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Abstract
Sepsis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its severe form 
coronavirus disease 2019 (COVID-19), represent the major medical challenges of the modern era. Therapeutic 
options are limited, mostly symptomatic, partially relying on antibodies and corticosteroids and, in the case 
of SARS-CoV-2 infection, supplemented by the antiviral drug remdesivir, and more recently by molnupiravir, 
nirmatrelvir/ritonavir, and the Janus kinase (JAK) inhibitors tofacitinib and baricitinib. Sepsis and severe 
SARS-CoV-2 infection/COVID-19 share many features at the level of pathophysiology and pro-inflammatory 
mediators, thus enabling a common disease management strategy. New ideas in successfully targeting the 
prognostic severity and mortality marker pentraxin 3 (PTX3) in sepsis and severe SARS-CoV-2 infection/
COVID-19; the complement (C3/C3a/C3aR and C5/C5a/C5aR axis); tumor necrosis factor (TNF)-α, interleukin 
(IL)-1β, and IL-6 expression; IL-6-triggered expression of C5aR receptor in vascular endothelial cells; and 
release of anti-inflammatory IL-10 are still missing. Small molecules with lysosomotropic characteristics 
such as the approved drugs amitriptyline, desloratadine, fluvoxamine, azelastine, and ambroxol have 
demonstrated their clinical benefits in rodent models of sepsis or clinical trials in COVID-19; however, 
their exact mode of action remains to be fully elucidated. Addressing disease-relevant targets such as viral 
infection of host cells, shedding of toll-like receptors (TLRs), expression of pro-inflammatory mediators such 
as TNF-α, IL-1β, IL-6, PTX3, and the complement receptor C5aR, highlight the advantages of this multi-target 
approach in comparison to current standards. Rational drug repurposing of approved drugs or screening for 
active compounds with virtually exclusively lysosomotropic pharmacologic effects is a major opportunity to 
improve prophylaxis and treatment of sepsis and/or SARS-CoV-2 infection, and its severe form COVID-19.
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Introduction
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection [1] 
and its treatment has baffled researchers for nearly 3,000 years by now [2] and continues to be one of the 
major challenges facing medicine in the modern era. In late 2019, another global challenge emerged—the 
struggle against the coronavirus disease 2019 (COVID-19) pandemic and the disease-causing pathogen severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posing serious challenges to health care systems 
worldwide. The severe progression COVID-19 of SARS-CoV-2 infection has stretched health systems across the 
world to their limit. COVID-19, initially a new poorly characterized and difficult-to-treat disease, has become 
a fairly well-characterized disease with a number of promising treatment options. In a variety of publications, 
the scientific community has rapidly gained knowledge about the clinical manifestation, pathophysiology, 
biomarkers, and diagnostic tests [3–16]. New vaccines and therapeutics have been established in clinical 
practice [16]; however, drug prophylaxis is still lacking. 

The majority of COVID-19 patients hospitalized in the intensive care unit (ICU) meet Sepsis-3 criteria 
and exhibit infection-associated organ dysfunction [17]. Given the commonalities at the cellular and 
molecular level, there is a legitimate hope to improve treatment options and to derive new drugs. Small 
molecules play a minor part in the treatment options of sepsis available to date. Lipopolysaccharide (LPS) 
sequestrants, toll-like receptor 4 (TLR4) antagonists (e.g., TAK-242), C5a receptor antagonists (e.g., PMX53), 
inhibitors of macrophage migration inhibitory factor, inhibitors of histidine sensor kinase (QseC) signaling, 
A3 adenosine receptor agonists and A2A adenosine receptor antagonists, estrogen receptor β-agonists, 
and caspase inhibitors have been pre-clinically tested as effective [18] but have never received marketing 
authorization. Findings from cell culture experiments, animal studies, clinical trials, and observational 
studies of lysosomotropic drugs for other indications provide evidence for the key role of the (endo) 
lysosome as a target in treatment and prophylaxis of sepsis and COVID-19 that has received little attention to 
date [19–29]. Small molecules targeting the lysosome and signaling pathways involving the lysosome could 
therefore become valuable options to close the gap in treatment and prophylaxis of SARS-CoV-2 infection/
COVID-19 [20, 30]. Given the common characteristics of sepsis and COVID-19 and the effects of lysosomotropic 
drugs on lysosome-dependent signaling pathways, the pivotal involvement of the lysosome in metabolism, 
endocytosis, and exocytosis renders it an interesting therapeutic target. We aim to highlight the benefits of 
lysosomotropic drugs and based on selection criteria, we suggest approved drugs that could be promising 
candidates in both diseases.

Pathways of SARS-CoV-2 entry into cells
SARS-CoV-2, a 30 kbp non-segmented positive sense single-stranded RNA (ssRNA) virus from the species 
Coronaviridae has been identified as the disease-causing pathogen of the COVID-19 causing an atypical 
interstitial pneumonia and diffuse alveolar damage, ending in a previously unknown acute respiratory 
distress syndrome (ARDS) and multi-organ failure in Wuhan, China [31, 32]. To enter cells of the airways 
and for proteolytic spike protein (S protein) mediated membrane fusion activation (transition), SARS-CoV-2 
engages the transmembrane protease serine 2 (TMPRSS2) or lysosomal cathepsin L (CTSL) of target cells 
following a clathrin and an angiotensin converting enzyme-2 (ACE2) receptor-mediated endocytosis [32–37]. 
Like in SARS-CoV and other coronaviruses, S protein transition is enabled through two proteolytic cleavage 
steps following ACE2 engagement, where the first step is localized to the S1–S2 boundary and the second 
is localized to the S2´ site in the S2 subunit. For SARS-CoV, both sites are cleaved by proteases in the target 
cell. However, in the case of SARS-CoV-2, the S1–S2 boundary is cleaved by furin in the virus producer cell, 
whereas the S2´ site cleavage still requires target-cell proteases TMPRSS2 or CTSL [33].

ACE2 is a highly expressed membrane receptor and widely distributed in immunocompetent and 
non-immunocompetent cells [lung (airwave epithelial cells), heart, liver, testis, kidney, brain, intestine 
(pancreas and colon), and several other tissues]; and in addition, a soluble form of ACE2 circulating in blood 
vessels (circulating plasma ACE2) is existing [10, 38, 39]. The main entry route is supposed to be the upper 
airways, where both ACE2 and TMPRSS2 expressing cells (e.g., pneumocytes, nasal goblet secretory cells, 
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and nasal ciliated cells) are present and ACE2 is more expressed than in the lower airways [33]. To date, the 
preferred entry route in case of concurrent expression of ACE2 and TMPRSS2 remains unknown and is the 
subject of controversy [35, 40, 41], also in view of the possible therapeutic intervention.

Sepsis and severe SARS-CoV-2 infection/COVID-19
Commonalities of sepsis and severe SARS-CoV-2 infection/COVID-19
COVID-19 and sepsis show various similarities in immunopathogenesis, pathophysiology, and clinical 
manifestations [10, 17, 42]. Similar to sepsis, a life-threatening organ dysfunction resulting from a dysregulated 
host response to infection (e.g., bacteria, viruses, and fungi) [1, 2], severe SARS-CoV-2 infection/COVID-19 
meets the current diagnostic criteria of sepsis (Sepsis-3) [1] and pre-disposes the infected host to sepsis 
and septic shock [17, 42]. However, the pathogenesis of disease-dependent coagulopathy differs somewhat 
between the two entities [10, 17].

