evaluate the models. 
The authors included features based on amino acid properties, specifically: the global protein sequence 
descriptor, the grouped amino acid and peptide composition, the adaptive skip dipeptide composition, 
and the pseudo-amino acid composition, to train the model. The method is available as a web server at 
http://lab.malab.cn/~acy/iTTCA/.

Evaluation of methods with an independent neopeptide dataset
To suitably evaluate the performance of the reviewed methods, an in-house dataset was arranged, 
consisting of 94 mutation-based neopeptides (26 immunogenic and 68 non-immunogenic), which were 
experimentally validated for T cell responses (Table S1, Supplementary materials). These neopeptides were 
originated in melanoma tumors from 3 patients that participated in the VACCIMEL trial [37] (Figure 2A). 
The candidates were selected primarily based on MHC binding predicted by NetMHCpan 4.0, with the use of 
MuPeXI. Neopeptides from patients #005 and #032 are novel and first described here, and neopeptides 
from patient #006 were previously published [17].

As described earlier, the binding of the peptide to the MHC has been established as a necessary (but not 
sufficient) step to elicit an immune response, and for this reason it can be a confounding variable if trying to 
assess the performance of immunogenicity predictive methods. To avoid misinterpretation of the methods 
reviewed, the dataset therefore only included neopeptides with predicted binding to the corresponding 
patient’s MHC. Also it was validated that positive and negative neopeptides have comparable ranges of 
predicted binding to the cognate MHC using NetMHCpan EL 4.0 (Figure 2B). Given these observations and 
peptide selection bias, NetMHCpan EL 4.0 model was not included in this evaluation. Finally, neopeptides in 
the dataset have a length distribution expected for MHC class I natural presented ligands [34] (Figure 2C) 
and it was corroborated that the MHC allele locus did not influence immunogenicity in this dataset, since 
the fraction of positives is similar for each MHC class I locus (A, B, and C) (Figure 2D).

The amino acid composition of neopeptides has been previously associated with their 
immunogenicity [90]. For instance, IEDB immunogenicity [73] reported an enrichment of phenylalanine (F), 
isoleucine (I), and tryptophan (W) among viral epitopes, while PRIME [87] described an enrichment of 
tryptophan (W), phenylalanine (F), and tyrosine (Y) in viral and tumoral epitopes. Considering that multiple 
methods weigh the central positions within the peptide as determinants of the interaction with TCRs, 
the amino acid composition of neopeptides at these positions in the established in-house dataset was 
explored (Supplementary materials). The result of this analysis is shown in Figure 3A, and demonstrated 
that the neoepitopes of our dataset also showed an enrichment in phenylalanine (F) and tyrosine (Y). 
However, tryptophan (W) was found to be completely absent. It should be mentioned that leucine (L) 
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was the most prevalent amino acid. To further explore this observation, the amino acid enrichment from 
large datasets of T cell tested peptides from viruses obtained from IEDB and neopeptides from Neoepitope 
Database (NEPdb) [91] and Cancer Epitope Database and Analysis Resource (CEDAR) [92] was compared. 
This analysis demonstrates that the enrichment of tryptophan (W) is present only in viral antigenic peptides 
and in general both groups have different preferences (Figure 3B and C).

Figure 2. Characteristics of the in-house neoepitope dataset. (A) Immunogenic fraction of neoepitopes per patient; (B) predicted 
binding to corresponding patient’s MHC for immunogenic and non-immunogenic neopeptides (Mann Whitney U = 0.498, n.s.); 
(C) immunogenic fraction of neoepitopes per length; (D) immunogenic fraction of neoepitopes per MHC allele

Figure 3. Amino acid enrichment in central positions of immunogenic (up) vs. non-immunogenic (down) peptides from 
different sources. The amino acids discussed are shown in blue. (A) Neopeptides from in-house dataset (immunogenic: 26, 
non-immunogenic: 68); (B) neopeptides from the CEDAR and NEPdb databases (immunogenic: 527, non-immunogenic: 2541); 
(C) viral peptides from the IEDB (immunogenic: 367, non-immunogenic: 7080)
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NetMHCpanExp [57] allows the assessment of transcript expression values derived from the Human 
Protein Atlas (version 20.0) reference database. Since multiple methods reviewed in this work require 
expression values, and the obtention of RNAseq data was not possible for patient #032, this annotation was 
explored as a possible source of protein abundance information. By comparing it with the expression values 
of neopeptides source proteins from patients #005 and #006 obtained from RNAseq experiments, a strong 
positive correlation was found (Figure S1). Thus, these inferred values were used for further analysis for the 
three patients.

To avoid performance overestimation, it is essential that datasets destined to evaluate these methods are 
independent from the data used for training [93]. In this context, it was verified that the in-house neoepitope 
dataset has an overlap of identical peptides of 1% (1 of 96) with the training data of only DeepImmuno, 
DeepHLA, and NetHCpanExp and 4% with the training data of NetCleave. Excluding the overlapped peptides 
did not substantially change the performance of these methods (Table S2). Given this, it can be concluded 
that the reported performances of the individual methods are unbiased in terms of data redundancy 
between training and evaluation.

