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Abstract
Immunity is continuously evolving by evolutionary mechanisms shaped by pathogenic stimuli of different 
kinds. Man-made nanomaterials (NMs) have been developed in the last decades and represent a novel 
challenge for our immune system, especially when applied to medical science. Toxicological studies of such 
nanoparticles (NPs) revealed that size, shape, and surface chemistry are key parameters to understand their 
noxious effects on cellular mechanisms. Less is known on the immune reactions to NMs since prolonged 
exposure data are not so detailed as the results for acute administration. The importance of immunity 
to biocompatible NPs is underlined by their increasing use as drug or gene delivery carriers in common 
pharmaceutical preparations and vaccines. In the latter case, the immunomodulatory properties of NMs allow 
their use also as efficient adjuvants to enhance the innate immune response. In the current manuscript, the 
authors discuss the main concepts in this fast-growing field by restricting our view to NMs with consolidated 
application in biomedicine.
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Introduction
In the past decades the development of diverse nanotechnologies allowed their application in several 
fields including medicine, mainly for drug delivery and diagnostics [1]. The physicochemical diversity 
of nanomaterials (NMs) extends far beyond the conditions of biocompatibility that allow a profitable use 
of NMs in medicine. For instance, most of the inorganic or carbon-based materials are not degradable 
and poorly soluble rising concerns for tissue accumulation and cytotoxicity [2]. High doses of inorganic 
nanoparticles (NPs) disrupt the physiological mechanisms inducing toxicity, whereas lower doses could 
not show direct noxious effects hiding long-term events appearing at a later stage. NP interaction with the 
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immune system (IS) deserves special attention, as NPs could evoke potential inflammatory responses that 
need appropriate investigation before any biomedical claim [3].

NP size, shape and chemical surface determine their recognition by cells and molecules of the IS. 
In particular, the different surface chemistry plays a major role in the interactions with the biological 
environment and often defines NP immune-compatibility [4]. Continuous research is currently focused on 
NM coatings with the ability to hide from the IS and delay their clearance once released, for example, in the 
bloodstream [5]. One of the most common strategy is the modification of NM surface with polymers such 
as poly(ethylene glycol) (PEG) or poly(2-oxazoline) (POx) to improve drug delivery systems and diagnostic 
nano-tools. Though several chemical technologies have been developed to avoid IS, many researchers are 
currently trying to stimulate an immune reaction by tailored inorganic or organic NPs for specific adjuvant 
activity in vaccine delivery [6]. A variety of NMs show amazing drug/gene delivery performances or 
immunomodulatory properties [7]. Some of them already have a key role in current therapies, especially in 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine delivery [8, 9], whereas others show 
potential applications aimed at interfering with abnormal immune reactions like coronavirus disease 2019 
(COVID-19)-induced cytokine storm [10].

All these evidences emphasize the need for a deep investigation of NM-mediated immune responses to 
unravel their immune-toxicity mechanisms and design safe particles for medical applications. In the present 
review we restrict our attention to some prototype biodegradable NPs and their potential or documented 
inflammatory reactions.

Immune reactions to polymer NPs
Several and diverse polymers can be assembled in nanostructures. They are divided in natural [11] or synthetic 
polymers [12] with a huge range of characteristics and possible modifications. Natural polysaccharides, most 
of which extracted from invertebrates, algae, fungi or bacteria, are frequently used to prepare stable NPs 
for applications in biomedical research [13]. As repetitive and conserved patterns, polysaccharides could 
be recognized by the innate IS cells through pathogen-associated molecular patterns (PAMPs) recognition 
receptors. Specific responses against exogenous sugars or glycosaminoglycans are quickly mounted by first 
reacting phagocytes, namely neutrophils and macrophages. These cells show a wide set of pattern recognition 
receptors (PRR) types, such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), retinoic acid-
inducible gene (RIG)-I-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like 
receptors (NLRs). Most of their signal pathways converge on the nuclear factor (NF)-κB transcription factor 
inducing the expression of genes coding for pro-inflammatory mediators, including cytokines, chemokines, 
antimicrobial proteins and type I interferons (IFN). A first raised question with controversial answers is 
whether natural polysaccharides folded to form nanostructures are still able to interact with immune 
receptors [13]. Within the vast families of natural polymers, we will consider only a couple of them as model 
for commonly induced immune effects.