The initial studies published on COVID-19 observed a correlation of serum levels of pro-inflammatory 
cytokines [e.g., interleukin (IL)-6, IL-1b, IL-2, IL-8, IL-17, tumor necrosis factor (TNF)-α, granulocyte-colony 
stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF)] with the severity of 
COVID-19 suggesting a relevance of cytokines in disease progress (Table 1) [6, 43]. Therefore, it was natural 
to compare the alteration in serum levels in COVID-19 vs. other cytokine releasing syndromes, to identify 
resemblances and to classify the emerging disease. The comparisons yielded inconsistent results. One 
meta-analysis revealed lower cytokine level in COVID-19 compared to other cytokine releasing syndromes 
[e.g., ARDS, sepsis, chimeric antigen receptor (CAR) T cell-induced cytokine release syndrome (CRS)] [4]. 
Further studies indicated no apparent difference in plasma cytokine profile in severe COVID-19, sepsis, and 
ARDS [44] or demonstrated lower cytokine levels in patients with SARS-CoV-2 sepsis compared to bacterial 
sepsis. Thereby immunoglobulins (Igs) IgA and IgG were higher [45] and complement activation (e.g., C3, 
C4, C5a, sC5b-9, C5aR1, factor D, and factor B) was increased [3, 45, 46]. Blood (lymphocyte and monocytes 
counts) and inflammatory biomarkers [C-reactive protein (CRP), ferritin, lactate dehydrogenase (LDH)] 
hardly differ between SARS-CoV-2 sepsis and bacterial sepsis patients, except for neutrophil count and 
procalcitonin (PCT) in bacterial sepsis patients and D-dimer in critical COVID-19 patients [4, 45]. 

Table 1. Impact of small molecules on inflammatory messengers and growth factors in sepsis and severe SARS-CoV-2 
infection/COVID-19

Mediator Sepsis COVID-19 Lysosomotropic small molecules
TNFα ↑ ↑/w/o Target ↓
IL-1β ↑ ↑/w/o Target ↓
IL-1RA ↑ ↑ n.d. Unknown
IL-2 ↑ w/o - o
IL-6 ↑ ↑ Target ↓↓
IL-7 ↑ ↑ Target ↓
IL-8 ↑ ↓/↑ n.d. Unknown
IL-10 ↑ ↑ Target° ↑°
IL-15 ↑ ↑ - o
IL-17A w/o ↑/w/o - o
IFN-γ ↓/↑ ↑ n.d. Unknown
TGF-β ↓/w/o ↑ - o
MCP-1/CCL2 ↑ ↑ Target ↓**
CCL4 ↑/w/o w/o Target ↓↓
CCL5 ↑ ↑/w/o - o
CCL22 - ↑ - o
PTX3 ↑ ↑ Target ↓↓
CXCL2 - - Target ↓↓
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Table 1. Impact of small molecules on inflammatory messengers and growth factors in sepsis and severe SARS-CoV-2 
infection/COVID-19 (continued)

Mediator Sepsis COVID-19 Lysosomotropic small molecules
CXCL3 - - Target ↓↓
CXCL10 ↑ ↑ Target ↓↓
C3/C3aR ↓ ↑/w/o Target C3aR o/↓+

C4 ↓ w/o n.d. Unknown
C5b-C9 ↑ ↑ n.d. Unknown
C5a/C5aR ↑ ↑ Target C5aR o/↓+

GM-CSF ↓/↑ ↓/↑ n.d. Unknown
ICAM-1 ↑ ↑ Target ↓
VCAM1 ↑ ↑ Target ↓#

PTGS2 - - Target ↓#

Messenger/growth factor release depends on disease severity in sepsis [47–62] and severe SARS-CoV-2 infection/
COVID-19 [3–9, 63–65]: increased (↑), decreased (↓), without (relevant) changes (w/o), (yet) unknown (-). Targets of lysosomotropic 
small molecules, inhibitors of endolysosomal acidification, and disruptors of lysosomal proton gradients are indicated as: target 
(Target), no target (-), or not determined (n.d.). Effects on gene expression [messenger RNA (mRNA)] in LPS stimulated human 
monomac 6 cells are indicated as: increased (↑), decreased (↓), no effect (o). Reference compound for small lysosomotropic 
molecules: NB 06 [22], plus literature data of fluvoxamine [66]#, amitriptyline [67]°, and ambroxol [68]**. + determined as C5 
mRNA; IFN-γ: interferon-γ; TGF-β: transforming growth factor-β; MCP-1: monocyte chemoattractant protein-1; CCL2: C-C motif 
chemokine ligand 2; CXCL2: CXC motif chemokine ligand 2; ICAM-1: intercellular adhesion molecule-1; VCAM1: vascular cell 
adhesion molecule 1; PTGS2: prostaglandin-endoperoxide synthase 2

Long pentraxin 3 (PTX3) plasma concentrations, typically increased in infections of fungal, bacterial, 
and viral origin; severe inflammatory response syndrome; sepsis; and cardiovascular diseases, correlate 
with disease severity and mortality [9, 51, 69, 70]. In COVID-19 patients, PTX3 was likewise increased 
in plasma and emerged as a strong independent predictor of 28-d mortality [9] and in severe COVID-19 
circulating PTX3 not differing from levels of patients with other pulmonary sepsis [71] indicating similarity. 

To date, the precise immunopathogenesis of COVID-19 still remains unclear, as is whether the cytokine 
storm is the predominant driver of disease severity and organ dysfunction in COVID-19. Moreover, there 
is an ongoing discussion about the role of hyperinflammation following the cytokine storm and the role of 
immunosuppression by defected cellular host response [72, 73].

Sepsis, COVID-19, and the complement system
The serum-operating complement system is a complex defense mechanism against invading pathogens 
and an essential part of innate immune response that comprises of multiple signaling pathways that can be 
activated by various triggers [74–76]: firstly, the classic pathway after contact with IgG- and IgM-containing 
immune complexes, by PTXs, including CRP, serum amyloid P component (SAP), and PTX3; secondly, 
the alternative pathway, typically triggered by LPS-derived from gram-negative bacteria; thirdly, the 
lectin pathway that involves the interaction of mannose-binding lectin (MBL), a serum protein, with 
mannose residues on bacterial surfaces, and with ficolins; and finally, however, not commonly classified 
as a complement-activation pathway by proteases from neutrophils and macrophages that can cleave 
C5 [77, 78]. Anaphylatoxins C3a and C5a formed in the complement cascades bind to their corresponding 
receptors C3aR, C5aR1, and C5aR2, leading to downstream production of inflammatory mediators [74, 78]. 
In turn, C5a/C3a and C5aR/C3aR stimulate the activation of CD4+ and CD8+ T cells and bridge the innate 
and adaptive immune responses [74, 79] or C3d the B cell response [80, 81]. 

Complement activation and generation resulting in high levels of complement peptides C3a and C5a 
during sepsis are considered to be one of the hallmarks of sepsis [2], similar to those identified in severe 
and critical COVID-19 patients [11, 46]. In COVID-19 the classical pathway is activated in all patients, while 
hyperactivation of the lectin and alternative pathways is associated with disease severity [13] and patients 
requiring ICU admission C5a levels were significantly higher compared with those without [3]. 

This results in the traditional therapeutic approaches using antibodies against C3 (AMY101, 
Compstatin), C5 (Eculizumab, Ravulizumab), C5a (BDB-001, Vilobelimab), C5aR1 [Avdoralimab (IPH5401)]; 
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antagonists C5aR1 [Avacopan (CCX168), PMX53]; and enzyme inhibitors of C3 cleavage (APL-2 and AMY-101) 
or C5 cleavage (Zilucoplan) [75, 78, 82–84].

