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Abstract
Arginase-1 (Arg1) and the inducible nitric oxide synthase 2 (NOS2) compete for the common substrate 
L-arginine, semi-essential amino acid, and central intestinal metabolite. Both enzymes exhibit various, 
sometimes opposing effects on immune responses, tissue regeneration, or microbial growth and replication. 
In sub-mucosal tissues of patients suffering from inflammatory bowel disease (IBD), similar as in experimental 
colitis, the expression and activity of both enzymes, Arg1 and NOS2 are more prominent than in respective 
controls. Accordingly, the metabolism of L-arginine is altered in IBD patients. Thus, L-arginine represents a 
promising medical target for clinical intervention in these devastating diseases. Previous studies primarily 
focused on the host side of L-arginine metabolism. Initial reports using Arg1 inhibitors generated conflicting 
results in murine colitis models. Subsequently, only the generation of conditional Arg1 knockout mice 
allowed reliable functional analyses of Arg1 and the L-arginine metabolism in the immune system. Utilizing 
cell-specific conditional Arg1 knockouts, we have recently reported that Arg1, surprisingly, hampered the 
resolution of experimental colitis due to the restriction of the intraluminal availability of L-arginine. Reduced 
levels of L-arginine restrained the compositional diversity of the intestinal microbiota and subsequently the 
mutual metabolism between the microbiota and the host. Thus, the intraluminal microbiota represents a 
potential therapeutic target for L-arginine metabolism aside from host-dependent L-arginine consumption.
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Introduction
Inflammatory bowel disease (IBD) is a chronic, relapsing disorder of the gastrointestinal (GI) tract. IBD has 
been considered to be a problem of industrial-urbanized societies. However, the incidence and prevalence 
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of IBD in developing countries are also steadily rising, presumably due to the rapid modernization and 
westernization of the population. Furthermore, patients acquire IBD nowadays in their younger and younger 
years and exhibit an increased risk of developing colorectal cancer (CRC) [1, 2]. Thus, IBD is an emerging 
threat to global health systems nowadays.

Patients suffering from IBD experience a severely reduced quality of life. Collectively, IBD can result in 
debilitating physical and psychosocial symptoms for patients and affect society through loss of schooling, 
absenteeism, and healthcare costs [3].

Current therapeutic options, which primarily aim to restrain intestinal inflammation, include nonsteroidal 
anti-inflammatory drugs (NSAIDs) as the first-line therapeutics, followed by steroids, and finally biological 
therapies in a step-by-step therapy regimen [4]. These therapeutic options are accompanied by several, 
sometimes serious, but frequently reversible side effects (e.g., headache, drug fever, skin fever, etc.) [5]. 
Importantly, biologic agents targeting genetic, geographic, or microbial factors induce remission in just 40% 
of all patients after 12 weeks [6]. Thus, new therapeutic targets and approaches are urgently required, as the 
incidence of IBD is dramatically rising [7, 8].

To date, IBD is known for over 220 years [9]. The term IBD was coined by Samuel Wilks 160 years 
ago [10]. It includes Crohn’s disease (CD), ulcerative colitis (UC), and indeterminate colitis [11, 12]. IBD 
represents nowadays the most common disorder of the GI tract. It is characterized by an immune-mediated 
inflammation and/or ulceration of the gut [12, 13], that causes abdominal pain, (bloody) diarrhea, and/
or weight loss [14]. Both disorders usually affect predominantly the colon with mucosal lesions starting 
predominantly in the last section of the rectum. From there mucosal lesions can either spread continuously 
(UC) or in sections (CD) [15-18]. However, IBD patients do not only suffer from intestinal symptoms. Extra-
intestinal complications of IBD include anemia, arthritis, or primary sclerosing cholangitis (PSC) [19].

IBD are complex diseases, which arise as a consequence of dysregulated mutual interactions of the 
commensal microbiota with the humoral, the intestinal epithelial, and the cellular immune network of the 
gut in genetically susceptible individuals [20]. However, molecules, metabolites, and signaling pathways 
controlling the interactions of the intestinal microflora with the immune system of the patient and their role 
in the suppression of intestinal inflammation have been rarely identified.

