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Abstract
Human cytomegalovirus (HCMV), whose genome is around 235 kb, is a ubiquitous human herpesvirus 
that infects between 40% and 95% of the population. Though HCMV infection is commonly asymptomatic 
and leads to subtle clinical symptoms, it can promote robust immune responses and establish lifelong 
latency. In addition, in immunocompromised hosts, including individuals with acquired immunodeficiency 
syndrome (AIDS), transplant recipients, and developing fetuses it can lead to severe diseases. 
Immunosenescence, well-defined as the alterations in the immune system, is linked mainly to aging and has 
been recently gathering considerable attention. Senescence was characterized by an elevated inflammation 
and hence considered a powerful contributor to “inflammaging” that is measured mainly by tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) levels as well as latent viral infections, 
for instance, cytomegalovirus (CMV). Inflammaging resulted in a senescence-associated secretory phenotype 
(SASP). HCMV is markedly associated with accelerated aging of the immune system as well as several 
age-associated diseases that accumulate and subsequently deteriorate the immune responses, thus have 
been linked to mortality, declined vaccine efficacy, serious diseases, and tumors in the elderly. HCMV triggers 
or exacerbates immunosenescence; on the other hand, the weakened immune responses and inflammaging 
favor viral reactivation and highlight the role of HCMV in aging as well as viral-associated tumors. HCMV 
reactivation resulting in sequential lytic and latent viral cycles could contribute to HCMV genomic variability. 
Besides the oncomodulatory role and transforming capacities of HCMV, the immune-privileged tumor 
microenvironment has been considered the main element in tumor progression and aggressiveness. 
Therefore, the interplay between HCMV, immunosenescence, and cancer will aid in discovering new 
therapeutic approaches that target HCMV and act as immune response boosters mainly to fight cancers of 
poor prognosis, particularly in the elderly population.
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Introduction
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family and is a prevalent human pathogen 
infecting 40% to 95% of the world’s population [1]. Following primary infection, cytomegalovirus 
(CMV) possesses the capacity to induce both lytic and latent infections to establish lifelong persistence 
in human hosts [2]. The clinical course of HCMV infection is widely variable, it depends on the age and is 
highly influenced by the immune fitness of the host. While the immunocompetent healthy individuals 
are asymptomatic, the congenitally infected infants could be symptomatic at birth and suffer long-term 
neurologic sequelae [3]. However, over time pronounced changes occur in the human immune system, 
known as immunosenescence. These age-related changes decrease immune protection and have been linked 
to mortality, decreased vaccine responsiveness, cardiovascular diseases, and cancer in the elderly [4, 5]. 
Importantly, while some studies implicate HCMV in driving immunosenescence and disease risk, others 
suggest it enhances immune function [6, 7]. Recently, HCMV has been reported to induce oncomodulation 
and even oncogenesis in some cases [2]. In this review, the role of HCMV in driving immunosenescence and 
its impact on oncogenesis were highlighted.