Complement system, endolysosomal trafficking, endosomes, and lysosomes 
The complement system is in common perceived as a mainly serum-operating defense mechanism of 
innate immunity. However, there is evidence suggesting immune cell-derived and intrinsically operating 
complement activation fragments are key in driving and modulating adaptive T cell immunity [76, 79]. 
In T cells upon receptor triggering CTSL/CTSL1, a papain-like lysosomal cysteine protease and even 
occurring extracellular [85, 86], cleaves C3 into active C3a and C3b fragments and mediates the C3 
convertase-independent rapid local production of these fragments. Interestingly, resting T cells contain 
substantial intracellular endosomal and lysosomal pools of CTSL and C3 proposing that C3 is continuously 
cleaved to C3a in lysosomes. The resulting C3a is targeting the inward-facing C3aR receptor in the lumen 
of the lysosome and suggesting that sustaining basal mechanistic target of rapamycin (mTOR) activation is 
required for homeostatic T cell survival [76, 87]. 

The TLRs were the first to be innate immune receptors discovered and include (with ligands), among 
others, TLR3 [double-stranded RNA (dsRNA)], TLR7/TLR8 (ssRNA), and TLR9 (CpG DNA) that intracellular 
located to the inner endosomal membrane and the plasma membrane receptor TLR4 (LPS) [2, 78, 88, 89]. In 
the presence of the plasma membrane bound LPS co-receptor CD14, TLR4 is capable of dynamin and clathrin 
dependent endocytosis occurring within 15 min of LPS stimulation [90, 91]. With translocating to endosomes 
and phagosomes the TLR4/CD14/LPS receptor complex enters the endosomal entry route [78, 88, 90], 
with subsequent maturation of early endosomes (EE) via late endosomes (LE) to endolysosomes (EL), and 
finally lysosomes. 

In S-protein-mediated endosomal entry SARS-CoV-2 particles engage cell surface ACE2 as receptor for 
clathrin mediated endocytosis in airway cells [33, 34, 37, 92, 93]. Similar to the TLR4/LPS receptor complex, 
the SARS-CoV-2/ACE2 complex enters endosomal entry route and after maturation and acidification to EL 
or mature lysosomes, CTSL with an optimum pH of 5.0–5.5 [94] performs the cleavage of S2´ site. S2´ site 
cleavage exposes the fusion peptide (FP) and dissociation of S1 from S2 induces dramatic conformational 
changes in the S2 subunit, inducing the membrane fusion of SARS-CoV-2 with host cells [33]. Yet, and with 
SARS-CoV, the cleavage at the S1/S2 cleavage site was considered to be the fusion triggering step [95]; 
however, according to the latest hypothesis with SARS-CoV-2 [33], this cleavage is supposed to occur during 
virus maturation in an infected cell. 

The acidic environment for CTSL within the lysosome and the proton gradient across the lysosomal 
membrane are established by two proton pumps, the vacuolar ATPase (V-ATPase) and the lysosomal 
RedOx-chain [86, 96, 97], and activation of the CTSL-dependent lysosomal C3 cleavage and fusion 
of SARS-CoV-2 particles with host airway cells. That implies that in addition to the direct inhibition of CTSL by 
experimental cysteine protease inhibitor E64d [92, 98, 99] maturation and acidification of the endosome as 
well as the maintenance of the acidic pH are promising targets. However, to date only experimental inhibitors 
such as bafilomycin A1 are reported and available [100, 101]. A way out is given by active compounds that 
can decrease or abolish the lysosomal transmembrane proton gradient and raise the endolysosomal pH from 
4.5–5 to 6–6.5, e.g., lysosomotropic approved drugs [102].

Current disease management of sepsis and COVID-19
Biologics and small molecules
Currently, immunomodulators, antivirals, and biologics (e.g., anti-SARS-CoV-2 antibodies) are the therapeutic 
pillars of COVID-19 treatment strategies (Table 2). Depending on the severity of the disease (pneumonia, 
ARDS) and associated organ dysfunction; however, they are substantially different from the therapy of typical 
sepsis patients [16, 103, 104]. In-depth knowledge about these drugs and immunomodulatory effectors in 
oncology and rheumatology suggested their use to COVID-19 [105, 106]. 
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Table 2. Recommendation of immune-modulating therapeutics according to NIH COVID-19 treatment guidelines as of November 
2021 [16] and current status of clinical development according to ClinicalTrials.gov as of December 2021

Target Drug Clinical relevance and level of development 
NFκB inhibition 1Corticosteroids 

(Dexamethasone, prednisone, 
methylprednisolone, 
hydrocortisone)

Recommendation: hospitalized patients require supplemental oxygen, 
high-flow device or non-invasive ventilation, invasive ventilation, 
ECMO

IL-1Ra 2Anakinra Clinical trials (phase II/III)
Insufficient evidence

IL-1 3Canakinumab Recommendation against, except clinical trials
JAK 1/2 kinase
JAK 1/3 kinase

4Baricitinib (Ruxolitinib)
alternatively
4Tofacitinib

Recommendation: hospitalized patients require high-flow device or 
non-invasive ventilation 
(Not in combination with anti-IL6R/anti-IL-6)

GM-CSF 3Gimsilumab
3Mavrilimumab

Clinical trials (phase II)
Clinical trials (phase II/III)
Insufficient evidence

IL-6 3Toculizumab (anti-IL-6R)
alternatively
3Siltuximab (anti-IL-6)

Recommendation: hospitalized patients require high-flow device or 
non-invasive ventilation, invasive ventilation, ECMO
(Not in combination with JAK inhibition)

IL-4, IL-13 3Dupilumab Clinical trials (phase II)
IL-17 3Ixekizumab Clinical trials (phase III)
IL-2 5Aldesleukin Clinical trials (phase III)
ICAM-1 - -
IL-10 - -
IL-15 5N-803 Clinical trials (phase I)
IL-7 5CYT107 Clinical trials (phase II)
TNF-α 3Adalimumab

3Infliximab
Clinical trials (phase III)
Clinical trials (phase II/III)

Complement C3 4APL-9
4AMY-101

Clinical trials (phase I/II)
Clinical trials (phase II)

Complement C5 3Ravulizumab
3Zilucoplan

Clinical trials (phase III)
Clinical trials (phase II)

Complement C5a 3Avdoralimab (anti-C5a-R)
3Vilobelimab (anti-C5a)

Clinical trials (phase III)
Clinical trials (phase II/III)

VCAM1 - -
Mode of action is classified in: 1 corticoids; 2 antagonists; 3 antibodies; 4 small molecule; 5 agonists. NFκB: nuclear factor kappa 
B; ECMO: extracorporeal membrane oxygenation; -: no targeting drug, no drug in development, no drug with clinical relevance

As of December 2021, more than 900 drug-related interventional clinical trials targeting treatment 
COVID-19 are registered at ClinicalTrials.gov. During the early pandemic period, the strength of the 
cytokine storm driven by COVID-19 infection was considered to figure prominently in predicting patient 
outcomes [6, 43]. Large-scale clinical trials with IL-6 (siltuximab) and IL-6R (sarilumab, tocilizumab) 
antibodies have yielded conflicting results and failed to demonstrate a significant benefit in COVID-19, except 
for IL-6R antibodies in severe COVID-19 (hospitalized patients who require supplemental oxygen, high-flow 
oxygen, non-invasive ventilation, or invasive mechanical ventilation) [16]. The non-response to blockade of 
IL-6/IL-6R argues against IL-6 as the assumed predominant driver of COVID-19 CRS/cytokine storm, disease 
severity, and organ dysfunction. 