Genetic susceptibility in IBD
Since concordance rates of 30% for CD and 15.4% for UC have been reported in monozygotic twins, the 
genetic component of IBD got in the focus of IBD research [21, 22]. Genome-wide association studies (GWAS), 
frequently using chip assays for the detection of single nucleotide polymorphisms (SNPs), have identified 
more than 240 different susceptibility genes and potential risk loci for IBD to date [23-25]. For example, 
genetic polymorphisms of nucleotide-binding oligomerization domain 2 (Nod2), encoding for an intracellular 
pattern recognition receptor or of the interleukin (IL)-17/IL-23 cytokine axis exhibit the largest effect size in 
IBD [22, 25]. Since the majority of these susceptibility genes encodes for molecules involved in the recognition 
of bacteria or pathways regulating the immune response to bacteria, gut-resident bacteria became another 
focus of interest [26].

The role of L-arginine in IBD
By exploring distinct pathways in IBD patients, which have gotten into remission, the branched-chain 
amino acid L-arginine and arginase-1 (Arg1), one of the enzymes using L-arginine as substrate, have been 
identified as promising targets [27]. Arg1 exerts pleiotropic immunoregulatory effects. Importantly, in 
contrast to the general idea of acting as an anti-resolvin [28], our recent publication suggests, that Arg1 
impedes the resolution of colitis by altering the microbiome and metabolome due to the consumption of 
intraluminal L-arginine [29]. Since L-arginine metabolism is a pivotal factor for the resolution of colitis, 
several studies linked the complex L-arginine signaling network to genetic polymorphisms. Although there 
were no associations between Arg1 and Nod2 or between Arg1 and IL-17/IL-23 [30], intracellular pathogens 
are well known to induce Arg1 in mouse macrophages upon engagement of Toll-like receptors (TLRs) and 
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signal transmission through the signal transducers and activators of transcription (STATs) [31], important 
genetic loci in IBD [31, 32]. In addition, genetic polymorphisms in nitric oxide synthase 2 (NOS2) encoding 
for the inducible NOS2 are an increased risk factor specific for CD, and polymorphisms in the gene encoding 
nuclear transcription factor-kappa B (NF-kB), a pleiotropic transcription factor, are linked to inflammatory 
Arg1 or NOS2 pathways [32-34].

L-arginine converting enzymes in the pathogenesis of IBD
L-arginine is a central intestinal metabolite [35], which is involved in numerous biologic processes during 
health or disease, including immune-mediated inflammation of the GI tract. Aside from being a precursor 
for nitric oxide (NO) and a regulator of nitrogen balance in the whole body, L-arginine is pivotal for the 
modification of proteins and the synthesis of polyamines [36, 37]. L-arginine is converted either by NOS2 
into NO and citrulline or by Arg1 into ornithine and urea [29, 38, 39]. Thus, both iso-enzymes, Arg1 and 
NOS2 compete for the common substrate L-arginine [40]. While NO is known for potent anti-microbial and 
immune-regulatory activities, stimulating mucosal blood flow and mucus generation [38], Arg1 serves as 
a precursor for the synthesis of proline and polyamines which are involved in the proliferation of cells and 
collagen synthesis [41, 42] (Figure 1). In addition, Arg1 has been also linked to immune cell (dys-)function, 
resulting in an inhibition of T cell proliferation and subsequent immune suppression, causing increased 
availability of polyamines and impaired NO production [43]. Today their role in the pathogenesis of IBD is 
discussed controversially, letting L-arginine and Arg1 appear as Janus-like characters.

Figure 1. Metabolism of L-arginine-schematic and simplified overview of two main enzymatic pathways: Arg1 and NOS2 compete 
both for the common substrate L-arginine. While NOS2 converts L-arginine into citrulline and NO, known for potent antimicrobial 
and immunoregulatory activities, Arg1 metabolizes this semi-essential amino acid into proline and polyamines, which drive cell 
proliferation and collagen synthesis, but also in immune cell dys-function

On the one hand, Arg1 expression correlates with the degree of inflammation observed in tissue biopsies 
of patients suffering from IBD and in animal colitis models [29, 44-47]. Subsequently, the intraluminal 
availability of L-arginine is reduced in IBD patients [48]. Accordingly, improved intraluminal availability of 
L-arginine and genetic deletion of Arg1 in hematopoietic and endothelial cells mediated significant protection 
from experimental colitis [29].