Concepts and hallmarks of immunosenescence
Immunosenescence is a normal physiologic process in which immune system function slowly changes 
with age. In fact, immunosenescence is regulated by many factors including aging, particularly the 
degeneration of the thymus resulting in a decrease of the T cell population and decrease of CD8+ naive T 
cells, one of the main manifestations of immunosenescence [8]; as well the inflammation which produces 
senescence-associated secretory phenotype (SASP) wherein aging cells secrete soluble factors such as 
growth factors, cytokines, chemokines, and extracellular matrix inducing several senescence-related 
diseases, including various malignancies [9] in addition to the overlooking of intrinsic and extrinsic factors of 
the immune system [10]. Moreover, the characterization of the hallmarks of immunosenescence is essential, 
especially for understanding its impact on the disease risk and tumor progression. With aging, the cytotoxic 
effect of immune cells as well as the expression of interferon γ (IFN-γ) and cytotoxic molecules such as 
granzyme B and perforin decrease [11, 12]. In addition, memory T cells which differentiate from naive T cells 
upon primary antigenic stimulation play a crucial role in the adaptive immune system and enable a robust 
immune response over the human lifespan. Nevertheless, pronounced age-associated changes occur in the 
composition of T cell populations (naive versus memory cells). Despite the increased number of memory cells 
during early life, it shows senescent changes after 65 years [13]. One of the most prominent markers of T 
cell senescence is the loss of the costimulatory molecule CD28 and the accumulation of highly differentiated 
effector memory T cell [CD27−CD28−CD57+ killer cell lectin-like receptor G1 (KLRG1)+], which are hallmarks 
of immunosenescence [14]. Another hallmark of senescent T cells is telomerase shortening [15]. It should 
be noted that, in the process of immunosenescence, there is remodeling of mature natural killer (NK) cells 
and reduced expression of the activated receptors which may affect the immune monitoring effect of NK 
cells in the elderly [16]. Age-related modifications also occur in naive/memory B cell subsets. Indeed, in 
the elderly, there is a reduction of naive B cells, accompanied by the expansion of memory B cells that 
show a senescence-associated phenotype [17]. While the functions of dendritic cells (DCs) such as antigen 
presentation, endocytosis, and IFN production are reduced in elderly individuals [18], the phagocytic 
ability of neutrophils decreases [19]. Aged macrophages reduce their functional activity leading to the 
accumulation of unphagocytosed debris, increased senescent-associated markers, increased inflammatory 
cytokine production, reduced autophagy, and a decrease in Toll-like receptor (TLR) expression [20].
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HCMV infection driving immunosenescence
Following primary infection, HCMV has the capacity to induce both lytic and latent infection to establish 
lifelong persistence in human hosts. Despite the extensive innate and adaptive response elicited by HCMV 
infection during both lytic and latent infection, the virus develops diverse immune evasion strategies to alter 
the host immune recognition [21]. The clinical presentation of HCMV infection is highly influenced by the 
immune response of the host during distinct life stages. In healthy immunocompetent hosts, viral reactivation 
which occurs throughout life induces the establishment of immune memory leading to the control of viral 
replication. However, in immunocompromised hosts, the loss of CMV-specific CD4+CD8+ T cells favors 
uncontrolled viral replication and dissemination leading to serious clinical diseases and even death [22]. 
In addition, long-term HCMV persistence will modulate the immune system composition and function 
even in healthy HCMV-infected individuals (Figure 1). Many epidemiologic studies on aging indicate that 
HCMV seropositivity is associated with immunosenescence and increased mortality in the elderly [23, 24]. 
Moreover, HCMV seropositive older individuals have a reduced response to vaccination [25]. Reactivation 
of HCMV triggered in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients 
exacerbates the risk of coronavirus disease [26]. Although, the link between HCMV and immunosenescence 
request more investigation, HCMV persistence is thought to be a driver of immunosenescence in humans [7]. 
It was postulated that inflation of HCMV-specific T cells during viral persistence compromised host immunity. 