Monocyte response to starch NPs, for example, strictly depends on the fine differences of their 
specific saccharide composition [14]. In one of our studies, we showed that NPs of similar size (from 40 
nm to 100 nm) prepared with starches extracted from two different potatoes, (i.e. Solanum tuberosum and 
Solanum goniocalyx), induced a different response. THP-1 cells released the pro-inflammatory cytokines 
interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α and chemokines (C-C motif) ligand 2 (CCL2), CCL4, 
and CCL5 in the presence of NPs synthesized with starch extracted from S. goniocalyx. On the contrary, this 
monocytic cell line did not show any significant pro-inflammatory reaction towards S. Tuberosum starch-NPs. 
Since the starch is formed by amylose and amylopectin molecules, structural differences may be due to a 
dissimilar molecular branching and folding in the particle. Supported by previous results on starch films [15], 
we hypothesized that fine polysaccharide changes may induce the recruitment of different PRRs on THP-1 
membranes and a different cytokine response. Starch-NPs’ properties depend on the botanical source of the 
polymer and drive NP-employment in nano-formulations aimed at stimulation (e.g., adjuvants) or avoidance of 
inflammatory reactions (e.g., drug delivery) [16]. In the first case, it would be always important to understand 
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the extent of the inflammatory response with in vivo studies. Unfortunately, no such studies have been already 
done using starch NPs. However, results from in vitro experiments indicate that pro-inflammatory IL-6, TNF-α 
and IL-1β are also released by mixed monocytes and lymphocytes cultures when blends of corn starches are 
administered for long time [17].

Chitin is another very abundant natural polysaccharide used for NP preparation. It is a common 
component of insects and crustaceans’ exoskeleton, also present in some fungi. Even if it is proved that six-
subunit-long oligomers of fungal chitin bind to TLR2 [18], it is not clear whether the same molecule folded and 
arranged in a particle structure still maintains its potential inflammatory and allergy-promoting PAMP [19]. 
As purified, chitin is hydrophobic and insoluble, so its deacetylated derivative chitosan, which is soluble in 
weak acidic solutions, is preferred to prepare NPs [20]. Many aspects of chitin/chitosan NP effects on the 
IS still need to be elucidated, nevertheless, data regarding enhanced cytokine release by different immune 
cells have been shown in splenocytes of immunized mice with ovalbumin [21]. Especially, mRNA expression 
of IL-2, IFN-g and IL-10 promoting both T-helper (Th)1 and Th2 adaptive immune responses. Based on 
these evidences, chitosan and other polysaccharide NPs are proposed as natural nano-adjuvants in different 
studies [22]. Chitosan has a wide range of application in pharmaceutical sciences and tissue engineering 
[23, 24]. Its charge varies in media with different pH as its amino groups are protonated. Chitosan in such 
condition becomes a cationic polymer strongly interacting with several molecules in the biological milieu. 
Actually, NP interactions in biological media mainly depends on their chemical surface and this aspect will be 
carefully described in the following text.

Unlike natural polymers, synthetic ones can be designed with exclusive intrinsic properties for specific 
medical applications [25]. NPs prepared with these polymers are biodegradable, increase the stability and 
bioavailability of several drugs, often providing their controlled release. Food and Drug Administration (FDA) 
already approved different synthetic polymers, such as poly(ε-caprolactone) (PCL), poly(lactide acid) (PLA), 
and poly(lactic-co-glycolic acid) (PLGA), [26-28]. In general, NPs synthesized with FDA-approved polymers 
are harmless, albeit some indications reveal that particle size can be crucial to provoke inflammatory 
signaling in vitro [29]. Nicolete and colleagues [29] showed that PLGA particles of micrometric diameter 
strongly interact with cell membrane protein receptors inducing NF-κB dependent inflammatory stimulus 
after their uptake in murine macrophages. Conversely, nano-sized particles of the same bulk material do not 
show immune-toxicity. This effect may be due to the interactions with more proteins onto the cell surface and 
the different internalization pathway engaged.