A number of studies focused on inhibiting the host humoral immune response yielded promising results, 
suggesting current immunomodulatory drugs (e.g., corticosteroids, biologics, and small molecules) as 
constituents of a successful therapeutic strategy for moderate and severe COVID-19 [16, 104]. In addition, 
biologics and small molecules provide effective tools to interrupt the relevant signaling pathways of 
cytokines, cytokine receptors, JAKs, and complement proteins [105, 107–109]. Some other small molecules 
and well-known drugs or their metabolites, most of them lysosomotropic, exhibit modulatory effects 
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on sepsis and COVID-19 relevant signaling pathways and raise hope for the successful treatment of both 
diseases (Table 1, Figure 1) [20–22, 41, 110, 111].

Figure 1. Targets of lysosomotropic drugs and metabolites in sepsis, SARS-CoV-2 infection, and severe SARS-CoV-2 infection/
COVID-19. Lysosomotropic compounds aim various targets in host cells: lysosomal pH, enzymes, and metabolism (black); in 
response to LPS-induced inflammation/severe viral infection (dark red); in SARS-CoV-2 infection of host cells and viral replication 
(blue); and the expression of C3, C3aR, C5, and in particular of C5aR1, a highly probable promoter of sepsis and COVID-19 
related vasculitides (green) [11, 112]. Effects are indicated as decreased (green arrow) and increased (red arrow). * TLR3 shedding 
and decreasing effects on TLR4 signaling after endocytosis are yet not confirmed, however, highly probable. MIP-1β: macrophage 
inflammatory protein-1β

In contrast to the humoral immune response, therapeutic option to intervene the hyperactivation 
of inflammatory response in sepsis failed in large multicenter clinical trials [113]. However, the use of 
hydrocortisone is the only immune-modulating drug recommended in septic shock, given the ongoing need 
requirement of vasoactive drugs [103]. 

The promising results in vitro as well as in TLR4-null mice targeting of the TLR4 signaling pathway 
and the production of pro-inflammatory cytokines failed to meet the high expectations in clinical trials. 
For example, resatorvid (TAK-242), a small molecule TLR4 antagonist, does not suppress cytokine levels in 
patients with sepsis and shock or respiratory failure/ARDS [114–117]. Other promising targets such as high 
mobility group box 1 (HMGB1) in sepsis still lack clinical trials [118].

Shortcoming of single targeting with biologics in signaling pathways 
Antibodies are highly specific and highly selective tools for capturing peptide messengers, blocking the 
corresponding receptors or neutralizing the viral pathogen, so the natural choice was to apply antibodies 
for treating sepsis and SARS-CoV-2 infection/COVID-19. Contrary to expectations, however, the results of 
clinical trial demonstrate that the benefit is unincisive or very poor, except for the antibodies addressing 
the S protein receptor-binding domain (RBD) of SARS-CoV- (bamlanivimab plus etesevimab/casirivimab 
plus imdevimab) [16] or targeting an evolutionarily conserved epitope outside the rapidly evolving receptor 
binding motif to neutralize SARS-CoV-2, its variants (e.g., Omicron), and multiple other sarbecoviruses, 
including SARS-CoV-1 (sotrovimab) [119, 120].

In sepsis, inhibition of single downstream pro-inflammatory cytokines, such as TNF-α, IL-1b, and IL-6, 
have failed in clinical trials, not to be unexpected given the substantial amounts of mediators involved in the 
pathogenesis [78]. To improve outcome in SARS-CoV-2 infection/COVID-19, antibody cocktails consisting 
of anti-IL-6, IL-1 receptor blocker, IL-1 type 1 receptor, and TNF-α are suggested [121], irrespective of the 
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risk of serious adverse effects (e.g., bacterial pneumonia) due to more pronounced interference with the 
immune defense. 

Quest for multi target small molecules and drugs
Hydroxychloroquine is a well-known disease-modifying anti-rheumatic drug (DMARD) indirectly reducing 
the production of anti-inflammatory cytokines (e.g., IL-1, IL-6, TNF-α, and IFN-γ) by mononuclear cells and 
of TNF, IFN-α, IL-6, and CCL4 (MIP-1β) in plasmacytoid dendritic cells (pDCs), natural killer cell co-cultures 
stimulated with RNA-containing immune complexes, and other antigen-presenting cells [122]. Despite the 
successful in vitro inhibition of SARS-CoV-2 infection of cells in vitro [123, 124], hydroxychloroquine has failed 
to demonstrate benefits in clinical trials, leading to a dissuasion from the application [16]. Terminal elimination 
half-life of 41 ± 11 days, poor and/or delayed pulmonary accumulation (steady state on day 10) [125], severe 
adverse effects (e.g., dysrhythmias, prolonging the QTc interval in and beyond the therapeutic window, 
serious drug-drug interactions with various other drugs) [16, 126] rendered hydroxychloroquine unsuitable 
for widespread use in prophylaxis and therapy. However, the concept of multi-targeting pro-inflammatory 
cytokines, similar to the suggested antibody cocktail outlined above, can alternatively be implemented 
with small molecules that have DMARD characteristics and a suitable drug profile. In both sepsis and 
SARS-CoV-2 infection/COVID-19, it seems to be preferable to prevent the excessive emergence and release of 
pro-inflammatory cytokines than to trap them after excessive release. Small molecules have the advantage of 
being able to act within cells at the subcellular level.

Disease management with targeting endolysosomal acidification and 
signaling in sepsis and severe SARS-CoV-2 infection/COVID-19
Lysosomotropism of drugs is multi-targeting
Lysosomotropism is a characteristic of small molecules accumulating in lysosomes, usually by passive 
diffusion across the lysosomal membrane and trapped in the lysosome lumen [127]. Typically, 
lysosomotropic compounds are characterized by one or more easily protonatable aliphatic nitrogen atoms 
localized in side chains or saturated ring systems, possessing a ClogP > 2 (lipophilicity) and a basic pKa 
between 6.5 and 11 [25, 128]. Trapping and enrichment results in an increase in lysosomal pH from 4.5–5 
to 6–6.5 [102] and an inactivation of lysosomal enzymes through a lysosomal pH beyond their optimum pH 
range (pH 4.5–5.5). Various well-known approved drugs such as ambroxol, amitriptyline, chlorpromazine, 
desipramine, desloratadine, fluvoxamine, hydroxychloroquine, and azelastine (Figure 2) or the small molecule 
model compound NB 06 have been classified as lysosomotropic compounds [22, 100, 128–134]. The pivotal 
involvement of the lysosome in metabolism, endocytosis, and exocytosis renders it an interesting therapeutic 
target. Raising the pH in (late) endosomes and lysosomes results in non-specific partial or complete inhibition 
of numerous lysosomal enzymes addressing SARS-CoV-2 infection, replication, and shedding; as well as TLR 
receptors and host response to infection/complement system (Table 1, Figure 1).