On the other hand, the usage of arginase inhibitors led to conflicting results. For example, the blockade 
of Arg1 due to the oral application of S-(2-boronoethyl)-L-cysteine [49] or 2(S)-amino-6-boronohexanoic 
acid NH4 did not affect acute ongoing colitis [50]. Anti-colitogenic effects of chemical Arg1 blockade have 
been also reported [47]. Other studies describing the protective role of Arg1 in colitis, primarily used ex-vivo 
models. In these experiments, arginase activity was determined by cultivating protein [51] or macrophage 
supernatants [52] in Hank’s balanced salt solutions (HBSS) containing L-arginine and 14C-arginine with 
or without the addition of nor-NOHA. For example, an increased Arg1 expression in the macrophages was 
expected due to indirect measurements of urea levels, a product of Arg1 metabolism [53]. Unfortunately, 
however, the transfer of the in vitro observations to direct in vivo models is missing in these studies, or in 
vivo models were not performed, presumably due to the limited availability of arginase inhibitors [52]. 
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However, these data have to be interpreted with caution, as experiments were exclusively performed with 
arginase inhibitors. These can act unspecific, and their pharmacokinetic action and tissue distribution 
are not well understood. Furthermore, Arg1 inhibitors just achieve around 40% inhibition of total Arg1 
activity [50].

M2 macrophages protect against intestinal inflammation
During intestinal inflammation, macrophages might not control the replication, the growth, and/or the spread 
of microbes and thus can promote inappropriate inflammatory immune responses in mucosal tissues [54]. On 
the other hand, M2 macrophages expressing Arg1 as one cell-characteristic feature [55] have been associated 
with anti-colitogenic effects. M2 macrophages, activated by IL-4, perpetuate protection from experimental 
colitis through a reduction of inflammatory cytokine production in response to pro-inflammatory stimuli and 
an increased release of anti-inflammatory cytokines like IL-10 [56]. Protection can be mediated through the 
catalytic subunit activity of the class I phosphatidylinositol 3 kinase P110δ of M2 macrophages [50].

Several reports suggested that the blockade of Arg1 activity by specific inhibitors resulted in a reduction 
of Arg1+ macrophages and an upregulation of NO expression [50, 57]. However, it remained unclear whether 
the blockade of Arg1 was linked to a loss of M2 macrophage polarization. The effect of Arg1 depletion on 
other cell populations has not yet been explored; publications so far have only focused on macrophages or 
F4/80+ cell populations. Thus, it is still unknown, whether protection from colitis through M2 macrophages 
might be even independent of Arg1. Indeed the heterogeneous experimental outcomes suggest signals from 
the microenvironment rather than arginase inhibition of the host [50, 58]. Surprisingly, microbiota, well-
known complex ecosystems that are structurally and functionally altered during colitis, were not investigated 
in these studies although most of the identified genetic risk loci in IBD were associated with microorganisms 
or host-microbiota interactions [26]. Thus, futures studies need to take into consideration the whole 
microenvironment, by determining the effects of Arg1 during colitis development and progression.

Microbiota in IBD
Gut microbiota is similar to the host a source of different metabolites including polyamines [59]. Bacteria 
like Firmicutes or Bacteroidetes associated with human health and/or the presence of anti-inflammatory 
microorganisms such as Bifidobacterium or Faecalibacterium are decreased in fecal samples of IBD 
patients [27, 60, 61]. At the same time Enterobacteriaceae, including Escherichia coli [62], and Helicobacter 
spp. are increased, which are known to contribute to the destruction of the colonic mucus layer [29, 60]. 
We also observed that the ratio of Firmicutes to Bacteroidetes is higher in Tie2-Cre × Arg1fl/fl mice lacking 
Arg1 in hematopoietic and endothelial cells compared to wild-type littermate controls (Arg1fl/fl). In 
addition, bacterial genera are associated with human health as well as maintaining gut homeostases, like 
Ruminocococcus, Turicibacter, Fodinicurvata, Christensensella, Acetanaerobacteria, and Clostridia spp. show 
significant expansion in the Tie2-Cre × Arg1fl/fl mice [29, 63, 64].

Reduced intraluminal availability of L-arginine impedes the resolution 
of colitis
In the last two decades, in vivo models including the global or conditional knockout of either Arg1 or NOS2 
were created [29, 65-67]. However, most of the published literature about the role of Arg1 during colitis, 
focused on specific conditional knockout models in different cell subsets, because a global knockout of Arg1 
is lethal [68].