Next, the predictive performance of the reviewed methods (Table S1) was evaluated on the in-house 
dataset in terms of the area under the receiver operator curve (Table S3). This analysis describes how 
well the positives are separated from the negatives as their discrimination threshold varies, and allows 
the evaluation of predictions without a binary classification. An AUC of 1 describes a perfect classifier, and 
an AUC of 0.5 indicates there is no discrimination. The highest AUC obtained was 0.6, indicating a rather 
poor discrimination across all methods (Table 2). Among the best performing tools (AUC > 0.55), there 
are methods specifically developed to predict tumor antigens (category No. 1) and methods classified as 
predictors of biological features (category No. 4). Protein abundance (variant allele frequency, HLAthena), 
protein degradation (MHCflurry, HLAthena, ProteaSMM) and peptide association to TAP (NetCTLpan) are the 
features in this group that could contribute to immunogenicity prediction in this dataset.

Table 2. AUC receiver operating characteristic (ROC) of best performing methods on in-house dataset

Category Method AUC ROC
i MHCflurry processing 0.609
iv PRIME score 0.604
i Variant allele frequency 0.6
iv INeo-Epp neoantigen 0.584
i HLAthena MSiCE 0.58
i ProteaSMM c 0.58
i HLAthena MSiC 0.576
i MHCflurry PS 0.571
i NetCTLpan TAP 0.568
i ProteaSMM i 0.561
N/A MixMHCpred 0.556
iv TA predictor 0.552
Tools are grouped by categories established in this article (i: biological features; iv: tumor immunogenicity)

The interferon gamma (IFNγ) enzyme-linked immunospot (ELISPOT) assays were used to assess 
the immune responses against our in-house neopeptide dataset. This technique quantifies the number of 
specific T cell clones recognizing a certain sample [94]. Considering the number of observed spots relative 
to the unspecific background, a quantitative value which reflects the strength of the immunogenicity was 
set (Supplementary materials). It can be hypothesized that some of the tools may better predict the most 
immunogenic neoepitopes, which are capable of eliciting the highest number of IFNγ producing cells. To 
identify such tools, the correlation between the quantitative values of ELISPOT and the estimations of 
reviewed methods was calculated. For the immunogenic neoepitopes, a positive correlation with predictions 
from NetMHCpan 4.0 and MHCflurry presentation was observed (Figure 4). With the entire dataset (which 
also contains non-immunogenic neopeptides), no significant association was found (Table S1). These results 
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suggest that, although it is difficult to predict the presence or absence of an immune response, in cases 
where there is indeed an immune activation, it is possible to infer the intensity of that response from the 
predicted MHC presentation likelihood.

Figure 4. Correlation between immunogenicity values obtained from IFNγ ELISPOT assays and values obtained with predictive 
methods. (A) NetMHCpan 4.0 EL rank (Pearson’s correlation test, r = –0.399; Spearman’s correlation test, ρ = –0.31); 
(B) MHCflurry presentation score (Pearson’s correlation test, r = 0.38; Spearman’s correlation test, ρ = 0.47)

Discussion
This article has reviewed multiple bioinformatic and immunoinformatic tools proposed to contribute to 
the prediction of immunogenic neopeptide candidates, besides MHC binding. A common characteristic of 
these tools is that the sequence of the mutated peptide is the most relevant information considered. Other 
characteristics derived or complementary to peptide sequence are: i) peptide availability (e.g., processing, 
presentation, and abundance); ii) T cell availability (e.g., self-similarity and foreignness); iii, iv) TCR 
preferences [e.g., location and type (charge, size, etc.) of amino acids in mutated peptides].

To evaluate the methods reviewed here, a novel neoepitope dataset was assembled. In the evaluation, 
it was observed that most of the methods misclassify immunogenic and non-immunogenic neopeptides. 
The authors acknowledge that the small number of peptides in this dataset (especially those from the 
immunogenic fraction) may impose a limitation that could lead to underestimating the performance of the 
tools. Besides, an important factor that may explain these results is the rationale behind neoepitope selection. 
In biased datasets, composed of peptides preselected by some criteria (e.g., antigen presentation, peptide 
binding to MHC, and antigen expression), the specific feature used for selection will in general not show any 
predictive performance. In our in-house neoantigen dataset, the main selection criterion was the predicted 
binding to MHC by using the NetMHCpan 4.0 EL model. This imposes a bias towards not only NetMHCpan 
but also all models that directly or indirectly predict binding and antigen presentation by MHC.

Pathogen-associated epitope datasets are the most abundant among validated peptides for T cell 
immune response, and for this reason, methods specific to predict cancer antigens in general suffer from 
being trained on small datasets. Several tools described in this review have been trained with epitopes 
derived from pathogens (mostly viral). For instance, IEDB immunogenicity [73] and PRIME [87] are 
methods that rely on the amino acid composition of immunogenic peptides, and both were trained with 
pathogen-derived data (for PRIME this data was complemented by a minor proportion of neoepitopes). To 
test the hypothesis that T cell recognition rules are general, the preferences for neoepitopes and viral 
epitopes were analyzed. An enrichment in aromatic residues among our neoepitopes was observed, in 
line with what was reported by the authors [73, 87]. However, tryptophan (W) was found to be completely 
absent in our data, as well as in a large neoepitope dataset (combining CEDAR and NEPdb), although it was 
highly abundant in viral epitopes (IEDB). Also, it was observed that neoepitopes do not have a clear amino 
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acid preference, compared to viral antigens. This fact may represent a limitation for how much information 
can be transferred into the field of neoantigen prediction. This is remarkable, since the models of both of 
these earlier tools have learned primarily this latter preference. In agreement with this concept, here it was 
observed that these types of methods in general failed to predict our dataset. It must be realized that viral 
antigens are generally presented in an inflammatory context, quite different from the cancer neopeptides 
presented in a mostly immunosuppressed tumor microenvironment (TME).