Inflammatory messengers
NB 06, in a setting addressing the effects on gene expression of lysosomotropic compounds in LPS-induced 
inflammation in monocytic cells, modulates the gene expression of various prominent inflammatory 
messengers including CXCL10, CXCL3, CXCL2, CCL20, CCL4 (MIP-1β), PTX3, ICAM-1, TNF-α, and IL-6 [22]. 
These findings are consistent with the reported inhibitory effects of lysosomotropic hydroxychloroquine 
on antigen processing and major histocompatibility complex (MHC) class II presentation; interference 
with TLR signaling (TLR9 and TLR7); and inhibition of TNF-α, IFN-α, IL-6, and CCL4 production [122, 131]. 
Furthermore, the results support the hypothesis that lysosomotropic drugs are useful in (systemic) infections 
involving bacterial endotoxins, such as LPS by targeting the TLR4 receptor pathway in sepsis and LPS induced 
lung injury [2, 23, 68].
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Figure 2. Lysosomotropic drugs, lysosomotropic metabolites as candidates for (systemic) prophylaxis of sepsis, viral infection, and 
transition to severe SARS-CoV-2 infection/COVID-19. (A) Pairs of confirmed lysosomotropic and non lysosomotropic drugs and 
their lysosomotropic N-desmethyl metabolites [22, 100, 128–133] and their ratio (r) of pulmonary tissue/plasma concentration, if 
available. Accumulation in pulmonary tissue is given at a ratio r > 1 [135, 136]; (B) H1-antihistamines and candidates for (systemic) 
prophylaxis of viral infection and transition to severe SARS-CoV-2 infection/COVID-19. Azelastine (*, green) is a nasal and 
ophthalmic H1-antihistamine over-the-counter (OTC) drug with confirmed lysosomotropism and anti-SARS-CoV(-2) efficacy [134]. 
Bromhexine, ambroxol, loratadine, desloratadine, azelastine, clemastine, dimethindene, and diphenhydramine are likewise OTC 
drugs and are easily accessible; (C) various commonly used cardiovascular drugs and the bronchodilator salmeterol. Salmeterol 
(ClogP 3.61) is administered by inhalation and decreases levels of LPS triggered pro-inflammatory cytokines TNF-α, IL-6, and 
IL-1β [137, 138] suggesting present lysosomotropism is indicated as confirmed (*, blue), highly probable (black), but yet not 
confirmed, and no lysosomotropism (#, red)

Ceramide metabolism and related exocytosis
Apoptosis of mammalian cells is characterized by an increase in C16-ceramide [139] in response to 
cellular stress and independent of ceramide synthases (CerS) and the ceramide de novo synthesis at the 
endoplasmic reticulum (ER) [140]. In the presence of lysosomotropic compounds non-selective lysosomal 
ceramide degradation of acid ceramidase (aCERase) shifts to the reverse ceramide synthase activity of 
aCERase (revaCERase) and selective synthesis of pro apoptotic C16-ceramide and C18-ceramide without 
ATP consumption proceeding from palmitic acid or stearic acid and sphingosine [22, 141]. C18-ceramide 
triggered exocytosis [142] and forming of syncytia, e.g., in SARS-CoV(-2) infection, can be blocked 
by chlorpromazine [34, 92, 143, 144].

Endosomal entry route, shedding of TLR receptors, complement C3, and lysosomal enzymes
In SARS-CoV-2 infection, lysosomotropic drugs prevent maturation and acidification of endosomes laden 
with viral particles, thereby preventing the CTSL mediated S1–S2 boundary and S2´ site cleavage in 
target cells. Contagions with other coronaviruses (e.g., alpha-coronaviruses HCoV-NL63 and HCoV-229E, 
beta-coronaviruses HCoV-OC43 and HCoV-HKU1) causing mild upper respiratory tract infections [33] or 
other viral CTSL-dependent target cell infections could be managed as well.

At the level of TLR receptors, lysosomotropic drugs inhibit endolysosomal proteases, presumably 
cathepsins, which are required for the ectodomain shedding of receptors TLR7 (ssRNA) and TLR9 (CpG) 
to obtain the functional form of both receptors [145]. Exclusively the processed forms of TLR7 and TLR9 
present in the phagosome are capable of recognizing their ligand and signaling downstream. Full-length 
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TLR9 is capable of recognizing its ligand CpG, and, however, fails to recruit MyD88 in response to CpG 
stimulation [145]. Given that the V-ATPase inhibitor Bafilomycin A1 blocks endolysosomal acidification as 
well as signaling by TLR9, TLR7, and TLR3 [145], it is obvious that the functional form of dsRNA detecting 
TLR3 is likewise depending on ectodomain shedding in the EL. However, this regulatory mechanism is 
lacking in the cell surface receptor TLR4 [145]. After translocation to the EL the TLR4/CD14/LPS receptor 
complex is capable of downstream signaling via a toll/IL-1 receptor-domain-containing adapter-inducing 
IFN-β (TRIF)-related adaptor molecule (TRAM)–TRIF-dependent pathway [88, 91]. 

Contrary to expectations, lysosomes and in particular CTSL are part of the innate, not adaptable immune 
system which preserves host integrity and is essential in homeostasis [74, 76, 78]. This specificity for the 
hydrolysis of C3 to C3a but not of C5 to C5a/C5b or C4 [76] may indicate that lysosomal CTSL is part of the 
alternative pathway and responsible for the initial spontaneous hydrolysis of C3. Lysosomal CTSL-dependent 
conversion of C3 to C3a suggests that lysosomotropic drugs interfere with lysosomal generation of C3a and 
diminish C3a appearance at the cell surface after T cell stimulation. This may be of particular importance as 
severe COVID-19 is associated with hyperactivation of the alternative complement pathway [13].

Given the limited decrease of C3a at the cell surface of T cells after stimulation of about 20% for 
CD3-activation and 50% for CD3+/CD46 activation using a specific CTSL inhibitor [76], a complete inhibition 
of C3a generation by lysosomotropic compounds is very unlikely. Intracellular C3a generation, necessary for 
cell viability and homeostatic T cell survival [76], remains unaffected. In severe diseases with complement 
derailment such as sepsis and COVID-19 [2, 11], it may be sufficient to interfere with the lysosomal, stimulus 
related portion of C3a, probably linked to the endolysosomal receptors TLR3, TLR7, TLR8, and TLR9 and the 
translocated receptor TLR4. 

Expression of complement receptor C5aR
C5a is considered to be one of the most active inflammatory peptides produced and prominently increased 
during sepsis, avian influenza (H5N1 and H1N1 viral infection), and severe and critical COVID-19 [2, 3, 11, 46]. 
In addition to C5a, the corresponding C5aR receptor is likewise overexpressed during sepsis and severe 
SARS-CoV-2 infection/COVID-19 [11, 46, 112]. This overexpression is most likely linked to IL-6, which is 
well-known to induce transcriptional upregulation of C5aR. In consequence, early massive appearance of 
IL-6 in the plasma is resulting in transcriptional upregulation and overexpression of C5aR in the vasculature 
and in various organs and finally in organ dysfunction in severe cases [77]. Consequently, the C5a-C5aR axis 
figures prominently in severe sepsis and COVID-19 associated organ failure [2, 46, 77, 112].

The triggering effect of IL-6 on C5aR expression suggests that the modulatory effect on IL-6 observed 
with lysosomotropic NB 06 will also be evident with C5aR. Indeed, like IL-6, NB 06 inhibits significantly the 
transcriptional upregulation of C5aR1 during LPS-induced inflammation in monocytic cells [C5aR1: 6 h; LPS 
(1 ng/mL): 2,215; LPS + NB 06 (10 μmol/L): 1,100; NB 06: –1,549]. Without LPS stimulation, underexpression 
of C5aR1 was present at the end. Similar to C5aR1, LPS-induced transcriptional upregulation of lysosomal 
C3aR was blocked and, without LPS, underexpression was observed [C3aR: 6h; LPS (1 ng/mL): 2,062; LPS + 
NB 06 (10 μmol/L): 1,039; NB 06: –1,520]. The expression of the precursors C3 and C5, however, remained 
unchanged the entire period [22]. Whether these results on C3aR, and in particular C5aR1, are significant in 
the disease progress of sepsis and severe SARS-CoV-2 infection/COVID-19 requires further evaluation.

