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Abstract
The coronavirus disease 2019 (COVID-19) results from the infection of severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) and primarily affects the respiratory tissue. Since first reported from Wuhan, 
China in December 2019, the virus has resulted in an unprecedented pandemic. Vaccination against 
SARS-CoV-2 can control the further spread of the ongoing pandemic by making people immunised to 
SARS-CoV-2. Several vaccines have been approved for use in clinics, a lot many are in different stages of 
development. Diligent interpretations from the preclinical evaluation are crucial to identify the most effective 
and safest vaccine candidates. Multiple vaccine candidates/variants have been tested in small animal models 
with relative ease and further in non-human primate models before being taken into clinical development. 
Here, we review the state-of-the-art strategies employed for a thorough preclinical evaluation of COVID-19 
vaccine candidates. We summarise the methods in place to identify indicators which make the vaccine 
candidate effective in controlling SARS-CoV-2 infection and/or COVID-19 and are safe for administration as 
inferred by their (1) biophysical/functional attributes (antigen expression, organization, functionality, and 
stability); (2) immunogenicity in animal models and protective correlates [SARS-CoV-2 specific binding/
neutralising immunoglobulin titer, B/T-cell profiling, balanced T-helper type-1 (Th1) or type-2 (Th2) response 
(Th1:Th2), and anamnestic response]; (3) protective correlates as interpreted by controlled pathology of the 
respiratory tissue (pulmonary clinical and immunopathology); and finally, (4) strategies to monitor adverse 
effects of the vaccine candidates.
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Introduction
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in humans results in the coronavirus 
disease 2019 (COVID-19) first reported in Wuhan, China in December 2019 [1]. Since then, COVID-19 has 
spread to every geographical location, declared as a pandemic, and is the most challenging healthcare 
situation of recent times. This pandemic has affected approximately 200 million people and claiming close to 
4.2 million lives at the time of writing this manuscript [2].

SARS-CoV-2 is an enveloped virus belonging to the genus Betacoronavirus of the family Coronaviridae with 
single-strand positive RNA genome encoding major structural proteins, spike (S), envelope (E), membrane 
(M), and nucleocapsid (NC) [3]. The S surface glycoprotein comprises of surface glycoprotein domain 1 (S1) 
and S2 domains; S1 via its C-terminal receptor binding domain (RBD) engages human angiotensin-converting 
enzyme 2 (hACE2) as a receptor while S2 allows SARS-CoV-2 fusion with the host cell membrane [4-7]. 
Blocking this interaction between the RBD and hACE2 can neutralise SARS-CoV-2 infectivity [4, 6]. Several 
academic and industrial research groups isolated RBD-specific SARS-CoV-2 neutralising antibodies (nAbs) 
which are effective blockers of RBD-hACE2 interaction and protected cells/animals from virus infection [8-15]. 
Therefore, an effective vaccine capable of eliciting a high titer of RBD-specific SARS-CoV-2 nAbs can protect 
from COVID-19. As of 10th November 2021, 130 vaccine candidates are in various phases of preclinical or 
clinical development, and 194 more are under preclinical studies [16]. In total, 24 vaccines are granted 
emergency use approval in clinics by various national and international drug regulatory agencies [17].

Although several novel vaccine formats for COVID-19 are under development, standard evaluation 
strategies and extensive clinical understanding make a few suitable for quick deployment [18-21]. For 
affordable mass vaccination, inactivated vaccines formulated from SARS-CoV-2 strains would be ideal for 
triggering the host immune system upon administration without establishing an active infection. Inactivated 
vaccines primarily raise humoral immune response, crucial for recovery from COVID-19 [18, 22-25]. Next, the 
SARS-CoV-2 subunit vaccines employing S or RBD protein antigen/immunogenic fragment in recombinant 
form can drive a protective immune response upon administration [18, 22, 26-28]. Subunit vaccines modified 
as virus-like particle to display S trimer or RBD on nanoparticles in a conformation/configuration mimicking 
that of the native virus are also under development [18, 22, 29-32]. Besides, viral-vector vaccines, where the 
genetic information of the SARS-CoV-2 S glycoprotein is delivered as a part of the adenoviral vector genome 
by live virus administration are available [18, 22, 33-38]. These viral vectors have reduced virulence but still 
able to infect host cells. Also, nucleic acid vaccines are available, encoding S glycoprotein or RBD antigen either 
as DNA or modified mRNA protected under a liposomal nanoparticle shell for administration [18, 22, 39-45]. 
The genetic material expresses S glycoprotein upon delivery into the cells, secreted/inserted into the host 
cell membrane or/and displayed on major histocompatibility complex class I or II (MHC-I/II) molecules to 
be recognized by immune elements to elicit potent immune responses (Figure 1). 

Based on the clinical investigations on SARS-CoV-2 convalescent sera, S glycoprotein seems to be the 
primary antigenic determinant and the target of binding/nAbs that arise due to a natural infection [46-48]. 
Besides, interaction studies between SARS-CoV-2 S glycoprotein and hACE2 established the role of RBD in 
virus docking and S2 in virus fusion/entry into the host cell [4-7]. Interestingly, reported mutations among 
circulating SARS-CoV-2 genomes encompass S glycoprotein which implicate their role in either an enhanced 
binding to hACE2 or imparting stability under extreme conditions for establishing a successful infection or 
an immune escape phenotype [49-52]. These studies suggested that vaccine preparations capable of eliciting 
antibodies specific for RBD would be effective.

Evaluation of vaccine candidates and other therapeutic modalities needs well-established SARS-CoV-2 
animal models. Animals like hamsters, ferrets, mice, rats, guinea pigs, rabbits, chicken/ducks, fruit bats, 
mink, cats, dogs, pigs, and non-human primates (NHPs) are not efficiently infected by SARS-CoV-2 and 
cause only mild to moderate COVID-19 [53-64]. However, they do present traits relating to (1) virus 
replication; (2) clinical signs; (3) pneumonia; (4) transmission; (5) immune activation; and (5) age/
gender-related disease [53-64]. Another difficulty is that not all animal models show each of these traits 
after SARS-CoV-2 infection, making it challenging to select a particular model for testing SARS-CoV-2 
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intervention strategies [53-64]. Nonetheless, mice and NHPs show human-like virus infection/replication in 
the upper/lower respiratory tract and other organs, signs of pneumonia, immune activation, and age-related 
effects [55]. Therefore, mice and NHP are the models of choice for preclinical evaluation of vaccine efficacy 
and safety [23-45, 65, 66].