Crucial indirect NP-mediated immunomodulatory effects depend on the adsorption of different molecules 
onto their surfaces. For instance, PLA-NP chemical affinity for Vitamin E or TLR agonists have been recently 
studied [30]. Polymers’ ability to adsorb specific molecules is very important to modulate the immune 
responses. The set of molecules adsorbed onto the NP surface, mainly proteins in the blood or other biological 
fluids, is called protein corona (PC) [31]. PC can be divided in “hard” and “soft” corona. The first is formed 
by proteins tightly bound to the chemical surface, whereas the soft-corona is characterized by polypeptides 
interacting through reversible binding in the outer layer of the PC. NP surface charge plays an essential role 
in PC configuration by selecting the protein content [32, 33]. Specific passive NP surface functionalization can 
be achieved by tailoring the polymer chemistry [34]. In turn, the presence of the molecular coating may affect 
the expected NP release of drug or vaccines [35]. The possibility to reduce the therapeutic efficiency make 
PC-induced immunomodulation a fundamental challenge for pre-clinical and clinical research [36].

Particularly, NPs released in the bloodstream face their opsonization by complement proteins and 
immunoglobulins [37]. Experiments with dextran coated NPs revealed that C3 can covalently bind the corona-
proteins inserted into the dextran shell starting the complement cascade [38]. Alternatively, immunoglobulins 
can directly bind PC proteins with the creation of enzymatically active complexes antibody-C3b [39]. The final 
result of NP opsonization is the recognition by complement or immunoglobulin receptors on the phagocytes 
followed by their activation.

PEGs is widely used to reduce molecule adsorption and increase the circulation time of bioactive 
compounds [40]. PEG is present in several forms in linear or branched chains of ethylene glycol-monomers 
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with different molecular weights (from 2,000 Da to 20 kDa) and shapes. For long time, PEG has been 
considered a key coating polymer to hide drugs or NPs from the IS. Unfortunately, B cell production of 
anti-PEG antibodies is emerging as major concern for the reduced efficacy of PEGylated therapeutics and 
the potential adverse effects of immune reactions [41-44]. Blood samples from patients treated with PEG 
conjugated drugs revealed the presence of anti-PEG immunoglobulin (Ig)M and IgG. Surprisingly, anti-PEG 
IgM have also been found in healthy untreated individuals [42]. Antibody binding leads to accelerated blood 
clearance (ABC phenomenon) of the PEGylated drug. This effect is recurrent when further PEG doses are 
administrated. In addition, anti-PEG IgE production or specific IgG can induce immediate hypersensitivity 
or complement-activation-related pseudo-allergy (CARPA) posing further concerns for prolonged clinical 
use [45, 46]. Reasonably, inflammatory responses involving innate and adaptive reactions can be thought 
for PEGylated NPs with different core materials. Full-polymer NPs, for instance PEG-PLGA NPs, are not 
recognized by Th lymphocytes eluding a T cell-dependent B cell antibody production and enhancement. On 
the other hand, the prediction of enhanced Th cell-dependent humoral responses is not unrealistic for PEG-
protein NPs, as recently observed after administrations of PEG conjugated protein drugs [41]. Theoretically, 
following internalization of PEGylated protein-NPs, macrophages, or dendritic cells (DCs) could present 
NP-core peptides onto the major histocompatibility complex (MHC) II protein complex and activate Th 
lymphocytes. As well, B lymphocytes recognizing PEG on the NP surface through membrane B cell receptor 
(BCR) could enhance Th cells pre-stimulated with the processed core peptides. This hypothesis is reinforced 
by several clinical reports of a robust production of treatment-induced anti-PEG Abs against PEGylated drugs 
compromising their therapeutic efficacy and increasing the adverse effects [43]. It is worth to mention that 
alternatives to PEG are under intensive research, as an increasing amount of anti-PEG antibodies is currently 
seen in the population maybe related to the growing use of PEG in therapeutics and beauty products (e.g., 
body creams) [47].

Protein NPs recognition by the IS
Full-protein NPs are, anyhow, considered advantageous for drug delivery applications due to their 
biodegradability, natural abundance and cost-effective synthesis process [48]. Indeed, several challenges 
encountered with different materials in the biological milieu, like solubility and PC, can be overcome by using 
NP proteins from the same environment. Nevertheless, assembling peptides in nano-scale structures may 
induce irregularly folded protein-domains recognized as non-self and activating complement opsonization-
mediated sequestration by phagocytes.