Overexpression and release of anti-inflammatory cytokine IL-10
IL-10 or human cytokine synthesis inhibitory factor (CSIF) is a prominent anti-inflammatory cytokine 
expressed by macrophages and myeloid dendritic cells (DCs) in response to microbial products such 
as LPS. Induction of IL-10 expression often occurs together with pro-inflammatory cytokines to limit the 
immune response to pathogens including oxidative burst and thereby preventing damage to the host [146]. 
In particular, IL-10 compromises mostly the gene expression of pro-inflammatory mediators such as IL-1β, 
TNF-α, IL-6, GM-CSF, CCL5, and MIP-1α/CCL3 [147, 148] and disturbs class II MHC presentation by inhibition 
of the transport of the class II molecules to the cell membrane [148]. Some of these mediators are likewise 
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controlled by small lysosomotropic molecules such as NB 06 and similar to NB 06, IL-10 checks inducible 
enzymes such as the inducible form of cyclooxygenase (COX), COX-2/PTGS2 [149]. 

Given the normalizing properties of IL-10 on host response to sepsis, various efforts have been made 
to manage the immune response and reduce mortality in sepsis by systemic application of an adenovirus 
expressing IL-10. In the murine sepsis model, adenovirus systemic expressing IL-10 has failed; however, it 
targeted local expression of IL-10 in the thymus and achieved the desired beneficial effects in the outcome of 
septic mice [147, 150]. Since both desipramine and amitriptyline have been tested in differing murine sepsis 
models and mortality of septic mice decreased, it was natural to ask whether IL-10 was determined [67, 151]. 
And indeed, in the cecal ligation and puncture (CLP) murine sepsis model, amitriptyline increased IL-10 levels 
in peritoneal lavage and pulmonary injury during sepsis [67]. These findings suggest that lysosomotropic 
drugs promote the expression and/or release of anti-inflammatory IL-10 and serve as an alternative to 
targeted local expression of IL-10. 

Managing PTX3 levels in plasma
The long pentraxin PTX3 is an acute phase protein produced at the sites of infection and (systemic) 
inflammation by a variety of cell types including macrophages, monocytes, DCs, smooth muscle cells, vascular 
endothelial and cardiac muscle cells, and in particular respiratory epithelial cells [9, 70, 152, 153]. Like the 
short pentraxins CRP and SAP, PTX3 is linked to the humoral arm of innate immunity, in particular to recognition 
molecules and activators of the classical and the lectin pathway of the complement [78, 154, 155]. In a murine 
model, intratracheal instillation of LPS triggered rapidly increasing, dose-dependent expression of PTX3 in 
pulmonary tissue provoking acute lung injury, and finally ARDS [70]. Besides LPS, pro-inflammatory cytokines 
(IL-1β, TNF-α), TLR agonists, microbes, and microbial components, trigger PTX3 expression; however, IL-6 
and IFN-γ failed to trigger PTX3 expression [70, 154]. Considerably increased plasma concentrations of 
PTX3 are present in infections of fungal, bacterial, and viral origin; sepsis and septic shock; cardiovascular 
diseases; and as more recently ascertained, likewise in severe SARS-CoV-2 infection/COVID-19, not differing 
from pulmonary sepsis [9, 51, 60, 62, 71]. PTX3 plasma concentrations correlate with disease severity 
and mortality in sepsis and severe SARS-CoV-2 infection/COVID-19 [9, 51, 60, 62] and when expressed by 
the heart and vasculature in response to primary inflammatory stimuli, PTX3 is thought to be involved in 
numerous inflammatory diseases such as atherosclerosis and vasculitis [153, 156]. In sepsis and severe 
SARS-CoV-2 infection/COVID-19, pulmonary vasculitis, endothelial dysfunction, inhibiting the vasorelaxation 
induced by acetylcholine, and determining morphological changes in endothelial cells by PTX3 appears to 
be of particular importance [9, 71, 154]. Furthermore, in severe sepsis and septic shock, early high PTX3 is 
assumed to predict subsequent new organ failures, while a smaller decrease in circulating PTX3 over time is 
associated with an increased risk of death [62].

The impact of lysosomotropism of hydroxychloroquine or NB 06 has already been linked to vascular 
diseases such as atherosclerosis [131, 157], however, never with regard to PTX3 as a marker of vascular 
diseases, acute lung injury, sepsis, or SARS-CoV-2 infection/COVID-19 [9, 152, 153, 156]. Rather coincidentally, 
a screening experiment on the effect of NB 06 on LPS-stimulated Mono-Mac-6 cells at the level of gene 
expression suggested that lysosomotropic compounds such as NB 06 markedly and time-dependently 
decrease the expression of PTX3 [22]. Given that PTX3 is a marker of sepsis and SARS-CoV-2 infection/
COVID-19 severity, the efficacy of desipramine and amitriptyline in the murine sepsis model, as well as 
fluvoxamine in clinical trials may be attributable to this experimental finding [20, 26, 67, 110] and encourages 
further evaluation of lysosomotropic compounds in this context.

Endolysosomal acidification and transmembrane proton gradient as targets
Apparently, the underlying effect for the observed effects of lysosomotropic compounds in cells and 
SARS-CoV-2 infection is the increase of the lysosomal pH. The lysosomal pH or more precisely the lysosomal 
transmembrane gradient depends on various factors. First, the lysosomal transmembrane pH gradient is 
established by two proton pumps, the V-ATPase using cytosolic ATP as its energy source and the lysosomal 
RedOx-chain using cytosolic NADH [86, 96] to transfer protons from the cytosol into the lumen of the 
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lysosome. Therefore, both proton pumps are dependent on energy-providing processes such as the oxidative 
branch of the pentose phosphate pathway or fatty acid oxidation to provide sufficient amounts of ATP or 
NADH [158, 159]. Second, from the presence of compounds that disrupt or collapse the transmembrane 
gradient. Lysosomotropism, i.e., the accumulation in the lysosome, is probably only one way to lower 
the lysosomal proton transmembrane gradient and increase the pH in the lysosome. Compounds such as 
metformin, which exhibit similar effects on pro-inflammatory messengers [e.g., IL-1β, TNF-α, IL-6, MCP-1 
(CCL2), and CXCL10 in mouse lungs] as lysosomotropic compounds fall short of the molecular characteristics 
of lysosomotropism and do not accumulate in the lysosome [160, 161]. Currently, it is impossible to predict 
whether other drugs possessing the lysosomotropism-mimicking of metformin can be identified.

Impact of lysosomotropism in sepsis models and SARS-CoV-2 infection/COVID-19 observational 
studies and clinical trials
Some of the lysosomotropic drugs and metabolites in Figure 2, in particular desipramine, fluoxetine, 
amitriptyline, and ambroxol, have already been tested for their efficacy in LPS-induced septic shock or 
polymicrobial sepsis/peritoneal contamination and infection (PCI) induced sepsis in animal models. In 
the murine PCI model, desipramine significantly reduced sepsis-typical hallmarks such as sepsis-induced 
cardiomyopathy, cardiac dysfunction, endothelial stress response, hepatic biotransformation capacity, 
activation of hepatic stellate cell in the acute-phase, and development of hepatic sepsis sequelae (e.g., post 
sepsis liver fibrosis) [19, 26, 151, 162].

Likewise, amitriptyline tested in the CLP model decreased mortality, mitigates neutrophil/monocyte 
accumulation in pulmonary tissue, and pulmonary injury during sepsis associated with increasing IL-10 
levels in peritoneal lavage and decreasing MCP-1/CCL2 [67]. Preventive treatment with desipramine and 
fluoxetine significantly reduced TNF-α production and mortality in the murine LPS-induced septic shock 
model [163]. Ambroxol, with recently confirmed lysosomotropism, decreases infiltration of inflammatory 
cells into lung tissue, IL-1β, TNF-α, and MCP-1/CCL2 expression after LPS-induced inflammation and lung 
injuries following inhalation [68, 132]. The inhaled bronchodilator salmeterol (ClogP 3.61) decreases 
levels of LPS triggered pro-inflammatory cytokines TNF-α, IL-6, and IL-1β [137, 138], however, still lacking 
experimental lysosomotropism confirmation. Although not considered a typical lysosomotropic drug due 
to its somewhat low lipophilicity (ClogP –0.81), in the LPS-induced septic shock model ciprofloxacin shows 
similar effects on mortality, TNF-α, IL-1β, and CXCL2 [164].