It was also asked whether any method would be able to predict the intensity of the immune response 
elicited by immunogenic neoantigens. Here, a positive correlation between quantitative ELISPOT and 
predictions associated with MHC binding was found for the immunogenic neopeptides. This observation 
indicates that the likelihood of binding to MHC is not only important to determine the peptide immunogenicity, 
but that binding can also play a role in defining the intensity of the T cell response. In addition, these results 
suggest that other than simply classifying peptides into immunogenic vs. non-immunogenic, it could be of 
value to work on quantitative data, allowing to rank peptides within different degrees of immunogenicity.

It is important to stress that the experimental validation of the neoantigens defined here was performed 
by testing IFNγ production after stimulation of the patient’s peripheral blood mononuclear cells (PBMCs) 
with synthetic candidate peptides. PBMCs provide a higher number of lymphocytes readily available, 
compared to TILs samples. Thus, since T cell clones recognizing neoantigens can be marginated from the 
periphery to infiltrate tumor lesions, it is possible that the lack of reactivity in ELISPOT assays performed 
with PBMC is underestimating neoantigen immunogenicity. Other studies have successfully performed 
neoantigen identification using TILs in in vitro assays [95, 96].

In our opinion, more experimentally validated neoantigens are awaited to train and refine neoepitope 
predictors. As said, the limited data available is likely to have biases that confuse machine learning 
algorithms. Having a large volume of data may allow the models to learn the general rules and discriminate 
the biases that some subsets of data could have. On the other hand, benchmark studies like this one, must 
be performed with data different from the one used to develop the methods. This imposes another level 
of difficulty in finding and generating appropriate datasets. These facts highlight the great value of making 
publicly available neoantigen data in order to improve the tools that make possible the development of more 
specific and efficient therapeutic strategies.

It should be noted that only a small portion of the many candidate neoantigens are the targets of 
immune responses, and this might be related to the phenomenon of immunodominance and immune 
ignorance. Linette et al. [97] demonstrated that, despite the expression of neoantigens in multiple tumors 
of melanoma patients, spontaneous neoantigen-specific T cells were absent or limited to a very low 
frequency. In contrast, upon vaccination with a mature-dendritic cells (DCs) vaccine transfected with 
neoantigens and gp100 peptides, a higher and more diverse neoantigen-specific CD8+ T cell repertoire 
was detectable in TILs and PBMC. In accordance with these results, Zeng et al. [98] reported that an immune 
response to predicted neoepitopes of collecting duct carcinoma, a rare tumor with low TMB, could be 
detected only after vaccination with a peptidic vaccine. Thus, well predicted neoantigen candidates can be 
experimentally assigned as non-immunogenic when in fact, representing false negatives due to immune 
ignorance. Similarly, comparing post-vaccination to pre-vaccination T cell samples, we observed a great 
increase in the immune response against shared non-mutated melanoma associated antigens that were 
highly expressed in our vaccine VACCIMEL, as well as to private neoantigens [17], supporting the antigen 
ignorance hypothesis. This evidence highlights the limited diversity of neoantigen-specific natural T cell 
responses observed in cancer metastases [99]. This suggests that the majority of T cells are spontaneously 
ignorant of most neoantigens until specific vaccination may facilitate neoantigen cross-presentation and/or 
the administration of anti-immune checkpoint therapies increase the activity of T cells.

The immunodominance and immune ignorance of neoantigens cannot be predicted yet. In this sense, 
it is well known that the same immunogenic viral peptides can elicit or not a specific immune response 
in different patients sharing the epitope HLA restriction element [100], reflecting other causes beyond the 
immune features of a given epitope. In the context of cancer neoepitope, this is highly relevant since the 
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immune response against neoantigens in general can not be assessed in multiple patients due to their private 
nature. Thus, this fact poses an intrinsic limitation to epitope prediction that cannot be anticipated. The 
presence of false negatives in neoepitope datasets may be one of the main confounding factors in neoantigen 
prediction algorithms that are trained with these data, and one of the main causes of the generally low 
performance that we observed when predicting immunogenicity of cancer neopeptides.

Given that the immune synapse between the pMHC and TCR is the center of T cell activation, many 
authors propose the integration of TCR recognition prediction into pipelines of neoepitope selection, 
considering that the combination of pMHC-TCR interaction and immunogenicity predictions may improve 
the efficacy of immunotherapies, such as tumor antigen-specific TCR-T cell therapies. Accurately performing 
this task represents a computational and experimental major challenge. It has been stated that TCR paired α 
and β chains are required to accurately predict T cell targets [101]. To obtain this information, single cell 
TCR sequencing should be performed, but this technique can only screen a limited amount of T cells, having 
low chances to recover low frequency clones [102]. For this reason, TIL samples would be more desirable 
for this analysis compared to PBMC although they are not always available. In this sense, the scientific 
community is currently introducing new tools that predict the interaction of pMHC-TCR [103–105], and 
it is expected that the accuracy and coverage of these methods will increase, as high-quality and quantity 
data becomes available. We envision that such methods combined with a deep characterization of the TCR 
repertoire will allow us to resolve, at least in part, the phenomenon of immune-ignorance and dominance.

