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Abstract
Chemokines are homeostatic or inflammatory small proteins regulating immune cell migration and are 
structurally characterized by cysteine disulfide bridges. Around 50 human chemokines binding almost 20 
seven-transmembrane G-protein coupled receptors have been discovered. The finding that two of them 
were the main human immunodeficiency virus (HIV) co-receptors intensified the research on the binding 
mechanism to block the viral entrance. Blockade of chemokine/chemokine receptor signaling ultimately 
modulates cell migration, then immune responses. Particular nanotechnologies can be designed to interfere 
with chemokine signaling or to exploit the ligand-receptor interaction. Surface chemical modification of 
nanomaterials with chemokines or specific peptides can find several applications in bio-medicine, from 
tissue-specific drug delivery to reduced cell migration in pathological conditions. Recent highlights on peculiar 
chemokine-nanoparticle design and their potential to modulate immune responses will be discussed.
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Introduction
The discovery of “Chemo-attractant cytokines” (chemokines) has been nicely reported by Baggiolini and 
colleagues [1], who first demonstrated the role of interleukin-8 [IL-8, now called Cys-aminoacid chemokine 
X-Cys ligand (CXCL8)]. Different chemokines and their cognate receptors have been found in several 
cell types [2], mainly regulating homeostatic and inflammatory leukocyte migration. These small proteins 
(roughly 10 KDa) have a peculiar structure characterized by disulfide bridges between cysteine residues. 
The presence or the absence of amino acids placed between the first two cysteines is used to classify the 
different chemokines, as well as their length, cellular expression, and physiologic or pathologic function [3]. 
Chemokine receptors belong to the 7-helix trans-membrane Gαi protein-coupled receptor (7TM GPCRs) 
family. The N-loop of the chemokine allows the interaction with the receptor extracellular domains [4, 5]. This 
contact is important to lay the chemokine onto the receptor allowing the N-terminus to properly switch-on 
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the downstream signal transduction, as firstly demonstrated for CXCL12/Cys-aminoacid X-Cys chemokine 
receptor 4 (CXCR4) binding [6]. Integrin-dimer structural change into the active integrin-receptor 
binding arrangement is one of the first signals triggered by chemokines in leukocytes and facilitates their 
adhesion to the endothelial cell-surface [7, 8]. Chemokine-dependent integrin activation is fundamental to 
stopping monocyte or T lymphocyte rolling at the sites of inflammation [9, 10]. The role of chemokines in 
orchestrating the immune system is so crucial that different viruses also encode chemokine-analog peptides, 
receptor-analogs, and chemokine binding proteins to subvert immune responses [11–13].

In the last decade of the twentieth century, a sequence of discoveries highlighted the role of two 
chemokine receptors as primary human immunodeficiency virus (HIV) co-receptors required for cell 
infection, namely Cys-Cys chemokine receptor 5 (CCR5) for monocyte/macrophage-tropic HIV and CXCR4 
for the lymphocyte tropic variant [14–19]. Importantly, these studies demonstrated that chemokines can 
antagonize the virus entry paving the way for the following research of molecules to block HIV binding and 
its membrane fusion. The mechanism of HIV binding to CCR5 and CXCR4 involves conformational changes 
of the viral envelope protein gp120 allowed by previous interaction with CD4 also expressed on the target 
cells: or CD4-independent interaction with CXCR4 by specific HIV-strains’ proteins [20, 21]. The discussion 
on intracellular signals triggered by CD4-independent HIV-gp120 interaction with chemokine receptors 
is still open. Some indications come from experiments with gp120 binding CXCR4 and CCR5 expressed on 
neurons [22, 23] leading to limited receptor signal transduction or pathological outcomes. Other molecules 
can also bind to chemokine receptors and antagonize chemokine interaction. For instance, peptides like 
[Tyr5,12, Lys7]-polyphemusin II (T22) [24] or small molecules, which are investigated for precision medicine 
therapies related to viral infection or cancer [25–27]. Chemokine-to-chemokine receptor binding is exploited 
in many ways in immunology and the development of nanotechnologies has increased these opportunities.