Figure 1. Diagrammatic view of COVID-19 vaccine recognition by host cells and activation of innate and adaptive immunity. ER: 
endoplasmic reticulum; APC: antigen presenting cell; TCR: T-cell receptor; INF-γ: interferon gamma; IL-12: interleukin 12; BCR: 
B-cell receptor; TNF-α: tumour necrosis factor alpha

COVID-19 vaccine evaluation data has established RBD to be the main target of nAbs generated by 
natural infection/vaccination and their COVID-19 moderating attribute as observed in mice, NHP models, 
and humans [19-41, 49, 50]. COVID-19 vaccine candidates referred in this review are listed (Table 1). In 
the light of existing evidence, RBD specific nAbs titers, their efficacy in neutralising live SARS-CoV-2, a 
balanced T-helper type-1 (Th1) or type-2 (Th2) response (Th1:Th2) cellular response, and Fc-mediated immune 
enhancement could be the possible measurable correlates of protection (CoP) for COVID-19 vaccine 
candidates [14-17, 19-41, 49, 50]. In this article, we review the methodological strategies for evaluating 
COVID-19 vaccine candidates in mice and NHP models of SARS-CoV-2 infection encompassing biological/
physical properties, immunogenicity, and indicators of pulmonary pathology with emphasis on the possible 
CoP from infection/disease (Figure 2). 
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Table 1. Referred COVID-19 vaccine candidates

Candidate/Animal 
model/Reference

Format Organization Immunization 
route/Dose/ 
Schedule/
SARS-CoV-2 
challenge

S or RBD titer/
nAb titer/T-cell 
profile

Protection 
in upper/
lower 
respiratory 
tract

ADE 
effect

BBIBP-CorV/
Macaca fascicularis/
[23]

Inactivated 
SARS-CoV-2 strain 
19nCoV-CDC-Tan-
HB02

Beijing Institute of 
Biological Products, 
China.

IM/8 µg/(D0/ D14)/
1 × 106/mL TCID50 
(D24; IT)

NA/log2 ~1:256 
(D21)/NA

CP/CP None

BBV152/M. mulatta/
[24]

Inactivated 
SARS-CoV-2 strain 
NIV-2020-770

ICMR-Bharat 
Biotech, India.

IM/3 µg/(D0/D14)/1 
× 106.5/mL TCID50 
(D35; IT + IN)

~1:1,600 
(D35)/1:209-
1:5,217 (D35)/
Th1 

CP/CP None

PiCoVacc/M. 
mulatta/[25]

Inactivated 
SARS-CoV-2 strain 
CN2

Sinovac Biotech, 
China.

IM/6 µg/(D0/D7/
D14)/1 × 106 

TCID50 (D22; IT)

~1:12,800 
(D21)/~1:50 
(D21)/Th1:Th2

CP/> 95% None

NVX-CoV2373/
BALB/c mice 
transduced with 
2.5 × 108 PFUs Ad/
CMVhACE2 (D52; 
IN)/[26]

Subunit Novavax, USA. IM/1 µg/(D0/D14)/1 
× 105 PFUs (D56; 
IN)

log10 ~5 (D28)/
CPE100 log10 ~4 
(D28)/Th1

NA/CP None

RBD Vaccine/M. 
mulatta/[27]

Subunit Sichuan University, 
China.

IM/40 µg/(D0/D7)/5 
× 105 PFUs (D28; 
IN)

1:400-1:6,400 
(D14)/EC50 
1:200 102 

(D14)/ Th1:Th2 

CP/CP None

S-Trimer/M. mulatta/
[28]

Subunit Clover 
Biopharmaceuticals, 
China.

IM/30 µg/(D0/
D21)/2.6 × 106 

TCID50 (D35; IN 
+ IT)

EC50 ~1:10,849 
(D40)/ EC50 
~1:35,040 
(D40)/Th1:Th2

NC/CP None

S-Fer/BALB/c mice/
[29]

Subunit/Nanoparticle Stanford University, 
USA.

SC/10 µg/(D0/D21) EC50 ~1:80,000 
(D21)/ EC50 
~1:30,000 

(D21)/Th2 

NA/NA None

RBD-I53-50/BALB/c 
& Darwin mice 
(Kymab)/[30]

Subunit/Nanoparticle University of 
Washington, 
Seattle, USA.

IM/5 µg/(D0/D21)/1 
× 105 PFUs (W9; 
IN)

EC50 ~4-8 × 
106 (W3)/EC50 
1:300-1:6,000 

(W3)/NA

CP/CP NA

S-I53-50NP/M. 
fascicularis/[31]

Subunit/Nanoparticle University of 
Amsterdam, the 
Netherlands.

IM/50 µg/(W0/W4/
W10)1 × 106 PFUs 
(W12; IN + IT)

~1:2,190 
(W12)/~1:3,942 
(W12)/NA

SP/SP None

RBD-Ferritin/BALB/c 
& human ACE2 TG 
mice/[32]

Subunit/Nanoparticle Sun Yat-sen 
University, China.

SC/10 µg/(D0/
D21)/4 × 104 PFUs 
(D35; IN)

log10 ~5 (D35)/
log10 ~4 (D35)/
Th1 

NA/CP None

ChAd-SARS-CoV-2-
S/M. mulatta/[33]

Vector [Simian 
(Chimpanzee) 
Adenovirus (ChAd)]

University of 
Washington, St 
Louis, USA.

IM/2.5 × 1010 

particles/D0/1 × 
106 TCID50 (D28; 
IN + IB)

log2 ~2-fold 
(D21); log2 
~1.5-fold (D21)/
Th1 

CP/SP None

MVA/S/M. mulatta/
[35]

Vector [Modified 
Vaccinia Ankara 
Virus (MVA)]

Emory University, 
USA.

IM/1 × 108 PFUs/ 
(W0/W4)/5 × 104 
PFUs (W8; IN + IT)

~1:24,000 
(W8)/~1:177 
(W6)/Th1 

NC/SP None

ChAdOX1nCoV19/
M. mulatta/[37]

Vector [Simian 
(Chimpanzee) 
Adenovirus (ChAd)]

The University of 
Oxford, Vaccitech, 
& AstraZeneca, UK.

IM/2.5 × 1010 

particles/(D0/
D28)2.6 × 106 

TCID50 (D28; IN + 
IT + Or + Oc)

1:400-1:19,200 
(D28)/1:10-
1:160 (D56)/
Th1:Th2

NC/CP None

Ad26-S.PP/M. 
mulatta/[38]

Vector [Adenovirus 
serotype 26 (Ad26)]

Harvard Medical 
School, USA & 
Janssen Vaccines 
and Prevention BV, 
the Netherlands.

IM/1 × 1011 

particles/W0/1 × 
105 TCID50 (W6; IN 
+ IT)

~1:5,000 
(W4)/~1:113 
(W4)/Th1 

CP/CP NA
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Table 1. Referred COVID-19 vaccine candidates (continued)

Candidate/ Animal 
model/
Reference

Format Organization Immunization 
route/Dose/ 
Schedule/SARS-
CoV-2 challenge

S or RBD titer/
nAb titer/T-cell 
profile

Protection 
in upper/
lower 
respiratory 
tract

ADE 
effect

BNT162b/
M. mulatta/[39]

Nucleic acid (mRNA) BioNTech, Germany 
& Pfizer, USA.