In the in vivo knockout models, L-arginine exhibited a Janus-faced function, depending on which kind 
of iso-enzyme utilized it as substrate. Recently published data assumed that an increased Arg1 expression 
triggered by the intestinal microbiota and by the T helper type 2 (Th2), cytokines IL-4 and IL-13, perpetuated 
intestinal damage [29]. Knockouts of Arg1 in either myeloid (Cx3cr1-Cre × Arg1fl/fl) or endothelial cells (Cdh5-
Cre × Arg1fl/fl) alone were not sufficient to significantly impact the progression of colitis. In contrast, mice with 
a knockout of Arg1 in endothelial and hematopoIetic cells (Tie2-Cre × Arg1fl/fl), resolved colitis faster compared 
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to respective littermate controls. The additional deletion of Arg2 encoding the mitochondrial iso-enzyme and 
NOS2 even decreased further the severity of colitis, as reported before [29, 51]. Thus, we concluded that 
the enzymatic consumption of intraluminal L-arginine through NOS2, Arg1, or other L-arginine converting 
enzymes promotes colitis. Subsequently, the supplementation of L-arginine in dextran sodium sulfate (DSS)-
treated mice improved intestinal pathology [48], while dietary L-arginine restriction resulted in progressive 
weight loss, IL-17 production, and fatal wasting disease [29]. The compositional changes of the microbiota 
and their reduced diversity promoted the production of pro-inflammatory cytokines in DSS-treated wild-
type mice (Figure 2), while in Arg1 knockouts the anti-inflammatory immune response combined with the 
accumulation of intraluminal polyamines accelerated mucosal healing [29].

Figure 2. The availability of intraluminal L-arginine and subsequent changes in the composition of the intestinal microbiota: 
the availability of intraluminal L-arginine influences the bacterial diversity between wild-type mice (left panel) and mice with an 
Arg1 knockout in endothelial and hematopoietic cells (Tie2-Cre x Arg1fl/fl; right panel). Once colitis is established, the increased 
expression of Arg1 in intestinal tissues accelerates the consumption of L-arginine, subsequently resulting in reduced diversity of 
intestinal microbiota. In contrast, intraluminal L-arginine is more available in Tie2-Cre x Arg1fl/fl mice, due to the lack of consumption 
by Arg1 in endothelial and myeloid. Commensal bacteria known for human health are increased in Tie2-Cre x Arg1fl/fl mice, 
metabolize L-arginine into polyamines and induce mucosal healing
Note. Adapted from “Arginase impedes the resolution of colitis by altering the microbiome and metabolome” by Baier J, Gänsbauer 
M, Giessler C, Arnold H, Muske M, Schleicher U, et al. J Clin Invest. 2020;130:5703-20 (https://www.jci.org/articles/view/126923).  
© 2020, American Society for Clinical Investigation.

The increased availability of intraluminal L-arginine is linked to a more physiologic and diverse 
microbiota. Interestingly, a fecal microbiota transfer from Arg1 knockout donors into wild-type recipients 
induced a significant reduction of intestinal damage and enhanced the recovery from colitis. Tie2-Cre x Arg1fl/fl 
mice show in comparison to wild-type controls also a different cytokine profile. Pro-inflammatory cytokines 
and cytokine receptors like IL-1β, tumor necrosis factor (TNF), or IL-8 are reduced in Arg1 knockout mice 
and anti-inflammatory cytokines like IL-10 are enhanced [29].

According to the Janus-faced role of L-arginine during colitis, these studies suggest L-arginine as a 
promising new therapeutic approach in IBD and the metabolism of the microbiota as a pivotal target. To date 
clinical human trials and data from long-term studies are missing; however, they are urgently required to 
evaluate potential adverse effects and safety issues.

Conclusion
IBD affects patients life-long and severely affect their quality of life. Even though our knowledge about the 
pathogenesis of IBD has advanced in recent years, we are still just beginning to understand these devastating 
disorders. Therefore, we need to extend and improve current therapeutic options, which do not cure the 
underlying disease and force patients into remission by improving clinical symptoms at their best. Thus, 
novel targets and approaches for clinical intervention are urgently required.
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Recent publications suggest the metabolism of L-arginine, a central intestinal metabolite, and its 
metabolizing enzymes as promising novel avenues for treating IBD. Although the role of Arg1 and NOS2 
during IBD is still controversial and results due to experimental limitations have to be interpreted 
and discussed with caution, one needs to consider that not only the host metabolizes L-arginine, but 
also its commensal microbiota, particularly in the gut. Thus, dietary supplementation of intraluminal 
L-arginine might act protective, due to the expansion of a local diverse microbiota. Furthermore, this 
locally restricted application of L-arginine might avoid the severe adverse effects observed following 
systemic infusion [69-71]. Thus, we need to further focus on the metabolism of the intestinal microbiota 
and the complex, mutual host-microbiota network in the future to establish L-arginine supplementation 
as a therapeutic option for IBD in the future [29, 48, 72, 73].
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