Chloroquine and hydroxychloroquine emerged as the first lysosomotropic drugs to be trialed in the 
setting of SARS-CoV-2 infections/COVID-19, unfortunately without the desired benefit [16]. Random 
observations in psychiatric patients in France with a lower prevalence (about 4%) of symptomatic and 
severe forms of SARS-CoV-2 infections/COVID-19 compared to healthcare professionals (about 14%) when 
taking chlorpromazine or decreased mortality when using hydroxyzine pioneered subsequent and wider 
observational study on lysosomotropic drugs [30, 165, 166]. There, for example, escitalopram, sertraline, 
amiodarone, and amitriptyline reduced the risk of intubation or death in severe forms of SARS-CoV-2 
infections/COVID-19 [21]. At the same time, a placebo-controlled, randomized, adaptive platform clinical 
trial of the lysosomotropic selective serotonin reuptake inhibitor (SSRI) fluvoxamine was initiated with the 
goal of evaluating its benefit in patients at known risk for a severe progression of SARS-CoV-2 infection. 
Treatment with fluvoxamine (100 mg twice daily for 10 days) among high-risk outpatients with early 
diagnosed COVID-19 reduced the risk of emergency care and hospitalization [20, 130].

Another strategy of drug repurposing is the nasal application of azelastine to prevent viral infections and 
to reduce viral load of SARS-CoV-2 in the nasopharynx. Azelastine is lysosomotropic and holds a marketing 
authorization as a nasal spray for allergic rhinitis [167, 168]. Therefore, it is natural to test azelastine 
placebo-controlled for its antiviral and viral load-lowering characteristics. After the preliminary evaluation, 
0.1% azelastine nasal spray treatment decreased viral load, in particular in patients with initial high viral 
load and turning negative much faster than in the placebo group [134]. In all these successfully applied small 
molecules with various indications, lysosomotropism is a common feature [22, 129, 130, 169] that was not 
necessarily a consideration in the selection process.
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Rational drug repurposing: the quest for lysosomotropism and the perfect drug profile
To identify new, readily available drugs with existing marketing authorization, a rational repurposing 
strategy is needed to become independent of random observations. Various lysosomotropic drugs and 
metabolites (e.g., in Figure 2) demonstrated anti-SARS-CoV(-2) efficacy, and some of them in severe forms of 
SARS-CoV-2 infections/COVID-19 and murine models of sepsis [19, 20, 25, 98, 110, 163, 167, 170, 171]. Drugs 
such as desipramine, fluoxetine, fluvoxamine or chlorpromazine are, however, not suitable for the systemic 
prophylaxis in healthy individuals due to their intrinsic pharmacology as anti-depressants. Eligibility 
criteria for drugs could include (Figure 3): lysosomotropism of drugs or their metabolites is present within 
the therapeutic margin, no or acceptable undesirable systemic pharmacological effects at lysosomotropic 
drug concentrations, and favorable systemic drug profile (clinical pharmacology considerations). In the 
case of viral infection prophylaxis of the respiratory tract, attention must be paid to the accumulation of 
the drug or its active metabolites in the nasopharynx and the lung. However, local application is a fallback 
option for otherwise suitable drugs [41, 111]. Clinical pharmacology considerations for small molecule in 
treatments for severe forms of SARS-CoV-2 infections/COVID-19 and sepsis can be performed using the 
liberation, absorption, distribution, metabolism, and excretion (LADME) model [172]. Antihistamines such 
as azelastine, clemastine, dimethindene, diphenhydramine, and loratadine (active metabolite desloratadine) 
or the expectorants bromhexine/ambroxol could be such readily available drugs with broad therapeutic 
window and safe drug profile. The generic adverse effects of lysosomotropic prescription drugs (e.g., QTc 
prolongation, Torsade de Pointes, ventricular arrhythmia, bundle branch heart block, and cardiac deaths, in 
particular from overdosing) are very rare (loratadine/desloratadine) [173] or absent (ambroxol) [174]. 

Figure 3. Rational repurposing of lysosomotropic drugs and metabolites for systemic prophylaxis of transition to sepsis and 
prophylaxis of (systemic) SARS-CoV-2 infection and prevention of transition to severe SARS-CoV-2 infection/COVID-19. 
Candidates (active compound and/or one or more of its metabolites) should meet the following criteria: weak protonatable nitrogen 
bases with lipophilicity (ClogP > 2) and a basic pKa between 6.5 and 11 [25, 128], lysosomotropism is present within the therapeutic 
margin, with or without acceptable undesirable systemic pharmacological effects as lysosomotropic drug or originating from its 
metabolites. Systemic prophylaxis of sepsis (top) and transition of viral infection to severe SARS-CoV-2 infection/COVID-19 
(bottom) requires a favorable systemic drug profile; however, in the case of an unfavorable drug profile, in prophylaxis of viral 
infection local application can serve as a fallback (middle). Systemic prophylaxis of viral infection requires an accumulation in 
pulmonary tissue after systemic application of the drug

https://doi.org/10.37349/ei.2022.00063


Explor Immunol. 2022;2:484–509 | https://doi.org/10.37349/ei.2022.00063 Page 497

Multi-targeting of lysosomotropic drugs vs. antibodies and antibody cocktails
Antibodies are undoubtedly a highly specific tool to inhibit pro-inflammatory mediators such as IL-6, and, 
however, are lacking success in clinical sepsis trials and severe SARS-CoV-2 infection/COVID-19 [2, 16, 78]. 
IL-6 inhibitors (e.g., sarilumab, tocilizumab) are only recommended in hospitalized patients, and COVID-19 
patients who require supplemental oxygen, high-flow oxygen, non-invasive ventilation, or invasive mechanical 
ventilation [16]. In an effort to inhibit more pro-inflammatory mediators simultaneously, antibody cocktails 
consisting of anti-IL-6, IL-1 receptor blocker, IL-1 type 1 receptor, and TNF-α are suggested [121] despite 
the risk of serious adverse effects due to massive interventions in the immune system (e.g., bacterial upper 
respiratory tract infection, pneumonia, and viral infections). Even the JAK-1 inhibitors tofacitinib and baricitinib 
have also failed to meet expectations and are only recommended for COVID-19 under defined conditions [16]. 
Although lysosomotropic compounds likewise interfere with prominent mediators of the immune defense, 
adverse effects of IL-6 and TNF-α antibodies are not reported. In contrast to antibodies, the resynthesis of 
IL-6 and TNF-α and thus the available amount of the mediators is reduced, but not completely inhibited, still 
allowing a moderate immune response. To reiterate the benefits of lysosomotropic drugs and metabolites, 
here are a handful of examples of their benefit in sepsis and SARS-CoV-2 infection/COVID-19. 