IM/100 μg/(D0/
D21)/ 1.05 × 106 
PFUs (D41-45; IN 
+ IT)

~26,170 
(U)·mL-1 

(D28)/~1:283 
(D56)/Th1

CP/CP None

LION/
repRNA-CoV2S/M. 
nemestrina/[41]

Nucleic acid 
(Alphavirus 
replicon-based RNA)

University of 
Washington, 
Seattle, USA.

IM/50 μg/(D0/D28) ~27.5 μg·mL-1 

(D42)/~1:176 
(D42)/Th1

NA None

mRNA1273/M. 
mulatta/[43]

Nucleic acid (mRNA) Moderna, USA. IM/100 μg/(W0/
W4)/1 × 106 TCID50 
(W8; IN + IT)

~1:36,815 
(W6)/~1:1,862 
(W6)/Th1

CP/CP None

mRNA-RBD/BALB/c 
& human ACE2 TG 
mice/[45]

Nucleic acid (mRNA) Institute of 
Microbiology, CAS, 
China.

IM/15 μg/(W0)/1 × 
105 FFUs (W6; IN)

~1:100,000 
(W4)/~1:920 
(W4)/Th1

CP/CP None

S.dTM.PP/M. 
mulatta/[42]

Nucleic acid (DNA) Harvard Medical 
School, USA & 
Janssen Vaccines 
and Prevention BV, 
the Netherlands.

IM/5 mg/(W0/
W3)/1.1 × 104 
PFUs (W6; IN + IT)

NA/NA/Th1 SP/SP None

ADE: antibody-dependent enhancement; IM: intramuscular; SC: subcutaneous; IT: intratracheal; IN: inhalation; Or: oral; Oc: 
ocular; IB: intrabronchial; D: day; W: week; TCID50: half-maximum tissue culture inhibitory dose; PFUs: plaque forming units; 
FFUs: focus-forming units; EC50: half-maximum inhibitory concentration; CPE100: 100% cytopathic effect; TG: transgenic; CP: 
complete protection; SP: significant protection; NC: no correlation; NA: not available; mL-1: per milliliter

Figure 2. Flowchart of COVID-19 vaccine validation protocol 

Evaluation COVID-19 vaccine constructs
COVID-19 vaccines are either comprised of expressed S glycoprotein or its domains as antigenic determinants 
in varying formats. Early evaluation of vaccine candidates involves multiple biophysical and functional tests 
before immunogenicity profiling. 
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Biophysical evaluation
The S glycoprotein or its domains are resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) to infer the correct size, purity, and stability of the antigenic determinants. Further, Western 
blot using S-specific antibodies isolated from convalescent samples and size-exclusion chromatography 
(SEC), or size-exclusion chromatography multi-angle light scattering (SEC-MALS) for absolute molar mass 
and size determination are employed to remove candidates with the propensity to aggregate. The samples 
for such analyses are subunit vaccines by themselves and/or antigen extracted/secreted from model cell 
lines like HEK293 transfected/transduced with the viral strain (for an inactivated vaccine), vector-based or 
nucleic acid vaccine. SEC in combination with gel-shift assays is also used to confirm the multimeric display 
of antigens (like S trimer) and self-assembly of the nanoparticle vaccines [23, 25-32, 35, 38, 39, 42, 45]. The 
monodispersity of the subunit/nanoparticle and/or nucleic acid vaccines correlates with vaccine stability as 
determined by dynamic light scattering (DLS) and SEC-MALS to differentiate between a monomer, dimer, and 
oligomer [26, 29, 30, 41, 45]. In addition, nucleic acid vaccines are checked for their length, purity, and integrity 
of DNA/mRNA fragments before lipid encapsulation by microfluidic capillary or agarose gel electrophoresis, 
thus ensuring a contaminant-free (including protein, genomic DNA, nucleases, and enzymatic inhibitors) 
nucleic acid sample [39, 43-45]. Besides, the efficiency of encapsulating mRNA in lipid nanoparticles is a 
measure of mRNA vaccine stability usually interpreted in terms of particle size using DLS or ribogreen-based 
fluorescence assay [43-45]. Further, zeta potential measurements of mRNA vaccines give insight into the 
effect of varying pH on the vaccine stability or/and endosomal release of mRNA [45] and confocal imaging to 
study vaccine localization in endoplasmic reticulum/Golgi [39]. 

Functional evaluation
For a stable and effective vaccine, the antigenic determinants must have a physiologically relevant 
configuration to drive an immune response. The conformation of S glycoprotein expressed/displayed by 
vaccine candidates is studied structurally to confirm the prefusion state of S glycoprotein using electron 
microscopy (EM) and/or negative staining cryo-EM [23, 25, 26, 29-32, 39, 45]. The conformational flexibility 
(like up/down state of RBD) and multimeric display (like S trimer) of S glycoprotein mimics that of the 
native virus. Further, the correctly folded S glycoprotein on/expressed by vaccine preparations should 
bind hACE2 with high-affinity like SARS-CoV-2, which is studied using surface plasmon resonance (SPR) or 
biolayer interferometry (BLI) [26, 27, 29, 30, 32, 35, 39]. Further, the vaccine expressed S glycoprotein or 
its domains with correct folding and conformation alike native virus, should bind to the SARS-CoV-2 nAbs. 
SARS-CoV-2 nAbs from convalescent serum or a panel of recombinant nAbs help to evaluate functionally 
active S glycoprotein expressed/displayed by vaccine candidates [23, 29-31, 39, 41]. Further, N-linked 
glycans on S glycoprotein have an important role proper folding of trimers and modulating interaction with 
host proteases and nAbs [4, 67-69]. Analysis of site-specific N- and O-linked glycosylation on expressed S 
glycoprotein and glycoform distribution for subunit vaccines is analysed using glycoproteomics approach 
by recording mass spectra [27, 28, 30]. Another important aspect is the COVID-19 vaccine biodistribution 
upon administration which is a quantification of S glycoprotein in various organs and tissues of vaccinated 
animals [45]. Further, immune response against vector/nanoparticle can be detrimental to the vaccine 
stability upon administration. It must be characterised by test immunisations in a small group of animals [37].

Evaluation of inactivated vaccines
Central to an effective and broadly neutralising immune response from an inactivated whole virus 
vaccine is the shortlisting of most prevalent SARS-CoV-2 viral strain(s) in a phylogeny-based analysis 
using all available circulating genomes in Global Initiative on Sharing All Influenza Data (GISAID, https://
www.gisaid.org/) [23-25]. The shortlisted viral strains are amplified in Vero cells for 7-10 passages to 
monitor the proliferation efficiency, high rate of infection, and genetic stability of the progeny for several 
generations by high throughput next-generation sequencing (NGS) methods [23-25]. This process ensures 
that no amino acid change should occur in the candidate strain compared to the parent and seed strain. 
Suitable candidate strain is assigned a clade using GISAID classification. The beta-propiolactone-mediated 
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viral inactivation process is standardised. Complete elimination of infectivity and repeatability of 
the inactivation process for candidate strains is desirable [23-25]. Further, contaminating viruses or 
mycoplasma in the vaccine preparations are tested by NGS and/or infecting cells to isolate/characterise 
contaminating microorganisms [23-25].