Additionally, there is still limited knowledge about the multiple factors associated with the efficiency of 
the complex immune response elicited against neoantigens. Indeed, even when the best neoantigens can be 
predicted, different characteristics of each patient can determine the fate of the immune response. Immune 
escape mechanisms adopted by tumors, such as downregulation of MHC expression at the surface of cancer 
cells [106], tumor editing to eliminate cells that express neoantigens [33], expression of ligands that induce 
T cell exhaustion, namely PD-L1 and PD-L2 [107, 108], and the production of immunosuppressive cytokines 
which modulate the composition and phenotype of the immune infiltrate that can penetrate the tumor [109], 
will affect the cytotoxicity against cancer cells. Several of these factors can be influenced by the genetic 
background of the patients, as in the case of polymorphisms of genes that determine the expression levels 
of cytokines [110, 111] and MHC homozygosity [112], among others.

Conclusions
Over the last years, much progress has been made in the selection of tumor neoepitopes that have clinical 
applications such as the development of personalized therapies. This was made possible by two major 
technological developments: i) next generation sequencing (NGS) to obtain tumor sequences in reasonable 
short time and low cost and ii) improvements in bioinformatic and immunoinformatic algorithms to obtain 
highly accurate variant calls and predictions of neopeptides binding to MHC. Although very powerful, the 
combination of these two technologies still yields a large number of neoepitope candidates that are very 
expensive and laborious to test. The present work evaluated tools that could refine the selection of these 
candidates, and the results indicate that there is still work ahead to accurately achieve this purpose. Mutated 
peptide sequences indeed contain relevant information, but it is not enough to accurately predict its 
immunogenicity. In our opinion, the lack of neoantigen data is a major challenge. Also, there is still a need 
to integrate the complexity of the immune response in cancer patients, in particular, the generation of T cell 
repertoires capable of recognizing neoepitopes. Solving this issue will require a technological improvement 
of great magnitude such as the striking development of NGS and bioinformatics, which is expected to be 
developed in the years to come. Finally, the phenomenon of immunological ignorance, which is partially 
determined by patient-specific factors, causes good neoepitope candidates (in terms of the features 
reviewed in this article) to be detected as negatives in in vitro assays. This imposes an intrinsic limitation 
on the prediction of neoantigens, which at the moment remains to be solved.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 96

Abbreviations
AUC: area under the curve
BLOSUM: blocks of amino acid substitution matrix
CEDAR: Cancer Epitope Database and Analysis Resource
ELISPOT: enzyme-linked immunospot
IEDB: Immune Epitope Database
IFNγ: interferon gamma
INeo-Epp: immunogenic epitope/neoepitope prediction
iPCPS: improved proteasome cleavage prediction server
iTTCA-RF: Identification of Tumor T cell Antigens-Random Forest
MHC: major histocompatibility complex
MS: mass spectrometry
NEPdb: Neoepitope Database
PBMCs: peripheral blood mononuclear cells
pMHC: peptide-major histocompatibility complex
PRIME: Predictor of Immunogenic Epitopes
RNA-Seq: RNA sequencing
TA predictor: tumor antigen predictor
TAP: transporter associated with antigen-processing
TCR: T cell receptor
TILs: tumor infiltrating lymphocytes
WES: whole-exome sequencing

Supplementary materials
The supplementary Figure, Tables, and Supplementary methods in Supplementary materials for this article 
are available at: https://www.explorationpub.com/uploads/Article/file/100391_sup_1.xlsx and https://
www.explorationpub.com/uploads/Article/file/100391_sup_2.pdf.

Declarations
Acknowledgments
We dedicate this work to our patients. This work has been performed using the Danish National Life 
Science Supercomputing Center, Computerome. We thank Emilio Fenoy for insightful discussions about 
this research.

Author contributions
IC, MN, and MMB: Conceptualization, Writing—original draft. IC: Formal analysis. IC, ES, EP, and HMGA: 
Investigation. IC and HMGA: Software. IC: Visualization. JM, MN, and MMB: Funding acquisition, Resources. 
MMB: Supervision. IC, ES, EP, HMGA, JM, MN, and MMB: Writing—review & editing. All authors read and 
approved the submitted version.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Ethical approval
The CASVAC-0401 study was carried out after approval of the Ethics Committee of the Instituto Alexander 
Fleming. The study was also approved by the Argentine Regulatory Agency (ANMAT, Disposition 1299/09).

https://doi.org/10.37349/ei.2023.00091
https://www.explorationpub.com/uploads/Article/file/100391_sup_1.xlsx
https://www.explorationpub.com/uploads/Article/file/100391_sup_2.pdf
https://www.explorationpub.com/uploads/Article/file/100391_sup_2.pdf


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 97

Consent to participate
Informed written consent to participate in the CASVAC study and for the use of their samples in the research 
projects associated with the vaccination protocol was obtained from all participants.

Consent to publication
Not applicable.

Availability of data and materials
The dataset generated for this study is included in the supplementary files.