Managing the onset of sepsis and severe SARS-CoV-2 infections/COVID-19
The key to the success of lysosomotropism of drugs and metabolites in the early clinical trials and 
observational studies in SARS-CoV-2 infections and COVID-19 [20, 21, 110] most likely relates to the 
various targets (Table 1, Figure 1) in the pathogenesis of COVID-19 and sepsis. Initially, lysosomotropic 
drugs target the onset of sepsis that is associated with the early appearance of IL-6 in the plasma, resulting 
in transcriptional upregulation of C5aR in various organs and present in sepsis and severe SARS-CoV-2 
infection/COVID-19 [46, 77, 175]. Given that IL-6 plays a central role as mediator of toxicity in the CRS/
cytokine storm, that is associated with severe cases of SARS-CoV-2 infection/COVID-19 [176, 177], controlling 
IL-6 is likewise a measure to avoid effectively an IL-6-driven CRS/cytokine storm. In influenza A virus 
[A(H1N1)pdm09]-induced pulmonary infections, lysosomotropic drugs are presumed to reduce both peaks 
of IL-6 plasma level on day 2 and day 5 after infection, respectively, thus preventing increased expression of 
C5aR [178]. At the onset of SARS-CoV-2 infections and COVID-19 lysosomotropic drugs are multi-targeting 
on core processes of the viral infection, addressing the formation of multinucleate syncytia and alteration of 
tissue structure, ceramide metabolism, and the release of virions.

The most significant advantage of lysosomotropic compounds is, however, that they address targets 
such as the pH of the lysosome, allowing a variety of signaling pathways and enzymatic reactions to be 
controlled (Figure 1, Table 1). Although lacking the specificity of antibodies, the broadness of the modulating 
effects with predictable side effects, in particular the intrinsic pharmacological effects, lysosomotropic 
compounds could become a valuable tool to better manage severe diseases such as sepsis or SARS-CoV-2 
infection/COVID-19. 

Managing the immune response and the complement C3a–C3aR/C5a–C5aR1 axis
The dysregulated or over activated complement system in trauma, sepsis and severe SARS-CoV-2 infection/
COVID-19 is a challenging therapeutic target [2, 11, 13, 46, 75, 112, 175]. As a result of improved rodent 
survival by blocking C5 or C5aR1 [77, 179], development of various antibodies, antagonists, and convertase 
enzyme inhibitors began (Table 2); however, none of these have been granted marketing authorization 
to date [75, 78, 82–84]. Interestingly, we discovered that the lysosomotropic NB 06 downregulates the 
complement receptors C3aR and especially C5aR1 [22] considered to be of relevance for the disease progress, 
severity, and outcome. This finding suggests that C5aR1 overexpression in sepsis and in severe SARS-CoV-2 
infection/COVID-19, the C5aR1-mediated vasculature and endarteritis in various organs, and the organ 
dysfunction in severe cases [77] can be controlled with lysosomotropic drugs. In addition to the expression 
of the C3a receptor C3aR, the conversion of C3 to C3a is likewise targeted in the lysosomal C3a/C3aR axis by 
lysosomotropic compounds. The increase of lysosomal pH triggered in presence of lysosomotropic compounds 
reduces the pH-dependent lysosomal CTSL-dependent conversion of C3 to C3a and C3b and decreases the 
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free amount of C3b for downstream processes such as formation of C5 convertase [75, 76, 78]. Given that the 
hyperactivation of the lectin and in particular the alternative pathways are associated with disease severity 
in COVID-19 patients [13], it is likely that multi-targeting with lysosomotropic drugs is superior to the other 
concepts such as antibodies. 

Shedding, acidification of EL, cross-talk, and TLR-receptors
Acidification of EL that can be impeded with lysosomotropic compounds, is required for endolysosomal 
protease-depended ectodomain shedding of TLR7 and TLR9 to obtain their functional form [145] and 
certainly for translocated TLR4/CD14/LPS receptor complex to be capable of downstream signaling via a 
TRAM–TRIF-dependent pathway [88, 91]. 

Strikingly, TLR4 is a co-stimulus of both lysosomal C3a/C3aR and C5a/C5aR1. With TLR-4 co-stimulation, 
C3a can induce in human monocytes and monocyte-derived macrophages signaling by producing 
pro-inflammatory mediators, such as IL-1β, TNF-α, IL-6, and prostaglandin E2 (PGE2) [180]. More pronounced, 
as demonstrated in the murine model, is the synergistic effect of C5a/C5aR with TLR4 in eliciting a stronger 
inflammatory response in endothelial cells. This endothelial-cell derived production of CC-chemokines, IL-6, 
and the IL-8 family CXC-chemokines for priming adherent neutrophils via their CXC-chemokine receptors 
as well as C5a-induced expression of C5aR in endothelial cells can be controlled with lysosomotropic 
drugs [74, 77, 181]. Thus, C5a cannot exert its effect as one of the most active inflammatory peptides produced 
during sepsis and severe SARS-CoV-2 infection/COVID-19 [2, 46, 77, 112].

Conclusions
So far, lysosomotropism of drugs has hardly been considered as a therapeutic option, since it cannot be 
defined by effects on receptors or enzymes; however, it is a pharmacological effect targeting a cell organelle, 
a characteristic of the compound and requires testing on cells to be confirmed [22, 128, 129]. Given the 
lysosome and its pH as target, any pH-dependent processes such as enzymatic activity, receptor shedding, 
and antigen presentation within the lysosome are affected resulting in multi-targeting of lysosomotropic 
drugs, often in contrast to the common philosophy of single targeting, such as antibodies.

Lysosomotropic compounds in general target the expression of pro-inflammatory mediators, in 
particular IL-6 and PTX3, the expression of the complement receptors C3aR and C5aR1, the release of 
the anti-inflammatory cytokine IL-10, shedding of the TLR receptors TLR7 and TLR9, and alteration of 
lysosomal sphingolipid metabolism, notably by preventing the formation of stress-induced pro-apoptotic 
C16 ceramide (Figure 1). 

In both sepsis and SARS-CoV-2 infection/COVID-19, the decreasing expression of the C5aR1 receptor 
and in particular PTX3 is of major interest, considering PTX3 as a marker for disease progression. COVID-19 
requires upstream infection with SARS-CoV-2. There, in host cell infection, lysosomotropic drugs can interfere 
with the CTSL-dependent cleavage of the viral S1–S2 boundary and S2´ site during host cell infection by 
raising the intra-lysosomal pH and thus preventing fusion viral with the host cell and cutting the S protein. 
It is obvious, that even if infection has already been established, modulation of PTX3 expression is rated to 
positively affect disease progression and to prevent transition to COVID-19. 

Given that lysosomotropism is known to exist among many approved drugs and their metabolites already 
or has been investigated during repurposing for the treatment of severe SARS-CoV-2 infection/COVID-19, 
suitable drugs can be selected based on the proposed selection flow-chart (Figure 3). Ideally, the drugs can 
also treat the patient’s underlying diseases simultaneously and in the near future new drugs can be developed 
that exhibit no pharmacological effect beyond their lysosomotropic effect. Furthermore, the mechanism of 
action can also be applied to any viral disease where the triggering virus requires an intact lysosome to 
infect the host cell, or the progression to severe forms triggered by mediators that can be modulated by 
lysosomotropic compounds.
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Unlike IL-6 antibodies or TNF-α-antibodies, lysosomotropic drugs are less likely to impair the immune 
response and do not have an associated increased risk of bacterial or viral infections. Adverse effects are 
mostly well documented, and cutaneous adverse effects in particular can usually be managed properly [111]. 

Despite the emerging success in SARS-CoV-2 infection/COVID-19 and in rodent sepsis models and 
the commonalities now discovered with sepsis, lysosomotropism of drugs and metabolites has hardly 
been considered as a useful drug characteristic and treatment option in the field of sepsis. By suggesting 
multi-targeting lysosomotropic drugs, we would like to bring new impetus to the treatment and prophylaxis 
of transition to sepsis and provide food for thought beyond the well-known treatments with corticosteroids 
and antibodies.
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