Evaluating COVID-19 vaccine immunogenicity
Animal models for vaccine efficacy study
The WHO Research & Development Blueprint Team established a multi-location research consortium for 
COVID-19 modeling in animals, the initiative known as World Health Organization-COVID-19 Disease 
Modelling (WHO-COM) [70]. An overview of COVID-19 animal models established under WHO-COM initiative 
is available elsewhere [55]. Here, we only focus on mouse and NHP models useful for vaccine evaluation. 
Mice are the most sought-after animal models, which can be housed in a smaller space to make a relatively 
larger experimental group for meaningful statistical analysis of therapeutic efficacy. Although mice do not get 
efficiently infected by SARS-CoV2 due to a low-affinity interaction between S glycoprotein and mouse ACE2 
(mACE2), they are the primary choice for COVID-19 vaccine evaluation [23, 25-32, 34, 35, 37, 39-41, 44, 45]. 
Mice susceptible to SARS-CoV-2 infection and mimicking severe COVID-19 could be more beneficial in such 
evaluation studies. Several approaches can make mice more susceptible to SARS-CoV-2 infection like (1) 
mutating SARS-CoV-2 RBD for enhanced binding to mACE2 [71]; (2) forced passaging of SARS-COV-2 in mouse 
lung tissue to allow enrichment of mutant virus capable of causing severe COVID-19 [72]; (3) infecting mouse 
with engineered adenovirus (Ad5-hACE2) capable of transducing hACE2 gene to sensitise for SARS-CoV-2 
infection [54, 73]; (4) genetic modification of mouse to express hACE2 using tissue-specific promoter 
(K18-hACE2), universal promoter (CMV enhancer and chicken β-actin promoter), and endogenous mouse 
ACE2 promoter [73-75]; and (5) developing humanised mouse with hACE2 gene supporting SARS-CoV-2 
replication in respiratory and brain tissue [76]. Although these strategies allow enhanced viral replication in 
mouse tissue, COVID-19 symptoms are still mild to moderate, similar to the wild-type animals. 

Before ascertaining vaccine efficacy in humans, protective ability and adverse effects are evaluated in 
NHPs. The majority of COVID-19 vaccine candidates reviewed here have been evaluated in rhesus macaques 
(Macaca mulatta), cynomolgus macaques (Macaca fascicularis) and African green monkeys (Chlorocibus 
aethiops) [23-28, 31-33, 35-39, 41-43, 53, 56, 62, 64, 66]. During COVID-19 modeling studies, NHPs exposed 
to SARS-CoV-2 through either mucosal, intrabronchial, or aerosol exposure showed early radiographic 
abnormalities in lungs, high level of viral replication in both upper and lower respiratory tract for up to 2 
weeks, virus shedding in respiratory and gastrointestinal tracts, and pathological features associated with 
viral pneumonia [53, 55, 56, 62, 64]. However, clinical disease in these models was still mild, and infection 
usually self-resolved within 11-14 days. Importantly, older macaques typically presents high viral load in the 
lungs, enhanced viral shedding, and more prominent radiological and histopathological changes [62]. Further, 
the SARS-CoV-2 challenge elicited natural protective immune responses, which offered robust protection 
against the virus rechallenge [53]. Alike mouse models, NHPs also do not recapitulate COVID-19 disease as 
in humans, although pathological manifestations have still allowed vaccine evaluation with the emergence of 
meaningful data [23, 24, 26-28, 31-33, 35-39, 42, 43, 66]. 

COVID-19 is usually a mild to moderate disease [77, 78]. However, lymphopenia and higher levels of the 
pro-inflammatory cytokine among older patients can cause severe disease. These conditions may lead to 
uncontrolled viral infection, severe pneumonia, acute respiratory distress syndrome (ARDS), septic shock, 
and multiple organ failure [77-79]. Further, clinical data show a high fatality rate among males (7.3%) 
compared to females (4.4%) due to COVID-19 [80, 81]. Pre-existing comorbidities like hypertension (16%), 
cardiovascular disease (12.11%), and diabetes (7.87%) among hospitalized COVID-19 patients can further 
predispose individuals to a greater risk of death from COVID-19 [82, 83]. Therefore, vaccine candidates must 
be evaluated in animal models closely mimicking the physiology linked to severe COVID-19 related fatality. 
Most vaccine candidates referred here were evaluated in normal mouse or NHP models, which may not be 
very useful in knowing vaccine effectiveness in the individuals with age-related dysfunctions or comorbidities.
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COVID-19 vaccine-induced S1/RBD binding serum antibodies 
An effective COVID-19 vaccine must trigger a robust serum antibody response against RBD and a complete 
seroconversion [23-45, 54, 66]. Therefore, all COVID-19 vaccine strategies strive to elicit high titers of RBD 
binding serum antibodies. The first evaluation strategy determines the immunogenic strength of COVID-19 
vaccine candidates based on two prime indicators: (1) serum immunoglobulin G (IgG)/IgM/IgA titers 
(represented as arithmetic and/or geometric mean titers (GMTs) which are an estimate of S1/RBD-specific 
antibody class/IgG subclass/isotype in serially diluted serum samples [23-45, 54, 66] and (2) seroconversion 
rate implicating the percentage of vaccinated animals, which S1/RBD-specific serum antibodies [23-45]. 
The most prevalent method employed to determine antibody titers in serum samples is an enzyme-linked 
immunosorbent assay (ELISA) using IgG/IgM/IgA standards; serum antibody titers can also be determined 
by flow cytometry using anti-IgG/IgM/IgA beads. Among referred COVID-19 vaccine candidates, serum IgG 
titers were estimated generally every week after prime and boost vaccinations, and at an interval of two 
days post-virus infection. Both in mice (BALB/c, C57BL/6J, B6C3F1/J strains) and monkeys, serum IgG titers 
against S1/RBD and seroconversion rate depend on the vaccine dose and immunisation program (“prime 
only” and “booster”) without exception [23-45]. A booster dose in most cases further expands the serum 
IgG titers against S1/RBD and is responsible for complete seroconversion. During SARS-CoV-2 infection, 
the immune system also generates IgM response which peaks within three weeks of infection and protects 
against the virus in nasal tissue [84-87]. COVID-19 vaccines (RBD subunit, S-Fer nanoparticle, S-I53-50 NP, 
ChAdOx1nCoV19, and Ad26-S.PP) show elicitation of IgM antibodies recognising RBD in serum of BALB/c 
and CD1 mice and NHPs in second or third week after prime immunisation [27, 29, 31, 37, 38]. Besides, 
RBD-specific secretory IgA response generated by S-I53-50 NP, ChAd-SARS-CoV-2-S, and MVA/S vaccinations 
may be responsible for protecting the mucosal epithelia in respiratory, intestinal, and urogenital tracts 
against SARS-CoV-2 invasion [31, 33-35]. SARS-CoV-2 specific IgA remains neutralising in the saliva of 
infected subjects [88]. 