In HCMV-infected elderly individuals, the CD8+ T cells response to HCMV antigens constitutes 50% of the 
entire memory CD8+ T cells compartment in peripheral blood, while around 30% of total circulating CD4+ T 
cells can be HCMV responsive [27]. The majority of this terminally differentiated inflationary HCMV-specific 
CD8+ T cell subset has a typical age-related senescent T cell phenotype [CD57+CD28− C-C motif chemokine 
receptor 7 (CCR7)−], lacking CD28 expression which is a major characteristic of T cell aging [28]. This finding 
is supported by the fact that this large population of HCMV-specific CD8+CD28– T cells is absent in seronegative 
elderly individuals [29]. Moreover, in elderly hosts, impairment of T cell immunity is also linked to memory 
inflation in HCMV infection. Despite the diverse CD8+ T cells repertoire to recognize different viral epitopes 
soon after HCMV primary infection, this diversity starts to decrease with age often manifested as large clonal 
expansions of cells of limited antigen specificity together with a marked shrinkage of the T cell antigen 
receptor repertoire [7]. In elderly hosts, more than 25% of total CD8+ T cells show a specific response to 
an individual immunodominant HCMV epitope such as p65 tumor suppressor protein (p65) and immediate 
early 1 (IE1) [30]. This limited diversity of HCMV-specific T cell clones during memory inflation may affect the 
immune protection to novel and vaccine antigens through decreased T cell receptors (TCRs) diversity in the 
elderly and thereby exposing them to the risk of life-threatening diseases [31]. Additionally, in older adults, 
most inflationary CD4+ T cells induce T-helper 1 (Th1) responses by producing IFN-γ which explains the poor 
humoral responses seen in the elderly [32]. Although HCMV has a more immunologic impact on memory T 
cells than naive T cells, it also alters naive T cells. Thus, mainly and exclusively in older subjects with elevated 
anti-CMV antibody titers, there is a significant decrease in CD4+ naive T cells parallel to an absolute increase 
in effector/effector memory CD4+CD8+ T cells [33].

Moreover, cell exhaustion, another form of T cell dysfunction, can arise during chronic infection which is often 
associated with inefficient control of persisting infections due to the loss of proliferative potential, decreased 
cytotoxicity, impaired cytokines secretions, and high expression of several inhibitory receptors [programmed 
death 1 (PD1), KLRG1, and CD57]. HCMV-specific CD8+ T cells are characterized by a low proliferative capacity 
and expression of senescent markers such as KLRG1 and CD57. These cells are not totally exhausted since 
they are still highly cytotoxic and produce Th1 cytokines in response to viral replication [31]. It’s worth 
mentioning that HCMV infection leads to the accumulation of functional exhausted cells that could accelerate 
immunosenescence in immunocompromised and immunosuppressed individuals [34].
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Figure 1. HCMV-induced immunosenescence. Acute and chronic HCMV infections modulate the host immune system resulting in 
naive T cell pool depletion and memory inflation, respectively which further drive/accelerate immunosenescence. The weakened 
immune responses and inflammaging favor HCMV reactivation which is the key to the accumulated HCMV-specific immune 
responses. IL-2: interleukin-2; TNF-α: tumor necrosis factor-α; CRP: C-reactive protein; MHC: major histocompatibility complex

Immunosenescence—a key player in cancer
Due to the increased rates of mortality and morbidity of various tumors with age, cancers are generally 
defined as aging diseases. The immunosenescence features and mechanisms were described as an 
important player in the tumoral process resulting in a high-risk of tumors in elderly groups [35]. 
Immunosenescence in the tumorogenesis process reflects the senescence of both innate (NK cells and 
macrophages) and acquired immune cells (B cells and T cells) affected on one side by the age-related change 
and the other side by the factors of the tumor microenvironment (TME). In acute myeloid leukaemia (AML) in 
elderly patients, NK cells harbor diminished levels of several activating receptors that contribute to impairing 
NK function and thereby favoring disease progression and decreased survival [36]. Age-modified changes 
in tissue-specific macrophages and neutrophils cause chronic low inflammation that is associated with a 
macrophage pro-tumorigenic phenotype [19]. Cytotoxic T lymphocytes (CTLs) are critical in eliminating 
tumor cells as well as virally infected cells. Thus, alterations of CTL function observed during aging could favor 
both viral infection and cancer. In patients with HCMV-positive glioblastoma multiforme (GBM), the signs of 
immunosenescence in the CD4+ T cells compartment are associated with poor prognosis which may reflect 
the activity of HCMV [37]. Aging can also alter the TME. Thus, the increased presence of tumor-associated 
macrophages (TAMs) and tumor-derived γδ regulatory T cells (Tregs) in TME has been reported to decrease 
both innate and adaptive immunity; TAMs produce cytokines that promote T cell inactivation and inhibition 
of DCs activity thus increasing cancer cell proliferation [38, 39]. In hypoxic TME, tumor-derived cyclic 
adenosine monophosphate (cAMP) activates DNA damage and induces T cell senescence [40]. Similarly, 
glucose deprivation triggers DNA damage and activates the p38 pathway leading to cell cycle arrest and 
inhibition of T cell proliferation [41]. Moreover, the TME oncogenic stress activates signaling pathways 
including nuclear factor-kB (NF-kB), p38, CCAAT/enhancer binding protein β (C/EBPβ), and mechanistic 
target of rapamycin complex 1 (mTORC1) which play a role in regulating T cell SASP [42]. Furthermore, in 
aging, secretion of SASP molecules, such as IL-6, IL-8, and IL-10 in TME favors tumor progression through 
an inflammaging mechanism [43, 44]. Finally, HCMV favors immunosenescence with decreased immune 
defenses and inflammaging that could trigger viral reactivation from latency and further supports its role in 
aging as well as viral-driven malignancies.