Funding
This work was supported by grants from CONICET, Agencia Nacional de Promoción Cientí�fica y Tecnológica 
(ANPCyT), Instituto Nacional del Cáncer—Ministerio de Salud de la Nación Argentina (INC-MSal), Fundación 
Sales, Fundación Cáncer, and Fundación Pedro F. Mosoteguy, Argentina. The CASVAC-0401 Phase II clinical 
study (Clinical Trials.gov, NCT 01729663) was sponsored by Laboratorio Pablo Cassará S.R.L. The funders 
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright
© The Author(s) 2023.

References
1. Türeci O� , Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the heterogeneity of cancer with 

individualized neoepitope vaccines. Clin Cancer Res. 2016;22:1885–96.
2. Zhang H, Lin W, Kannan K, Luo L, Li J, Chao PW, et al. Aberrant chimeric RNA GOLM1-MAK10 encoding 

a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma. 
Oncotarget. 2013;4:2135–43.

3. Xiong X, Ke X, Wang L, Lin Y, Wang S, Yao Z, et al. Neoantigen-based cancer vaccination using chimeric 
RNA-loaded dendritic cell-derived extracellular vesicles. J Extracell Vesicles. 2022;11:e12243.

4. Katayama H, Kobayashi M, Irajizad E, Sevillarno A, Patel N, Mao X, et al. Protein citrullination as a 
source of cancer neoantigens. J Immunother Cancer. 2021;9:e002549.

5. De Bousser E, Meuris L, Callewaert N, Festjens N. Human T cell glycosylation and implications on 
immune therapy for cancer. Hum Vaccin Immunother. 2020;16:2374–88.

6. Bonté PE, Arribas YA, Merlotti A, Carrascal M, Zhang JV, Zueva E, et al. Single-cell RNA-seq-based 
proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented 
peptides. Cell Rep. 2022;39:110916.

7. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.
8. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor 

mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 
2019;30:44–56.

9. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with 
mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

10. Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, et al. Evolutionary divergence of HLA class I 
genotype impacts efficacy of cancer immunotherapy. Nat Med. 2019;25:1715–20.

11. Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, et al. Tumor escape from immune 
recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide 
transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. 
J Clin Invest. 1996;98:1633–41.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 98

12. Abbott CW, Boyle SM, Pyke RM, McDaniel LD, Levy E, Navarro FCP, et al. Prediction of immunotherapy 
response in melanoma through combined modeling of neoantigen burden and immune-related 
resistance mechanisms. Clin Cancer Res. 2021;27:4265–76.

13. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. 
A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. 
Science. 2015;348:803–8.

14. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen 
vaccine for patients with melanoma. Nature. 2017;547:217–21.

15. Domí�nguez-Romero AN, Martí�nez-Cortés F, Munguí�a ME, Odales J, Gevorkian G, Manoutcharian K. 
Generation of multiepitope cancer vaccines based on large combinatorial libraries of survivin-derived 
mutant epitopes. Immunology. 2020;161:123–38.

16. Pasetto A, Gros A, Robbins PF, Deniger DC, Prickett TD, Matus-Nicodemos R, et al. Tumor- and 
neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. 
Cancer Immunol Res. 2016;4:734–43.

17. Podaza E, Carri I, Aris M, Von Euw E, Bravo AI, Blanco P, et al. Evaluation of T-cell responses against 
shared melanoma associated antigens and predicted neoantigens in cutaneous melanoma patients 
treated with the CSF-470 allogeneic cell vaccine plus BCG and GM-CSF. Front Immunol. 2020;11:1147.

18. Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-cell receptors 
specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes 
based on CD137 expression. Clin Cancer Res. 2017;23:2491–505.

19. Veatch JR, Singhi N, Jesernig B, Paulson KG, Zalevsky J, Iaccucci E, et al. Mobilization of pre-existing 
polyclonal T cells specific to neoantigens but not self-antigens during treatment of a patient with 
melanoma with bempegaldesleukin and nivolumab. J Immunother Cancer. 2020;8:e001591.

20. Pritchard AL. Targeting neoantigens for personalized immunotherapy. BioDrugs. 2018;32:99–109.
21. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: a genome-guided 

in silico approach to identifying tumor neoantigens. Genome Med. 2016;8:11.
22. Bjerregaard AM, Nielsen M, Hadrup SR, Szallasi Z, Eklund AC. MuPeXI: prediction of neo-epitopes from 

tumor sequencing data. Cancer Immunol Immunother. 2017;66:1123–30.
23. Zhou C, Wei Z, Zhang Z, Zhang B, Zhu C, Chen K, et al. pTuneos: prioritizing tumor neoantigens from 

next-generation sequencing data. Genome Med. 2019;11:67.
24. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: accurate genome-level prediction 

of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol. 
2018;29:1030–6.

25. Zhang J, Mardis ER, Maher CA. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen 
discovery. Bioinformatics. 2017;33:555–7.

26. Fotakis G, Rieder D, Haider M, Trajanoski Z, Finotello F. NeoFuse: predicting fusion neoantigens from 
RNA sequencing data. Bioinformatics. 2020;36:2260–1.

27. Rieder D, Fotakis G, Ausserhofer M, René G, Paster W, Trajanoski Z, et al. nextNEOpi: a comprehensive 
pipeline for computational neoantigen prediction. Bioinformatics. 2022;38:1131–2.

28. Rathe SK, Popescu FE, Johnson JE, Watson AL, Marko TA, Moriarity BS, et al. Identification of candidate 
neoantigens produced by fusion transcripts in human osteosarcomas. Sci Rep. 2019;9:358.