Most COVID-19 vaccine candidates referred to in this review were administered through the intramuscular 
(IM) route, which predominantly induces humoral immunity (IgG-directed) and limited mucosal immunity 
(IgA-directed) against the antigenic composition [89]. It can compromise the recognition/inhibition of 
SARS-CoV-2 in the nasopharyngeal tract, which is the initial site of virus contact. Therefore, IM administration 
might not provide sterilizing immunity against SARS-CoV-2 [33, 34, 89-91]. The potential of few vaccine 
candidates in generating mucosal immunity via intranasal (IN) administration in preclinical studies is known. 
Vaccine candidates like ChAdOx1 nCoV-19/AZD1222, ChAd-SARS-CoV-2-S, and lentiviral vector (LV) encoding 
full length, membrane anchored S [LV: :SFL] via IN administration enhances protection against SARS-CoV-2 in 
the upper respiratory tract [33, 34, 90, 91]. Besides eliciting systemic immunity, mucosal IgA response from 
IN-administered vaccines (ChAdOx1 nCoV-19/AZD1222 and ChAd-SARS-CoV-2-S) reduces virus shedding in 
the nasopharynx and can halt further spread [33, 34, 91]. IN administration of booster dose can mediate a 
robust expansion of systemic and mucosal immunity in mice primed via the intraperitoneal (IP) route [90]. It 
may imply that additional IN administration in IM/IP vaccinated individuals can expand protective immunity 
or even provide sterilizing immunity. These studies were performed in hACE2 transduced mice, golden 
hamsters, and rhesus macaques [33, 34, 90, 91].

Previously, severe symptoms of vaccine-associated enhanced respiratory disease (VAERD) were 
present in measles and respiratory syncytial virus infected subjects vaccinated with a non-protective 
formulation [92]. Of some concern in the current scenario is that SARS-CoV vaccines like vaccinia virus-based 
Lc16mOrVV-N either alone or in combination with Lc16mOrVV-S, modified Vaccinia virus-based ADS-MVA, 
and double-inactivated vaccine (DIV) induce VAERD-like pathology (Th2 dominated inflammatory infiltrates 
and increased numbers of eosinophils) in animal models [93-95]. Therefore, the second evaluation strategy 
focuses on the physiological nature of the COVID-19 vaccine-induced serum IgG response concerning 
possible VAERD-like pathology. These involve analysing the (1) serum IgG isotypes; (2) Th cell subset; (3) 
eosinophil counts; (4) proinflammatory cytokines; or (5) anti-inflammatory cytokines after vaccination [92]. 
Non-neutralizing fraction of serum IgG can lead to ADE [92]. Serum IgG isotyping in COVID-19 vaccinated 
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animals suggests a VAERD free immune response characterized by a balanced Th1/Th2 or slightly Th1 biased 
responses even with higher dose as inferred by a higher ratio of RBD binding serum IgG2a to IgG1 [41, 43, 96]. 

COVID-19 vaccine-induced nAbs in serum
Elicitation of nAbs upon SARS-CoV-2 exposure can protect from reinfection. SARS-CoV-2 nAbs 
preferentially recognise the epitopes within S1/RBD, [4, 9, 11, 23-35, 37-46, 48, 54, 66] while antibodies 
binding to the S2 domain and/or NC are non-protective [25, 27]. The nAb response against SARS-CoV-2 
is an outcome of multiple clinical/immunological components which must be carefully evaluated. 
These include (1) optimisation of the vaccine dose since nAb titers are known to increase with a 
higher vaccine dose [23, 25, 27, 28, 39, 41, 43-45]. However, higher dose of BBV152 resulted in weaker 
neutralising response which was capable of resolving the lung pathology completely at the experimental 
endpoint [24]. It is difficult to interpret outcome as both low and high doses were formulated using the 
same adjuvant. Lower dose induced stronger IL-8 response which seems to be responsible for immune 
cell recruitment and vaccine efficacy [24]. However no such dose effect on neutralising antibody titers 
was evident in BBIBP-CorV inactivated vaccine [23]; (2) administration of booster dose as it has been 
widely proven that booster dose increases nAb titers and render a clear therapeutic benefit with complete 
seroconversion [23-35, 37-45]. In a particular case, a third vaccine dose resulted in maximal humoral 
response in animals [23]; (3) dosing interval as increasing the gap between a primary and booster dose can 
also enhance nAb titers in animals [25]; (4) presence of RBD binding antibodies since a strong correlation 
exists between the titers of anti-RBD binders and serum neutralising activity in comparison to S2 or 
N-specific antibodies, affirming the role of RBD in humoral immune response [23, 25]; (5) a higher ratio 
of “neutralising” to “binding only” RBD serum antibodies which lowers the risk of ADE upon vaccination, 
which has been previously reported in related infections caused by other members of the Coronaviridae 
family [13, 45, 97, 98]; and (6) immune effector responses which is the ability of nAbs to activate effector 
responses via FcγR2A-3, FcγR2A-1, IgM, and complement engagement to further enhance anti-SARS-CoV-2 
immunity [31, 35, 38, 42]. The neutralising activity increases via activation of several effectors functions 
including antibody-dependent complement deposition (ADCD), antibody-dependent cellular phagocytosis 
(ADCP), antibody-dependent neutrophil phagocytosis (ADNP), and antibody-dependent natural killer cell 
activation (ADNKA) [31, 35, 38, 42, 99]. Therefore, all these parameters are crucial in finding the most 
effective vaccines.

The protective efficacy of nAbs is validated on (1) SARS-CoV-2 pseudo-typed virus 
(PSV) [27-32, 35, 38, 40, 42, 44, 45] or/and (2) live wild type (WT)/engineered SARS-CoV-2 
isolates [23-27, 30-35, 37-39, 41-45, 54] produced/amplified in HEK293T and Vero-E6/CCL-81 
cells respectively. 