The present review will be discussed the interaction between chemokines and certain types of 
nanomaterial (NM), as well as their potential applications to remove the excess of chemokines by 
nanoparticles (NPs)-selective adsorption. Furthermore, the possibility of precisely targeting immune cell 
subsets by NP-surface functionalization with chemokines or other chemokine receptor-binding molecules 
will be considered.

Np adsorption of chemokines
The adsorption of proteins is a common event when NPs are released in biological media [28–30]. It depends 
on NP size, shape and surface chemistry and protein structure. Intrinsic properties of the materials can show 
preferential adsorption of certain molecules that may affect NP cellular targeting and uptake [31, 32]. In fact, 
NP-material ability to adsorb selected proteins with high efficiency can be exploited to functionalize NPs for 
specific delivery purposes, although the resulting corona may show unexpected implications [33, 34].

Some NMs seem to selectively bind chemokines with subsequent modulatory effects on the immune 
responses. Batt and colleagues [35] demonstrated by enzyme-linked immunosorbent assay (ELISA) and 
gel electrophoresis in vitro that TiO2 NPs with < 25 nm diameter have a surface affinity for CXCL8. These 
authors showed that CXCR8 interaction with TiO2 NPs was dose-dependent and this specificity was retained 
even if the chemokine was mixed with human serum proteins. Remarkably, TiO2 administration impaired 
the chemotaxis of neutrophils by efficient sequestration of the neutrophil-attracting CXCL8 from the 
medium. This information could be very important for the numerous applications of TiO2 NPs in biomedical 
fields [36]. Actually, various NMs surfaces may have an affinity for CXCL8. In a research paper regarding 
methods for extracorporeal detoxification from pro-inflammatory mediators, Zheng et al. [37] report 
graphene nanoplatelets (GNPs) as valid adsorbents to remove several proinflammatory cytokines including 
CXCL8. The idea of using materials that adsorb chemokines in excess during uncontrolled inflammatory 
reactions has been patented by Bruce and Lyngstadaas [38]. They designed a filter for extracorporeal fluids 
exploiting Group 4 and Group 5-metals’ ability to selectively bind CXCL10 [previously known as interferon 
gamma-induced protein 10 (IP-10)]. Presumably, the synthesis of such metal particles at a nanometric scale 
could improve the elimination of this chemokine from the fluids, due to an enormous increase in available 
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adsorbent surface area. In principle, the NP surface could be chosen or modified “ad hoc” to remove the 
excess of inflammatory chemokine and cytokines when needed, for example during cytokine storms in sepsis 
or coronavirus disease 2019 (COVID-19) disease, as suggested in Pisani et al. [39].

The consequences of cytokine and chemokine binding to metal-oxide and carbon-NPs were already noted 
more than ten years ago in a study by Kocbach et al. [40] on “ultrafine particles” present in environmental 
pollution. The researchers showed significant adsorption of CXCL8 (IL-8) and other cytokines by 
carbonaceous “very small particles” when present at relevant concentrations. They also warned that 
testing the cellular release of inflammatory cytokines in the presence of these ultrafine particles could be 
misinterpreted because of the above-described binding properties of these materials. Moreover, the authors 
observed that chemokine or cytokine binding in vitro was reduced in a serum-supplemented medium, and 
suggested preferably preform chemokine/cytokines immunologic test in such complete culture medium to 
collect more precise results.

In line with these data, unpublished observations by our group suggest that as-synthesized SiO2 NP 
uptake by THP-1 monocytes is increased when particles are previously mixed with CXCL5. However, our 
results show that cellular internalization of SiO2 NP:CXCL5 is only slightly reduced when performed in 
serum-supplemented medium. Apparently, chemokines adsorbed onto the negatively charged particles 
could facilitate NP uptake through its cognate-receptor expressed on the target cell. Likely, NP brings close 
to the target high amount of exposed chemokine increasing its local concentration and the chances to hit the 
receptor. This hypothesis is reinforced by the following studies using chemokines covalently linked to NP 
surface (see below).