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Oncomodulatory and oncogenic properties of HCMV
Besides HCMV-induced immunosenescence, presented evidence reveals HCMV presence in numerous solid 
tumors [45, 46]. HCMV proteins have been found in 90–100% of breast, ovarian, colon, and prostate 
tumors, in sarcomas as well as in neural-derived tumors such as neuroblastoma, glioblastoma, and 
medulloblastoma [47]. Taking into account the broader concept of cancer hallmarks, the TME and cancer 
progression are considered essential oncomodulatory mechanisms relating tumor initiation to viral infections 
caused by oncoviruses [48]. HCMV mediates both oncomodulation and oncogenesis (Figure 2) [49]. During 
HCMV infection, the virus expresses viral gene products possessing potential transforming capacities and 
activating specific molecular pro-oncogenic pathways. HCMV key products involves IE1, IE2, unique short 
28 protein (pUS28), viral IL-10 (vIL-10), unique long 76 protein (pUL76), pUL97, pUL82, pUS2, pUL16, 
65-kDa tegument protein (pp65), pUL36, pUL37x1, and long non-coding RNA4.9 (lncRNA4.9) [49]. Early 
HCMV proteins regulate main cellular factors, for instance, retinoblastoma protein family, p53, cyclins, 
Wnt, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), and NF-kB, hence affecting the cell cycle, 
differentiation, cellular proliferation, apoptosis, and metabolism [50–52]. HCMV-unique short 28 (US28) 
stimulates signaling pathways that are well-known to interfere with proliferation as well as survival, 
migration, angiogenesis, and inflammation [53–56]. pp65 tends to incapacitate the intrinsic cellular immune 
responses [57]. By expressing CMV IL-10 (cmvIL-10), HCMV displays a potent immunosuppressive effect 
thereby promoting the maturation of protumoral M2 macrophages TAM [58]. Thus, HCMV can entirely 
promote the steps of classical hallmarks of cancer through the expression of many gene products [49]. 
Furthermore, a direct oncogenic outcome was revealed by a few HCMV strains, namely, high-risk strains [59], 
that could promote cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-
to-mesenchymal transition (EMT) plasticity explaining the appearance of aggressive tumor phenotypes, 
particularly adenocarcinomas, having poor prognosis, metastasis, therapy resistance, and relapse [46, 60]. 
HCMV-DB and BL, isolated high-risk clinical strains, displayed oncogenic potential in human mammary 
epithelial cells (HMECs) and replicated in epithelial cells with the interchange of lytic and latent viral cycles 
promoting the appearance of CMV-transformed HMECs (CTH cells) [60–62]. Two additional high-risk HCMV 
strains, namely biopsy 544 (B544) and B693, recently isolated from enhancer of zeste homolog 2 (EZH2)High 
MycHigh triple-negative breast cancer (TNBC) biopsies revealed oncogenic and stemness potential [63, 64]. 