29. Linette GP, Carreno BM. Neoantigen vaccines pass the immunogenicity test. Trends Mol Med. 
2017;23:869–71.

30. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome 
vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 99

31. Garcia-Garijo A, Fajardo CA, Gros A. Determinants for neoantigen identification. Front Immunol. 
2019;10:1392.

32. Gartner JJ, Parkhurst MR, Gros A, Tran E, Jafferji MS, Copeland A, et al. A machine learning model for 
ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor 
types. Nat Cancer. 2021;2:563–74.

33. Łuksza M, Sethna ZM, Rojas LA, Lihm J, Bravi B, Elhanati Y, et al. Neoantigen quality predicts 
immunoediting in survivors of pancreatic cancer. Nature. 2022;606:389–95.

34. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, et al. Direct identification 
of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. 
Nat Commun. 2016;7:13404.

35. Snyder A, Chan TA. Immunogenic peptide discovery in cancer genomes. Curr Opin Genet Dev. 
2015;30:7–16.

36. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved 
predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS 
MHC eluted ligand data. Nucleic Acids Res. 2020;48:W449–54.

37. Mordoh J, Pampena MB, Aris M, Blanco PA, Lombardo M, Von Euw E, et al. Phase II study of adjuvant 
immunotherapy with the CSF-470 vaccine plus Bacillus Calmette–Guerin plus recombinant human 
granulocyte macrophage-colony stimulating factor vs medium-dose interferon alpha 2B in stages 
IIB, IIC, and III cutaneous melanoma patients: a single institution, randomized study. Front Immunol. 
2017;8:625.

38. Mordoh A, Aris M, Carri I, Bravo AI, Podaza E, Pardo JCT, et al. An update of cutaneous melanoma 
patients treated in adjuvancy with the allogeneic melanoma vaccine VACCIMEL and presentation 
of a selected case report with in-transit metastases. Front Immunol. 2022;13:84255.

39. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour 
immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

40. Diez-Rivero CM, Lafuente EM, Reche PA. Computational analysis and modeling of cleavage by the 
immunoproteasome and the constitutive proteasome. BMC Bioinformatics. 2010;11:479.

41. Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytotoxic T-cell 
epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics. 
2005;57:33–41.

42. Koşaloğlu-Yalçín Z, Lee J, Greenbaum J, Schoenberger SP, Miller A, Kim YJ, et al. Combined assessment 
of MHC binding and antigen abundance improves T cell epitope predictions. iScience. 2022;25:103850.

43. Vertuani S, Sette A, Sidney J, Southwood S, Fikes J, Keogh E, et al. Improved immunogenicity of an 
immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. 
J Immunol. 2004;172:3501–8.

44. Hamm CA, Moran D, Rao K, Trusk PB, Pry K, Sausen M, et al. Genomic and immunological tumor profiling 
identifies targetable pathways and extensive CD8+/PDL1+ immune infiltration in inflammatory breast 
cancer tumors. Mol Cancer Ther. 2016;15:1746–56.

45. Kloetzel PM. Antigen processing by the proteasome. Nat Rev Mol Cell Biol. 2001;2:179–87.
46. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, et al. Modeling the MHC class I pathway 

by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol 
Life Sci. 2005;62:1025–37.

47. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope 
predictions. Immunogenetics. 2010;62:357–68.

48. Peters B, Bulik S, Tampe R, van Endert PM, Holzhütter HG. Identifying MHC class I epitopes by predicting 
the TAP transport efficiency of epitope precursors. J Immunol. 2003;171:1741–9.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 100

49. Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. SYFPEITHI: database for MHC 
ligands and peptide motifs. Immunogenetics. 1999;50:213–9.

50. Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, et al. Pan-specific 
prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol. 
2016;197:1517–24.

51. Sarkizova S, Klaeger S, Le PM, Li LW, Oliveira G, Keshishian H, et al. A large peptidome dataset 
improves HLA class I epitope prediction across most of the human population. Nat Biotechnol. 
2020;38:199–209.

52. Gomez-Perosanz M, Ras-Carmona A, Lafuente EM, Reche PA. Identification of CD8+ T cell epitopes 
through proteasome cleavage site predictions. BMC bioinformatics. 2020;21:484.

53. O’Donnell TJ, Rubinsteyn A, Laserson U. MHCflurry 2.0: improved pan-allele prediction of MHC class 
I-presented peptides by incorporating antigen processing. Cell Syst. 2020;11:42–8.

54. Amengual-Rigo P, Guallar V. NetCleave: an open-source algorithm for predicting C-terminal antigen 
processing for MHC-I and MHC-II. Sci Rep. 2021;11:13126.

55. Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its application in peptide QSARs. 
Biopolymers. 2005;80:775–86.

56. Xie J, Xu Z, Zhou S, Pan X, Cai S, Yang L, et al. The VHSE-based prediction of proteasomal cleavage sites. 
PLoS One. 2013;8:e74506.

57. Garcia Alvarez HM, Koşaloğlu-Yalçín Z, Peters B, Nielsen M. The role of antigen expression in shaping 
the repertoire of HLA presented ligands. iScience. 2022;25:104975.

58. Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T 
lymphocyte responses. Annu Rev Immunol. 1999;17:51–88.