Positive-negative charge attraction between chemokine and NM surface may be one of the main events 
ruling the adsorption mechanism. The isoelectric point of many chemokines ranges between 9 and 11 [41]. At 
neutral pH, these proteins are positively charged increasing their affinity for negatively charged metal-oxide 
NPs. As a direct consequence, a key role to modulate the targeting is played by the chemical modification 
chosen to solubilize or functionalize the core NM.

As previously mentioned, NP-surface chemistry can be modified on purpose to bind specific chemokines 
with high affinity. A sophisticated functionalization of heparin-coated poly(lactic acid) (PLA)-NPs was 
performed by Guryanov and colleagues [42]. These investigators successfully exposed two chemokine 
receptor modified-fragments responsible for the chemokine binding, specifically, the N-terminal domain 
and second extracellular loop of CCR5. They demonstrated the functionalized-PLA-NP ability to eliminate 
Cys-Cys chemokine ligand [(CCL5), previously known as regulated upon activation, normal T cell expressed 
and secreted (RANTES)] from the culture medium abrogating monocyte adhesion to human endothelial 
cells. This work made two important steps ahead in chemokine sequestration research. Firstly, the use of 
biodegradable-polymer NPs with obvious biocompatibility and immunologic advantages [43] with concerning 
inorganic materials, such as metallic NPs with inflammatory consequences often underestimated by limited 
immunological characterization [44]. Especially, undegradable accumulation of NPs into phagocytic cells 
induces deleterious effects on the cells and the surrounding tissue [45–49]. In addition, CCR5 is one of the 
two main HIV co-receptors, which is fundamental for viral entry into monocytes [50]. From the discovery 
of CCR5-delta 32 mutation, which is a homozygous expression that can prevent human infection [51], this 
receptor has been the main target for pharmacological or other therapeutic approaches in the battle against 
HIV infection [52–54].

Although the demonstration of NP-dependent inflammatory chemokine sequestration in vivo is 
still a few and no protocols for NM designed for this task have been clinically approved, the observations 
reported above suggest that NMs modulate the action of chemokines and might improve the treatments for 
chemokine-mediated inflammatory diseases.

Chemokine receptor-specific targeting NP
Nanotechnologies aimed at drug delivery have always pursued the highest possible precision to reduce the 
amount of drugs and avoid side effects. The main strategy concerns the modification of NP surface chemistry 
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to facilitate specific targeting of receptors expressed only, or predominantly, in the needed cell subset. 
Differentiated immune cells express different chemokine receptor patterns and the same cell can differently 
upregulate or downregulate these receptors during its life cycle [55]. This diverse receptor expression can be 
used as an unambiguous cell address to deliver functionalized particles (Figure 1).

Figure 1. Schematic representation of cellular targeting exploiting selective chemokine-receptor binding

The exposure of receptor binding molecules onto particle surfaces is not so easy as it can be drawn. Different 
strategies include the functionalization with chemokine-derived peptides, small molecule antagonists, 
anti-receptor antibodies, entire chemokines, or the NP coating with chemokine receptor-expressing cell 
membranes. Indeed, the latter method covers the particle with several proteins expressed on the source cell, 
limiting the selection of the target receptors and will not be discussed here.

So far, the most exploited chemokine/chemokine receptor axis using nanotechnological approaches is 
CXCL12/CXCR4, which has a key role in several types of cancer and cancer metastasis [56]. Indeed, CXCR4 
is overexpressed in different tumor cells. This receptor and its ligand CXCL12 [previously known as stromal 
cell-derived factor 1 (SDF-1)] have pleiotropic physiological roles in homeostasis and organogenesis, 
explaining why their dysregulation can facilitate tumorigenesis [57, 58].