SARS-CoV-2 PSV neutralisation assay 
PSVs are advantageous for the preliminary screening of nAb response if a BSL-3 laboratory is not 
available. Multiple systems are available to produce SARS-CoV-2 PSVs and are used to estimate 
neutralising strength of the COVID-19 vaccines (1) lentivirus-based system, with plasmids expressing 
the luciferase reporter or green fluorescent protein (GFP), the packaging machinery, and SARS-CoV-2 S 
gene [27, 29, 31, 32, 35, 38, 40, 42-45]; (2) murine leukemia virus (MLV)-based system comprising of the 
luciferase reporter in MLV transfer vector, MLV Gag-Pol packaging plasmid, and SARS-COV-2 S gene coding 
plasmid [30, 41]; and (3) recombinant vesicular stomatitis virus (VSV∆G)-based PSV with VSV∆G firefly 
luciferase plasmid and SARS-CoV-2 S gene coding plasmid [27, 28, 39, 44]. The titers of nAbs are determined 
by infecting hACE2 expressing cells with/without transmembrane serine protease 2 (TMPRSS-2, host cell 
protease) or Vero-E6/CCL81 monolayers with amplified PSV (infectious particles/mL) and measuring the 
reduction in pseudoviral infection of cells as relative light units (RLUs) [4, 28, 29, 31, 32, 35, 38, 40-45] or 
by fluorescence microscopy [27, 39].
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Live SARS-CoV-2 neutralisation assay
Live SARS-CoV-2 clinical isolates or engineered live SARS-CoV-2 (possess luciferase/nanoluciferase or GFP 
gene inserts) have been widely used to determine neutralization potential of vaccinated serum samples. 
The titers of nAbs are determined by infecting hACE2 expressing cells with/without TMPRSS-2 (host cell 
protease) or Vero-E6/CCL81 monolayers at a predetermined median half-maximum tissue culture inhibitory 
dose (TCID50) mixed with dilutions of sera from vaccinated animals. The methods in use to determine the 
reduction in live viral infection of cells are (1) agar or carboxymethylcellulose (CMC) overlay method to 
quantify plaques by plaque reduction neutralisation test (PRNT) [24, 41, 43-45] or staining of fixed plaques 
by anti-SARS-CoV-2 S or N-specific antibody or crystal violet dye to estimate the immunospots by focus 
reduction neutralisation test (FRNT) [32-35]; (2) monitoring the cytopathic effect using microscope to 
directly visualise cell death upon virus infection [23, 25-28, 36, 37]; and (3) RLUs or fluorescent viral foci 
measurements [50% viral neutralisation titer (VNT50)] when PSVs or engineered live SARS-CoV-2 (possessing 
luciferase/nanoluciferase or GFP gene inserts) [28-31, 34, 35, 38-42, 44, 45]. 

Neutralising ability/effectiveness of vaccine candidates must also be validated against rapidly 
emerging SARS-CoV-2 lineages, which may have increased affinity for ACE2, transmissibility, and can 
evade immune response [49, 52, 100, 101]. The great diffusion of newer SARS-CoV-2 variants of concern 
(VOC) suggests an evolutionary advantage due to the mutations, which could lead to an immune escape 
phenotype [102, 103]. Two widely studied VOC [first isolated from South African (B.1.135 beta variant—
K417N/E484K/N501Y) and Brazil (P.1 gamma variant—K417T/E484K/N501Y)] can render SARS-CoV-2 
breach humoral immunity [49, 52]. Screening against existing/emerging VOC can be performed using live VOC 
isolates in neutralisation assays widely adopted to evaluate neutralising strength of COVID-19 vaccines 
and monoclonal antibodies. However, accessing/handling live VOC can be challenging. In such cases, 
SARS-CoV-2 PSVs can be generated rapidly by incorporating desirable mutations in the S protein by 
site-directed mutagenesis. SARS-CoV-2 inoculum may be contaminated with (e.g., V367F in the S protein 
and G251V in ORF3a) [31] or still evolving into variants that must be characterised. Similarly, SARS-CoV-2 
variants which may or may not be immune escape mutants can emerge in infected/inoculated animals before 
or after vaccination [31]. RNA extracted from inoculum, nasopharyngeal swabs, and bronchoalveolar larvage 
(BAL) fluid of animals can be sequenced to typify emerging variants. In addition, convalescent monoclonal 
antibodies/ plasma may give rise to immune escape mutants [104]. Ability of serum antibodies to restrict 
emergence of such mutant can be determined by incubating with replication-competent PSVs, challenging 
ACE2 expressing cells, and RNA sequencing. This approach led to the discovery of S protein mutations in 
replication-competent PSVs upon exposure to potent anti-SARS-CoV-2 monoclonal antibodies and plasma 
isolated from convalescent samples [104].

COVID-19 vaccine-induced cellular response 
Cellular immune components resulting from COVID-19 vaccination can provide long-term immunity against 
SARS-CoV-2 infection. Upon viral exposure, lung epithelial cells, alveolar macrophages, and neutrophils 
activate innate immunity, which in turn triggers adaptive immunity against the virus via activation of 
B lymphocytes (B-cell), helper T-cells (CD4+), and cytotoxic T-cells (CD8+) [18-22, 25, 30, 32, 34, 38, 39]. 
COVID-19 vaccines are shown to generate an immune response which is Th1 biased with neutralising serum 
IgGs [18-22, 26, 35, 40, 41, 44], enhanced drainage of B-cells into the lymphoid compartments [39], activation 
of T follicular helper (Tfh) cells, long-lived plasma cells (LLPCs), memory B-cells (MBPs), germinal center (GC) 
maturation in secondary lymphoid tissues [26, 32, 34, 35, 39, 43, 66], and S-specific INF-γ+/IL-2+/TNF-α+ 
CD4+/CD8+ T-cells [23, 24, 26-28, 31-35, 37-45].

COVID-19 vaccine-induced B-cell profiling
The frequency of B-cell subsets in circulation and lymphoid compartments can be a measure of COVID-19 
vaccine efficacy. Vaccinated animals may show fewer circulating S-specific B-cells than controls indicating 
draining into secondary lymphoid tissues [39]. Booster dose gives a quick rise to circulating S-specific IgG/
IgA secreting plasmablasts which become undetectable within three weeks. However, S-specific GC B-cells 
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and plasmablasts remain detectable for up to 12 weeks in draining lymph nodes [105]. A multi-week 
window of increasing B-cell persistence in vaccine draining lymph nodes (VDN) producing antibodies 
against vaccinated antigen is known [106]. Therefore, GC maturation may have a role in COVID-19 vaccine 
efficacy; a booster dose can induce an enhanced GC reaction and could further increase neutralising 
antibody titers [66]. Detailed studies on GC maturation for most vaccine candidates are lacking. However, 
S/RBD-specific GC B-cells are Fas+GL7+ which co-localises with CD21+/35hi FDCs (follicular dendritic cells), 
IgD+ naive B-cells, and infiltrations of CD3+ T-cells [32, 35, 66]. Besides, COVID-19 vaccination can impact 
the immune cell population, and therefore the frequency of plasma cells, LLPCs, class-switched IgG1+, 
IgG2a+, and GC B-cells in lymph node and spleen may be characterised [26, 31, 32, 34, 35, 39].