59. Peters B, Nielsen M, Sette A. T cell epitope predictions. Annu Rev Immunol. 2020;38:123–45.
60. Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, et al. A comprehensive review and performance 

evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform. 
2020;21:1119–35.

61. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide–MHC 
class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 
2017;199:3360–8.

62. Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, et al. Deciphering HLA-I 
motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating 
HLA specificity. PLoS Comput Biol. 2017;13:e1005725.

63. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method 
for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. 
PLoS One. 2007;2:e796.

64. Paul S, Croft NP, Purcell AW, Tscharke DC, Sette A, Nielsen M, et al. Benchmarking predictions of MHC 
class I restricted T cell epitopes in a comprehensively studied model system. PLoS Comput Biol. 
2020;16:e1007757.

65. Bjerregaard AM, Nielsen M, Jurtz V, Barra CM, Hadrup SR, Szallasi Z, et al. An analysis of natural T cell 
responses to predicted tumor neoepitopes. Front Immunol. 2017;8:1566.

66. Saini SK, Hersby DS, Tamhane T, Povlsen HR, Amaya Hernandez SP, Nielsen M, et al. SARS-CoV-2 
genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation 
in COVID-19 patients. Sci Immunol. 2021;6:eabf7550.

67. Kristensen NP, Heeke C, Tvingsholm SA, Borch A, Draghi A, Crowther MD, et al. Neoantigen-reactive 
CD8+ T cells affect clinical outcome of adoptive cell therapy with tumor-infiltrating lymphocytes in 
melanoma. J Clin Invest. 2022;132:e150535.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 101

68. Calis JJ, de Boer RJ, Keşmir C. Degenerate T-cell recognition of peptides on MHC molecules creates 
large holes in the T-cell repertoire. PLoS Comput Biol. 2012;8:e1002412.

69. Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness 
model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551:517–20.

70. Leng Q, Tarbe M, Long Q, Wang F. Pre-existing heterologous T-cell immunity and neoantigen 
immunogenicity. Clin Transl Immunology. 2020;9:e01111.

71. Shen WJ, Wong HS, Xiao QW, Guo X, Smale S. Towards a mathematical foundation of immunology 
and amino acid chains. arXiv:1205.6031 [Preprint]. 2012 [cited 2022 Aug 17]. Available from: 
https://doi.org/10.48550/arXiv.1205.6031

72. Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts 
immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019;9:375–82.e4.

73. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, et al. Properties of MHC class I 
presented peptides that enhance immunogenicity. PLoS Comput Biol. 2013;9:e1003266.

74. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope 
database (IEDB) 3.0. Nucleic Acids Res. 2015;43:D405–12.

75. Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, et al. IEDB-AR: immune epitope 
database—analysis resource in 2019. Nucleic Acids Res. 2019;47:W502–6.

76. Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a 
priming and boosting approach. Nat Rev Drug Discov. 2020;19:635–52.

77. Yang X, Zhao L, Wei F, Li J. DeepNetBim: deep learning model for predicting HLA-epitope 
interactions based on network analysis by harnessing binding and immunogenicity information. BMC 
bioinformatics. 2021;22:231.

78. Koşaloğlu-Yalçín Z, Lanka M, Frentzen A, Logandha Ramamoorthy Premlal A, Sidney J, Vaughan K, et al. 
Predicting T cell recognition of MHC class I restricted neoepitopes. Oncoimmunology. 2018;7:e1492508.

79. Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: deep learning-empowered prediction and 
generation of immunogenic peptides for T-cell immunity. Brief Bioinform. 2021;22:bbab160.

80. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, et al. Key 
parameters of tumor epitope immunogenicity revealed through a consortium approach improve 
neoantigen prediction. Cell. 2020;183:818–34.e3.

81. Van den Eynde BJ, van der Bruggen P. T cell-defined tumor antigens. Curr Opin Immunol. 1997;9:684–93.
82. Wu J, Wang W, Zhang J, Zhou B, Zhao W, Su Z, et al. DeepHLApan: a deep learning approach for 

neoantigen prediction considering both HLA-peptide binding and immunogenicity. Front Immunol. 
2019;10:2559.

83. Wang G, Wan H, Jian X, Li Y, Ouyang J, Tan X, et al. INeo-Epp: a novel T-cell HLA class-I immunogenicity 
or neoantigenic epitope prediction method based on sequence-related amino acid features. Biomed 
Res Int. 2020;2020:5798356.

84. Herrera-Bravo J, Herrera Belén L, Farias JG, Beltrán JF. TAP 1.0: a robust immunoinformatic tool for the 
prediction of tumor T-cell antigens based on AAindex properties. Comput Biol Chem. 2021;91:107452.

85. Olsen LR, Tongchusak S, Lin H, Reinherz EL, Brusic V, Zhang GL. TANTIGEN: a comprehensive database 
of tumor T cell antigens. Cancer Immunol Immunother. 2017;66:731–5.

86. Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res. 2000;28:374.
87. Schmidt J, Smith AR, Magnin M, Racle J, Devlin JR, Bobisse S, et al. Prediction of neo-epitope 

immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. 
Cell Rep Med. 2021;2:100194.

88. Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med. 
2021;19:449.

https://doi.org/10.37349/ei.2023.00091
https://doi.org/10.48550/arXiv.1205.6031


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 102

89. Zhang G, Chitkushev L, Olsen LR, Keskin DB, Brusic V. TANTIGEN 2.0: a knowledge base of tumor T cell 
antigens and epitopes. BMC bioinformatics. 2021;22:40.

90. Teku GN, Vihinen M. Pan-cancer analysis of neoepitopes. Sci Rep. 2018;8:12735.
91. Xia J, Bai P, Fan W, Li Q, Li Y, Wang D, et al. NEPdb: a database of T-cell experimentally-validated 

neoantigens and pan-cancer predicted neoepitopes for cancer immunotherapy. Front Immunol. 
2021;12:644637.

92. Koşaloğlu-Yalçín Z, Blazeska N, Vita R, Carter H, Nielsen M, Schoenberger S, et al. The cancer epitope 
database and analysis resource (CEDAR). Nucleic Acids Res. 2023;51:D845–52.

93. Walsh I, Pollastri G, Tosatto SC. Correct machine learning on protein sequences: a peer-reviewing 
perspective. Brief Bioinform. 2016;17:831–40.

94. Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. 
Expert Rev Vaccines. 2011;10:299–306.

95. Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, et al. Efficient identification of mutated cancer 
antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 
2014;20:3401–10.

96. Lowery FJ, Krishna S, Yossef R, Parikh NB, Chatani PD, Zacharakis N, et al. Molecular signatures of 
antitumor neoantigen-reactive T cells from metastatic human cancers. Science. 2022;375:877–84.

97. Linette GP, Becker-Hapak M, Skidmore ZL, Baroja ML, Xu C, Hundal J, et al. Immunological ignorance 
is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proc Natl Acad Sci 
U S A. 2019;116:23662–70.

98. Zeng Y, Zhang W, Li Z, Zheng Y, Wang Y, Chen G, et al. Personalized neoantigen-based immunotherapy 
for advanced collecting duct carcinoma: case report. J Immunother Cancer. 2020;8:e000217.

99. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, et al. Low and variable 
tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019;25:89–94.

100. Stryhn A, Kongsgaard M, Rasmussen M, Harndahl MN, Østerbye T, Bassi MR, et al. A systematic, 
unbiased mapping of CD8+ and CD4+ T cell epitopes in Yellow Fever vaccinees. Front Immunol. 
2020;11:1836.

101. Lanzarotti E, Marcatili P, Nielsen M. T-cell receptor cognate target prediction based on paired α and β 
chain sequence and structural CDR loop similarities. Front Immunol. 2019;10:2080.

102. Paria BC, Levin N, Lowery FJ, Pasetto A, Deniger DC, Parkhurst MR, et al. Rapid identification and 
evaluation of neoantigen-reactive T-cell receptors from single cells. J Immunother. 2021;44:1–8.

103. Montemurro A, Schuster V, Povlsen HR, Bentzen AK, Jurtz V, Chronister WD, et al. NetTCR-2.0 enables 
accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data. Commun Biol. 
2021;4:1060.

104. Zhang W, Hawkins PG, He J, Gupta NT, Liu J, Choonoo G, et al. A framework for highly multiplexed 
dextramer mapping and prediction of T cell receptor sequences to antigen specificity. Sci Adv. 
2021;7:eabf5835.

105. Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, et al. Detection of enriched 
T cell epitope specificity in full T cell receptor sequence repertoires. Front Immunol. 2019;10:2820.

106. Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, et al. HLA and melanoma: 
multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell 
bank. Cancer Immunol Immunother. 2009;58:1507–15.

107. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in 
PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18:10.

108. Xu Y, Gao Z, Hu R, Wang Y, Wang Y, Su Z, et al. PD-L2 glycosylation promotes immune evasion and 
predicts anti-EGFR efficacy. J Immunother Cancer. 2021;9:e002699.

https://doi.org/10.37349/ei.2023.00091


Explor Immunol. 2023;3:82–103 | https://doi.org/10.37349/ei.2023.00091 Page 103

109. Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for 
successful cancer immunotherapy. Lab Invest. 2017;97:669–97.

110. Ezzeddini R, Somi MH, Taghikhani M, Moaddab SY, Masnadi Shirazi K, Shirmohammadi M, et al. 
Association of Foxp3 rs3761548 polymorphism with cytokines concentration in gastric adenocarcinoma 
patients. Cytokine. 2021;138:155351.

111. Kim S, Hagemann A, DeMichele A. Immuno-modulatory gene polymorphisms and outcome in breast 
and ovarian cancer. Immunol Invest. 2009;38:324–40.

112. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al. Patient HLA class I genotype 
influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359:582–7.

https://doi.org/10.37349/ei.2023.00091

	Abstract 
	Keywords 
	Introduction 
	Biological and immunological features associated with neopeptide immunogenicity 
	Prediction of MHC binding and MHC antigen presentation 
	Strategies to account for pathogen-similarity and self-similarity 
	Prediction of pathogen-associated antigen immunogenicity 
	Prediction of tumor-specific antigen immunogenicity 
	Evaluation of methods with an independent neopeptide dataset 
	Discussion 
	Conclusions
	Abbreviations 
	Supplementary materials 
	Declarations 
	Acknowledgments 
	Author contributions 
	Conflicts of interest 
	Ethical approval 
	Consent to participate 
	Consent to publication 
	Availability of data and materials 
	Funding 
	Copyright 

	References 