Enhanced immune responses towards peptide-NPs can be used advantageously to prepare biodegradable 
adjuvant NPs for vaccine technology. For example, virus like particles (VLPs) are nanometric particles of 
viral-capsid proteins able to prime our defense mechanisms almost like the original hostile viruses [49, 50]. 
VLP derived peptides are efficiently presented by both MHC I and MHC II molecules allowing CD8+ and 
CD4+ lymphocytes responses. As well, the activation of PRRs on the macrophage surface induce the release 
of inflammatory cytokines enhancing the reaction. Even in the absence of MHC II-dependent CD4+ T cell 
activation, the highly repetitive arrangements of VLP surface proteins can facilitate BCR crosslinking. This 
multiple epitope engagement overcomes the triggering threshold in the absence of Th lymphocyte support 
and may induce a long-lasting humoral response.

NPs with different core materials could also be decorated with viral proteins [51]. Depending on the 
chosen proteins, the functionalized surface can determine NP fate, its cell targeting or mediate acquired 
stealth properties [52]. Surface modification with self-ligands of immune receptors can also be a method to 
increase cell targeting and particle circulation [53]. We recently focused on chemokine-functionalized NPs to 
improve cell targeting [54] and impair CXCR4-mediated cell migration [55]. Our interest on chemokine NP 
decoration is motivated by the versatility of cell targets in different inflammatory conditions. As chemokine 
receptor expression-pattern depends on the physiological state, we aim at designing NPs able to bind 
immune cells driven by immune mediators. Roughly 50 human chemokines binding 10 different receptors 
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are known today [56]. This scenario offers various opportunities to interact with most of the immune cells in 
their different state of activation.

Lipid NPs and current therapeutic opportunities
Liposomes have been developed more than fifty years ago [57], but still prove to be versatile and functional 
NP-drug carriers [58]. They are spherical vesicles made of a single or multiple lipid-layer surrounding 
an aqueous core, commonly prepared in different sizes (0.05-5.0 µm in diameter). They are composed of 
natural or synthetic lipids, usually phospo- and sphingo-lipid often containing other constituents such as 
cholesterol or hydrophilic polymer-conjugated lipids. The concomitant presence of hydrophobic bilayer 
(with inner and outer polar heads) and hydrophilic core allows the encapsulation of lipophilic or hydrophilic 
drugs in the phospholipid bilayer or within the aqueous core, respectively. Like other NPs, liposomes have 
different interactions with the IS on the basis of their physicochemical properties, [59]. Since early studies 
in vivo, macrophage phagocytosis of liposome has been observed as the major event after their release in 
the bloodstream [60, 61]. In particular, composition [62], size and surface charge [63] were described as 
crucial feature determining liposome interaction with serum proteins and the following phagocyte uptake. 
Macrophages in different tissues tend to uptake liposomes with different surface charge with a different 
efficiency [64]. This event was shown by Aramaki and colleagues [64] more than 25 years ago demonstrating 
that PC and surrounding molecules determine the fate of liposomes with dissimilar composition/charge 
surface. They demonstrated that peritoneal macrophages significantly internalized negatively charged 
liposomes, containing high concentration of phosphatidylserine. On the contrary, splenic macrophages 
took up positively charged liposomes with increased internalization depending on their stearylamine 
concentration. The opsonization of stearylamine-containing liposomes by fibronectin was crucial to enhance 
their uptake by splenic macrophages. Intriguingly, it did not improve the internalization by peritoneal 
phagocytes independently of their surface charge. The role of liposome composition-dependent opsonization 
was deepened by studies on complement proteins, immunoglobulins, fibronectin and apo-lipoproteins [63, 
65, 66], comprehensively described by Zahednezhad et al. [59].

Different observations revealed that negatively charged liposomes activate the classical pathway binding 
to IgG, IgM and C1q or C-creative protein (CRP). Conversely, positively charged liposomes can activate the 
alternative pathway after opsonization by C3b, IgG or C4b2a3b. The presence of cholesterol in the liposome 
composition can also influence complement activation, namely, high cholesterol content is associated with 
maximal activation [67-70].

PEGylation is a common strategy to hide liposomes from the IS, although this chemical modification can 
rise the concerns previously mentioned for the therapeutic use of PEGylated NPs (i.e. PEG immunogenicity, 
ABC phenomenon, C-protein activation and CARPA effect) [71].