Among the non-chemokine CXCR4-binding peptides, T22 is the most successful and it is frequently used 
to target diverse cancer cells over-expressing the receptor [59–68]. For instance, the release of doxorubicin 
in B cells from non-Hodgkin’s lymphoma has been enhanced by capping mesoporous SiO2 NPs with a 
derivative of the T22 peptide [60]. This 18-aminoacid peptide is known to be a potent CXCR4 antagonist, 
although higher doses induce the receptor internalization allowing intracellular NP delivery. Notably, 
selective T22-mediated CXCR4+ tumor cell targeting has been demonstrated in vivo in mouse models using 
protein based nanocarriers [66, 68]. Biochemical modifications of T22 or the mix with other peptides allow 
self-assembly in protein NPs able to be uptaken through CXCR4 and release toxins or antineoplastic drugs 
in different types of cancer cells [61, 65, 66, 69, 70]. Shorter peptides have also been used to drive polymer 
NPs to CXCR4+ cancer cells. The 5-aminoacid peptide LFC131 has been conjugated to poly(lactic-co-glycolic 
acid) (PLGA) or chitosan NPs efficiently releasing antitumor agents into CXCR4 overexpressing A549 lung 
cancer cells in vitro [71, 72] or hepatocellular carcinoma [73].

As far as the aminoacid sequence is part of the receptor binding domain (RBD, i.e. N-terminus [6]) of a 
chemokine, it is likely to induce antagonistic or agonistic effect on its target receptor. Diverse chemokine-derived 
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peptides are currently under investigation and could represent a plethora of potential molecules with high 
specificity that can be used to decorate NPs for a broad range of biomedical applications. Either human or 
viral derived chemokine sequences have demonstrated efficient drug delivery properties [74–76].

Modified peptides targeting chemokine receptors are also gaining interest as key targeting moieties for 
in vivo diagnostic imaging [77], as demonstrated by NP surface linking of d-Ala-peptide T-amide (DAPTA) 
peptides [78–81]. Detering et al. [78] recently showed that polymer NPs functionalized with the CCR5 
targeting peptide DAPTA can precisely detect CCR5 along the progression of atherosclerotic lesions.

Successful results for anticancer drug or small interfering RNA (siRNA) intracellular release delivery 
have also been obtained with the small-molecule CXCR4-antagonist, 1,1′-[1,4-phenylenebis(methylene)]bis-
1,4,8,11-tetraazacyclotetradecane (AMD 3100), attached to PLGA NPs [82, 83]. This HIV-inhibiting molecule 
can mobilize hematopoietic stem cells with advantages for therapeutic approaches in transplantation [84] 
but some concerns for unexpected side effects due to its agonistic activity at high doses [85, 86]. Anti-CXCR4 
antibodies have also been effectively used to target drug-loaded liposomes for CXCR4+-cancer cell 
cytotoxicity [87, 88].

From toxicological and immunological points of view, peptides could be preferred to small-molecule-CXCR4 
antagonists or anti-CXCR4 antibodies as NP surface moieties for delivery purposes. Unbound molecules 
dispersed in the solvents or free antibodies released in the bloodstream can induce unexpected complement 
activation and the creation of immune-complexes with circulating antibodies. Particle synthesis and 
characterization are very important, especially its surface decoration with receptor ligands.