COVID-19 vaccine-induced T-cell profiling
COVID-19 vaccine-mediated T-cell stimulation generates robust and high affinity neutralising IgG response 
against SARS-CoV-2. Splenic or circulating T-cells are challenged with a pool of overlapping peptides constituting 
SARS-CoV-2 S glycoprotein and/or NC to characterise the T-cell phenotype [25, 27, 28, 32-35, 37-45]. 
Stimulated T-cells can be biased for Th1 or Th2 phenotype as determined by either interferon-γ (IFN-γ) 
enzyme-linked immune absorbent spot (ELISPOT) assays or multiparameter intracellular cytokine staining 
flow cytometry [24, 25, 27, 28, 30-33, 35, 37-45]. The frequency of S-specific IFN-γ+, IL2+, TNF-α+ (Th1) or IL-4+, 
IL-5+, IL-13+ (Th2) CD4+/CD8+ T-cells gives further information on the nature of protective immunity against 
SARS-CoV-2 [26, 37, 39-45]. A direct correlation exists between COVID-19 vaccine efficacy and Th1-biased 
T-cell response against S glycoprotein [26, 27, 37, 39-44, 66]. T-cell profiling can also help to characterise 
the effect of immunosenescence and the dynamics of COVID-19 vaccine response in aged animals. Aged mice 
are known to have a lower frequency of IFN-γ+ T-cells and a delayed IgG response compared to younger 
animals [41]. In addition, T-cell profiling in draining lymph nodes can give insight into vaccine efficacy, for 
example, COVID-19 vaccines induce an increased frequency of CD8+ and specialized subset of CD4+ T-cell [Tfh 
cells characterised by inducible T cell costimulator (ICOS+; CD278), CXC chemokine receptor type 5 (CXCR5+), 
and programmed cell death-1 (PD-1+)] which are vital for GC maturation and promotes antibody response to 
viral antigen [26, 31, 32, 39, 41, 43].

Anamnestic immune response after SARS-CoV-2 challenge
The anamnestic response is a natural reaction by the host against infecting pathogen (SARS-CoV-2 in this 
case) involving the memory compartments such as circulating memory B/T-cells capable of protecting from 
infection and/or disease [53, 54, 100, 102]. Such anamnestic responses can lead to low titers of binding/nAbs 
and CD4+/CD8+ T cells specific to S1, S2, NC, and non-structural (NS6, NS7a, and NS8) proteins of SARS-CoV2 
within a short period of virus challenge [35, 38, 43]. Anamnestic responses can occur in sham control/
unvaccinated and a minority of vaccinated animals after the live SARS-CoV-2 challenge [35, 38, 43]. Vaccinated 
animals (e.g., with S-I53-50NP, MVA/S, Ad26-S.PP, and mRNA1273) show no anamnestic expansion of nAbs 
and only low titers of S2 and NC specific CD4+/CD8+ T-cells for a shorter duration post-challenge compared 
to control animals [35, 38, 43]. Lack of NC-specific CD8+ T-cells expansion and nAbs in vaccinated animals 
suggests the nonavailability of NC protein produced by actively replicating virus [35]. A much lower viral 
replication in vaccinated animals after SARS-CoV-2 challenge points towards a protective vaccine-induced 
immune response. A low level of anamnestic response in vaccinated animals after the SARS-CoV-2 challenge 
indicates reduced viral replication [31, 35, 38, 43]. Weak anamnestic response after AD26-S.PP vaccination 
correlated with the immunophenotype of BAL cells indicating vaccine effectiveness [38]. An inefficient or 
even non sterilising vaccine candidate can also give rise to anamnestic response, and vaccine non-responders 
may also mount such a response [35, 38, 42, 43]. 

Therefore, anamnestic responses must be differentiated from a vaccine-induced immune response by 
accurately profiling the precise components of the SARS-CoV-2 immune response. Such analysis incorporates 
the determination of neutralising antibody titers against S1, S2, S, and NC protein in the serum from control 
and vaccinated animals before and after the SARS-CoV-2 challenge. Further, the neutralising antibody titers 
must be evaluated at frequent intervals after the virus challenge to understand the kinetic of anamnestic 
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antibody response [31, 43]. For example, antibody levels in mRNA1273 vaccinated animals after the 
SARS-CoV-2 challenge remained stable while control animals showed increase within two weeks after the 
challenge [43]. Similarly, in S-I53-50NP vaccinated animals, nAbs continued to wane following SARS-CoV-2 
challenge suggesting vaccine-induced immunity compared to controls [31]. Anamnestic expansion of CD8+/
CD4+ T-cells recognising S1, S2, S, and NC in the spleen, lymph nodes, and BAL fluid of vaccinated and 
control animals after SARS-CoV-2 challenge must be accurately determined [31, 35, 38, 43]. As mentioned, 
anamnestic antibody response can correlate with the cellular subsets in BAL fluid; such correlations may 
help in unravelling the immune protective mechanism of vaccine candidates [38]. Further, a correlation 
between anamnestic CD8+/CD4+ T cells response and viral subgenomic RNA (sgRNA) may suggest effective 
vaccine candidates [35]. 

Evaluating disease protection in animal models
COVID-19 vaccine-induced protection/pulmonary pathology 
A less severe lung pathology is an accepted indicator of vaccine efficacy. Most COVID-19 vaccines result 
in lower pulmonary pathological score in mice and NHP models of SARS-CoV-2 challenge. Pulmonary 
pathological score is the cumulative outcome of (1) thoracic/chest radiograph with evidence of pneumonia; 
(2) the number of upper, middle, lower lobes of lung affected; (3) extent of tissue lesions by necroscopy; 
(4) extent of bronchointerstitial pneumonia; (5) type 2 pneumocyte hyperplasia; (6) peribronchiolar 
hyperplasia; (7) alveolar septal thickening; (8) alveolar macrophage infiltration; (9) haemorrhages; (10) 
pulmonary edema (increased lung: body weight ratio) and fibrin deposits; and (11) formation of perivascular 
cuffs due to infiltration of lymphocytes [23-28, 31-35, 37, 39, 43-45]. A lower lung pathology score 
correlates with disease protection [23-28, 31-35, 37, 42-45]. The protective outcome of COVID-19 vaccine 
candidates correlates with significantly lower viral load in lung tissue and/or BAL fluid as measured 
by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using primers specific for 
SARS-CoV-2 genomic RNA (gRNA; indicative of inoculated virus) and sgRNA; indicative of replicating 
virus) transcripts [24, 27, 28, 31-35, 38, 39, 42, 43, 45]. Lower sgRNA transcripts indicate incapability/
reduced capability of SARS-CoV-2 replication and protection from COVID-19. Protective immunity can also 
be assessed by quantifying sgRNA in nasal turbinates/oropharyngeal swabs [35-37, 39, 43, 44]. Further, 
lung histopathology score and pulmonary viral load both correlate with vaccine-induced protection from 
COVID-19 [24-28, 31-35, 42-45]. However, discrepancies also exist, for example, in a study involving Macaca 
mullata, vaccination completely protected animals from lower lung infection with no detectable SARS-CoV-2 
transcripts in BAL fluid but similar lung histopathology as in control animals [39]. Besides, in a few studies, 
extrapulmonary tissues from the heart, spleen, brain, lymphoid organs, GI tract, testes, etc., are also used for 
histopathological analysis and viral load quantification in vaccinated and control animals [24, 32, 34, 35, 37].