The innate IS activation triggered by liposomes could also feasibly lead to an acquired immune response. 
The activation of innate immune cells through PRRs, TLRs and the mannose receptor (CD206), such as 
DCs and natural killer cells (NKCs), gives rise to adaptive response with several applications in cancer or 
infectious disease research. Liposomes modification targeting PRRs has been experimentally proved as an 
efficient strategy for both cancer immune-therapy and in immune-vaccine development [72, 73]. Cationic 
liposomes loaded with tumor-specific synthetic peptides and an adjuvant TLR3-ligand intradermally injected 
in mice with melanoma and human papillomavirus (HPV)-induced tumors significantly activated antigen-
specific CD8+ and CD4+ cells causing target cell cytotoxicity and controlling tumor outgrowth. Other examples 
of liposome versatility as adjuvant drug carrier have been described for folate-coated liposomes containing 
zoledronic acid, selectively taken up through folate receptor-mediated endocytosis in tumor associated 
macrophages [74]. Diverse immune pathways can be specifically activated by tailoring liposome composition, 
functionalization, and active molecule cargoes. For instance, a liposome-vaccine incorporating diphtheria 
toxoid and the TLR3-ligand poly inosinic:polycytidylic acid (poly I:C) in an ovine lymphatic cannulation 
model provided activation of the innate IS, TLR signaling and inflammasome pathway [75]. Up-regulation 
of IL-17A and IL-17F also suggested the role of Th17 lymphocytes in the earliest adaptive response to the 
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vaccine. In another study a liposome formulation containing TLR4 and TLR7/8 agonists was able to generate 
intestinal IgA, plasma IgG2a/IgG1, IFNγ and IL-17A promoting a powerful mucosal immune response against 
the Entamoeba histolytica Gal/GalNac lectin LecA antigen [76]. Further examples of liposome NPs pre-
clinical applications are shown by mannosylated liposome-protamine-DNA carriers [77] which are able to 
induce significant up-regulation of CD80, CD86 and CD40 in primary bone marrow-derived DCs. This is an 
advantageous boosting of T lymphocytes mediated response through CD28 and CD40-ligand improving their 
carrier activity for DNA vaccines.

Much emphasis on liposome formulations aimed at vaccination purposes derives from the anti-SarsCov2 
vaccine launched by Pfizer. The vaccine contains a PEGylated liposome entrapping the mRNA encoding for 
the SarsCov2 capsid-protein Spike2. This formulation is characterized by fast release and translation of the 
cargo mRNA. The translated spike 2 protein is quickly recognized by the patrolling immune cells and further 
processed. The vaccine is able to elicit both humoral and Th1 mediated response reaching almost 95% 
protection to COVID-19, although immunization lasting time still need further data collection [78-80]. Based 
on the first indications coming from the current vaccination campaign around the world, no side effects 
associated with the liposome carrier have been reported. A very recent publication, however, report cases 
of lymphadenopathy after vaccination in Israel [81]. Since no further data are available yet, and the affected 
lymph nodes are the ones closed to the injection, we hypothesis that a fast liposome degradation might bust 
the cargo-mRNA transcription and the following immune response. However, the enlarged nodes recovered 
the normal size in a few days. Rare allergic reactions to vaccine-liposome PEGylated lipids have been also 
reported [82]. The authors suggest an IgE-mediated reaction, without excluding the hypothesis of CARPA, a 
common effect previously described as consequence of other types of NP PEGylation.

As previously mentioned, an improving strategy could be the use of similar but less antigenic polymers 
to coat the liposomal surface. Among them, a just published study regarding solid tumor treatments using 
liposome drug carriers compared PEGylated thermosensitive liposome versus 1,2-dipalmitoyl-sn-glycero-
3-phosphodiglycerol (DPPG2) modified ones [83]. DPPG2-liposomes demonstrated decreased complement 
activation and granulocyte interaction making them interesting nano-tools to be further investigated.