The creation of chemokine receptor-specific targeting NPs with reduced toxicity could be facilitated by 
using the entire chemokines to functionalize the NP-surface [89–91]. A chemical binding strategy to covalently 
link full-length chemokines has been made by our group [89] with CXCL5 onto SiO2 NPs and with CXCL12 on 
the surface of PLGA NPs by other researchers [91]. Although immunoblot transmission electron microscopy 
(TEM) images in both papers did not reveal many chemokines on the NPs, cognate receptor selectivity and 
functional assays clearly demonstrated targeting efficacy in vitro, even in serum enriched medium. In the 
work by Cagliani et al. [89], CXCL5-SiO2 NPs internalization was facilitated in CXCR2+ THP-1 but not into 
CXCR2– HeLa cells. Furthermore, pre-treatment with free CXCL5 significantly reduced only CXCL5-SiO2 NP 
cell uptake, whereas non-functionalized NP internalization was slightly increased, maybe due to the effect of 
CXCL5 adsorption onto the NP surface, as mentioned in the previous paragraph. Clear advantages of chemical 
decoration of PLGA NPs with CXCL12 were demonstrated in vitro and in vivo by Xiong and coworkers [91] 
using a combination of photothermal therapy and targeted chemotherapy to induce cytotoxicity in metastatic 
lymph nodes in tongue squamous cell carcinoma.

In a different attempt to improve chemokine-mediated specific cell targeting in our lab, we adopted 
non-covalent streptavidin-biotin bond to cover biodegradable PLGA/Pluronic NPs with CXCL12 biotinylated 
at the C-terminus [90]. Microfluidics-assisted NP preparation and accurate molarity of biochemical reactions 
allowed homogeneous size distribution of the particles and higher surface-bound chemokine amount. 
CXCL12-PLGA/Pluronic NPs confirmed cellular internalization in human THP-1 monocytes through CXCR4 
endocytosis in the presence of serum. However, differences between fetal bovine serum (FBS)- and human 
serum-supplemented media emerged. This could be due to the exposure of cells to different biological milieus 
stimulating different expressions of CXCR4 on the THP-1 membrane. Crucially, chemokine-decorated NPs did 
not induce cell chemotaxis as the free CXCL12. Notwithstanding the forgoing, the pre-treatment of THP-1 
cells with CXCL12-PLGA/Pluronic NPs abrogated CXCL12-dependent chemotaxis. This phenomenon was 
seen only in the presence of chemokine-NPs but not with non-decorated ones demonstrating the exclusive 
interaction with CXCR4 of the functionalized particles. The proved internalization without triggering 
the CXCR4 pathway to cytoskeleton remodeling for chemotaxis inspires the hypothesis that the complex 
chemokine-NP could activate biased signaling. On the other hand, the signaling could be delayed by the 
particle present in the endosomes during the observed time points. Indeed, recent observations with gold 
nanoparticles (AuNPs) reported that these particles phagocytized by immune cells can retard the sensitivity 
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of some immune responses [92]. This is not true for all NPs, in fact, some NMs have been proved not only to 
release inflammatory mediators including chemokines, but also to stimulate the up-regulation of particular 
chemokine receptors involved in many processes of inflammation [93].

NP surface modification with chemokines is emerging as selective-targeting tool for biomedical 
applications such as drug delivery or imaging. However, immune system modulation can be likewise 
achieved by the release of chemokines embedded in polymer-NMs with reversible binding [94, 95]. This 
approach can be useful to keep a drug releasing particle in a defined anatomical place. The release of 
chemokines creates a local gradient aimed at attracting immune cells. Once the cells are close to the 
chemokine-releasing material, the receptors will be downregulated by the high chemokine concentration 
stopping cell migration. The choice of the chemokine to be released in a certain tissue is decisive for the 
final outcome of the application.

Conclusions
Chemokines and their receptors are fundamental for the regulation of the immune system and for many 
other cellular events. The possibility to use NM-interactions opens the way to several biomedical approaches. 
Decreasing overexpression of inflammatory chemokines by NP surface-mediated sequestration and 
driving selective cell targeting for imaging and delivery purposes represent the main fields of potential 
applications. Nevertheless, interdisciplinary collaborations among researchers will certainly find new ideas 
in the future to develop novel therapeutic treatments based on the current results and observations on 
chemokine-NM interactions.
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