COVID-19 vaccine-induced protection/pulmonary immunopathology 
SARS-CoV-2 infection alters the balance of innate and adaptive immunity in pulmonary tissues leading to 
a compromised immune status in controls compared to vaccinated animals [35, 43]. The balance between 
the kinetics of innate and adaptive immune responses in pulmonary tissues of vaccinated animals correlate 
with the protection from COVID-19 as inferred by lower viral load [35, 43]. The immunopathology status 
of the pulmonary tissue is analysed by monitoring various parameters such as (1) increased frequency of 
immune cells in BAL fluid and in the GC of draining lymph nodes of vaccinated animals suggests unstable 
kinetics in control animals [35]; (2) increased cytokine/chemokine levels (transcriptomics analysis by 
singe-cell RNA seq of IFN-stimulated genes (ISGs) in lung macrophages of BAL fluid in controls compared 
to vaccinated animals indicates lesser infection [35, 107]; (3) immune cell infiltration markers, for 
example, analysis of population shift in macrophage receptor with collagenous structure (MARCO+) 
resident alveolar macrophages compared to MACRO- interstitial macrophages/infiltratory monocytes in 
vaccinated animals suggest reduced recruitment of immune cells in pulmonary tissues and correlates 
with protection/reduced viral load [35, 107]; (4) generation of local lymphoid tissues as vaccines 
(for example, MVA/S) can also induce the formation of local lymphoid tissue like inducible bronchus-
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associated lymphoid tissue (iBALT) [35]. Bronchus-associated lymphoid tissues (BALTs) like areas 
induced by natural infection or vaccination are in direct contact with mucosal epithelium and involved 
in lymphocyte priming and B/T-cell proliferation to respond to infection in lung and lower respiratory 
tract [98, 108]. These can help in the expansion of lung immunity following virus infection [35, 97, 98, 107, 109]. 
Extent of BALT induction may depend on antigenic composition of the vaccine (for example, full length S in 
MVA/S was more effective in BALT induction compared to S1-subunit in MVA/S1) [35]. Such iBALT formation 
is evident upon infection with respiratory viruses in the absence of peripheral lymphoid organs and protein 
cage nanoparticles instillation in lungs [98, 107, 109]. 

Evaluating COVID-19 vaccine-induced adverse effects 
Serious adverse effects of vaccine candidates are unwarranted and can compromise the safety of humans in 
clinical trials. Strategies to identify adverse effects must be carefully designed considering the vaccine type, 
administration route, dosage, and appropriate animal models and should match the proposed use in humans. 
Such monitoring must be performed for a minimum of two weeks after vaccine administration to conclusively 
evaluate any adverse effects or safety issues before clinical progression [110].

Vaccine administration can cause local adverse effects like skin erythema, swelling, discharge, rash, 
ulceration, or local inflammatory reactions at the site of injection. In published preclinical studies, no 
serious adverse effects of COVID-19 vaccine administration were observed relating to appetite, water 
intake, urine/fecal output, pyrexia, attitude/activity, serum biochemical parameters, body temperatures, 
complete blood counts, etc. [23, 25, 41]. Besides, systemic adverse effects can affect the administration 
route, draining lymph nodes, systemic immune system, and organs exposed to the vaccine. Extensive serum 
biochemistry and serum cytokine levels are also determined to identify possibility of vaccine-associated 
cytokine storm [23-25, 27, 28, 37, 41].

Toxicology studies like dose-dependent acute toxicity are important and can be performed in 
Sprague-Dawley rats and cynomolgus monkeys. Toxicity analysis comprises monitoring (1) signs of health 
deterioration, death, or impending death; (2) change in weight/feeding state; (3) lymphocyte subgroup 
distribution; (4) cytokines, interferons, interleukins, c-reactive protein, and complement levels; (5) 
histopathology of internal organs by analysis by systemic anatomy of the euthanized animal. Further, to infer 
vaccine safety, the maximum tolerated dose in animals without toxicity must be compared with the proposed 
maximal dose in humans and safe limits must be determined [23]. Similarly, systemic anaphylaxis studies to 
find any severe allergic reaction due to the vaccine candidate can be evaluated using the guinea pig model. 
Animals in the experimental group are sensitised with a low and high dosage of vaccine compared to placebo 
and are compared to positive control group administered with human blood albumin before intravenous 
excitation by foot to determine primary and secondary stimulation scores [23]. 

Conclusions
The preclinical vaccine efficacy protocols are thoroughly laid out for COVID-19 vaccine candidates by referred 
preclinical vaccine studies. The main component of preclinical efficacy studies is immunogenicity analysis. 
Immunogenicity of the vaccine candidate is inferred by quantifying serum antibodies against SARS-CoV-2 
S-RBD, potent neutralisation activity of serum antibodies against live or/and PSV SARS-CoV-2, and elicitation 
of cellular immunity. Immunogenicity evaluations are extensive in terms of dose standardization, use of 
adjuvants, and vaccination schedule. Few studies have also focussed on the nature of anamnestic responses 
on SARS-CoV-2 challenge in controls and vaccinated animals which contribute vital information on optimum 
vaccine efficacy related to evoking specific and protective immune responses against SARS-CoV-2. However, 
except for very few studies, adverse effect analysis of vaccine administration, systemic adverse effects, ADE, and 
immunopathological analysis of pulmonary tissue are lacking. Authors suggest that though immunogenicity 
forms the core of the vaccine efficacy, adverse effects validation should be an essential part of preclinical 
vaccine efficacy and safety against SARS-CoV-2. Furthermore, adopted preclinical evaluation strategies 
represent a standard set of assays and assessments which are currently state-of-the-art for COVID-19 vaccines. 
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It would make comparison among vaccine candidates easier. Most vaccine candidates are administered via 
IM route and generates SARS-CoV-2 specific humoral, mucosal, and cellular response free from anamnestic 
expansion of immunity in animals. Vaccine-induced serum antibodies and cellular subsets are directed 
towards the receptor-binding domain (RBD) of SARS-CoV-2, which is the protective immune determinant. 
ELISA-based assays and fluorescence-activated cell sorting (FACS)-based immunophenotypic profiling of 
cellular components can accurately assess the immunogenic strength/immuneprotective mechanisms of the 
vaccine candidates. Although vaccines clear replicating virus from the lungs of the infected animals, it is 
argued, these animal models do not reflect the phenotype of severe COVID-19 disease. Mild disease in such 
animals makes it difficult to predict actual effectiveness in subjects at greater risk of COVID-19 related fatality 
(aged > 60 years, immune dysfunction, and comorbidities). However, immunisations resulted in a strong 
antiviral response against the infectious challenge with SARS-CoV-2. Clinical trials for several approved 
vaccine candidates (BBIBP-CorV, BBV152, PiCoVacc, NVX-CoV2373, ChAdOX1nCoV19, Ad26-S.PP, BNT162b, 
and mRNA1273) were conducted based on the referred preclinical studies suggesting the accuracy and 
specificity of the preclinical evaluation strategies described in this review. Collectively, these studies support 
the development of COVID-19 vaccine candidates for clinical trials.
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