Lipid NPs (LNPs) are NPs similar to liposome, consisting of a lipid matrix stabilized by surfactants and 
not displaying a lipid bilayer surrounding the aqueous core [84]. They are made with physiologic lipids, 
such as purified triglycerides, fat acids and steroids, with a size range of 10-500 nm. In particular solid LNPs 
(SLNPs) are largely investigated as gene delivery vehicles taking advantage of cationic lipids that can complex 
with the negatively charged nucleic acids [85, 86]. As well as for liposomes, major interest is reserved to 
SLNPs to improve the stability of mRNA and siRNA vaccine formulation [87]. Lutz and colleagues [87] report 
that a single intramuscular dose of LNP-formulated mRNA encoding rabies or influenza antigens induce 
protective and stable antibody titers in non-human primates, lasting up to one year. SLNPs are also applied 
to therapeutic delivery in cancer. siRNA targeting the vascular endothelial growth factor (VEGF), which is 
involved in tumor angiogenesis, and the metastasis mediator kinesine spindle protein (KSP) promoted target 
downregulation, antitumor activity and regression of liver metastasis in endometrial cancer [88].

LNP efficiency can be improved by PEGylation or specific composition, such as the use of ionizable 
aminolipids to form small multilamellar vesicle structures [89]. As for the other described biodegradable 
NPs, immunotoxicity, pro-inflammatory cytokines production, CARPA and eventually, anaphylactic shock are 
mainly ruled by the surface chemistry determining their PC and tissue-specific molecule adhesion [90, 91].

Summarized in Table 1 are reported cell receptor engaged, signal pathways and cytokine released by 
biodegnadable NPs used in biomedicine.
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Conclusion
Several formulations are increasingly taking advantages of nanotechnology. In particular, biodegradable NPs 
reveal huge versatility of employment in medicine. The possibility to design immune-compatible nano-tools 
will allow the development of highly performing gene or drug delivery systems. Vaccine adjuvant technology 
could also be improved by the use of degradable NPs eliciting tailored immune responses. Nevertheless, the 
fine tuning of the IS must be carefully controlled and continuous immunological research will be needed to 
face the amazing growing development of NM. In particular, NP surface chemistry and its modifications to 
improve solubility and delayed clearance must be deeply investigated as suggested by antibody-mediated 
uncontrolled immune responses to PEGylated NPs already used in nanomedications.

Abbreviations
CARPA: complement-activation-related pseudo-allergy
CCL: C-C motif ligand
CD: cluster of differentiation
DCs: dendritic cells
ERK: extracellular regulated kinase
IFN: interferons
Ig: immunoglobulin
IL: interleukin
IS: immune system
LNPs: lipid nanoparticles
MAPK: mitogen-activated protein kinase
MHC: major histocompatibility complex
NF-κB: nuclear factor-κB
NMs: nanomaterials
NPs: nanoparticles
PC: protein corona
PEG: poly(ethylene glycol)
PLGA: poly (lactic-co-glycolic acid)
PRRs: protein recognition receptors

Table 1. Biodegradable NP-induced pathways

Biodegradable NPs* Target receptors Reported signal pathways§ Reported protein expression§ References
Polymeric NPs:
Starches TLRs, CLRs, RLRs NF-κB IL-6, IL-1β, TNF-α, CCL2, 

CCL5, CCL4
[15], [16], 
[17]

Chitin/Chitosan TLR2, CD206, Dectin 1 ERK, NF-κB, MAPK IL-2, IFN-γ, IL-10, IL-6, IL-8 [19], [24]
PLGA Multiple PRRs ERK, NF-κB, MHC-1 IL-6, IL-1β, TNF-α, IL-2, 

IFN-γ, IL-10
[27], [28]

Protein NPs:
Virus like particles TLR7, TLR9, PTX TGF-β, MHC-1, Lectin/classical 

complement pathways, MAPK, 
NF-κB

IL-1β, TNF-α, CCL2, IL-6 [49]

LNPs:
Liposomes and 
SLNPs

TLRs, CD206 ERK, MAPK, classical pathway 
binding to IgG, IgM, C1q, CRP

CCL2, IFN-γ, IL-17A, IL-17F [59], [86]

*: With or without surface chemistry modifications; §: frequently reported in literature; ERK: extracellular regulated kinase; MAPK: 
mitogen-activated protein kinase; PTX: pentraxin
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SLNPs: solid lipid nanoparticles
Th: T helper (lymphocytes)
TLRs: Toll-like receptors
TNF: tumor necrosis factor
VLPs: virus like particles
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