EZH2 was identified as a downstream target for HCMV-induced Myc upregulation upon HMECs infection with 
high-risk HCMV strains [64]. In GBM tissues harboring HCMV, EZH2 overexpression was detected [65]. EZH2 
is overexpressed in PGCCs highlighting the presence of a potential link between HCMV infection, Myc/EZH2 
upregulation, and PGCC generation [64]. Hence, this evidence suggests that some HCMV strains may not only 
possess an oncomodulatory role but in a certain cellular context, it unveils direct tumor-promoting strategies. 
Besides the transforming capacities of HCMV, the TME has increasingly been recognized as a key element in 
tumor progression and metastasis [2]. Restricted immune control against HCMV will favor the productive 
viral infection in the immune-privileged TME thereby supporting a stem-cell-like state of cancer cells and 
promoting cancer aggressiveness [66, 67]. HCMV reactivation in M1 macrophages promotes an M2/TAM 
shift, thus driving the neoplastic progression [21, 68]. Tumor cells evade immune responses promoting EMT, 
metastasis, and relapse. Therefore, in tumor cells, the association of cellular machinery and viral immune 
evasion mechanisms may give rise to an environment that enhances limited HCMV replication and triggers 
cancer cells to evade immune surveillance revealing the bidirectional association between cancer cells and 
HCMV [21, 69]. Persistent HCMV infection markedly alters the host immune system and has been suggested 
to trigger or exacerbate age-associated diseases as well as immunosenescence (Figure 3) [70, 71].
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Figure 2. HCMV from oncomodulation to oncogenesis. Activation of specific molecular pathways that are implicated in 
oncomodulation and cellular transformation. Oncomodulation, which favors the growth and spread of tumor cells, as well as 
oncogenesis are mainly targeted by HCMV gene products (in red). PDGFRα: platelet-derived growth factor receptor α; 
EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; STAT3: signal transducer and activator 
of transcription 3; JAK: Janus kinase; TGF-β: transforming growth factor β; UL37: unique long 37; V-CXC1: viral chemokine 
(C-X-C motif) ligand 1; gpUL40: glycoprotein unique long 40; miRNA: microRNA; STING: stimulator of interferon genes; 
TSP-1: thrombospondin 1; CASP8: caspase 8; Bcl-2: B-cell lymphoma 2; Bax: Bcl-2-associated X protein; Bak: Bcl-2 homologous 
antagonist/killer; Rb: retinoblastoma protein

Figure 3. The interplay between HCMV-induced immunosenescence and oncogenesis. A scheme showing the potential 
association between HCMV, immunosenescence, and tumorigenesis. Persistent HCMV infection fulfills all the cancer hallmarks 
and is associated with enhanced aging of the immune system. Immunosenescence and inflammaging play a substantial role in 
the pathogenesis of several serious diseases in the elderly. Both players, HCMV and immunosenescence, have been associated 
with high mortality rates, chronic diseases, and tumors

Conclusions
HCMV infection and immunosenescence in clinical conditions such as organ transplantation, cancer, 
immunodeficiency, as well as autoimmune and inflammatory illnesses, support the concept that HCMV 
can affect their progression by inducing immunosenescence. In return, immunosenescence favors HCMV 
reactivation from latency in an inflammatory microenvironment (inflammaging). Viral reactivation will trigger 
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HCMV-driven oncomodulation by low- and high-risk HCMV strains, and could also promote the initiation 
of tumorigenesis, particularly by high-risk HCMV strains, thus directly favoring the appearance of tumors 
especially adenocarcinoma and glioblastoma in an immunocompromised TME with immunosenescence and 
inflammaging traits. A better understanding of the complex interaction between HCMV, immunosenescence, 
and tumors will open new perspectives to explore novel therapeutic approaches that will reverse 
immunosenescence and boost the immune system to fight viral infections, especially HCMV, and tumor 
development in the elderly.
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