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Abstract
Killer immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) molecules play an 
essential role in regulating immune responses against hepatitis B virus (HBV) and hepatitis C virus (HCV) 
infections. HLA-KIRs interactions are crucial for activating and inhibiting the natural killer (NK) cell system 
through a modulation that shapes these cells to kill infected cells and release cytokines. Regulation 
underlies the anti-viral function of the NK cell and profoundly affects viral clearance, immune evasion, and 
the course of disease. Activating KIRs such as KIR2DS1 and KIR3DS1 cooperate with specific HLA ligands in 
boosting NK cell responses against the virus, thereby facilitating viral elimination. In contrast, inhibitory 
KIRs like KIR2DL1 and KIR3DL1 bind to HLA-C2 and HLA-Bw4, respectively, imposing a dampening 
influence on NK cell activation, which allows the virus to persist and progress to chronic hepatitis, cirrhosis, 
and hepatocellular carcinoma (HCC). These variations in KIRs and HLA genes will also affect an individual’s 
susceptibility to infections, disease severity, and their response to antiviral therapies. Observation of the 
role of KIRs and their interaction with HLA at the immunogenetic level provides valuable insight into host-
virus dynamics and opens up many therapeutic avenues. Targeting immunotherapies toward NK cell 
pathways and developing personalized medicine may boost antiviral immune responses and improve 
treatment outcomes in chronic viral hepatitis patients. This review recognizes HLA-KIRs interactions as 
potent biomarkers for disease progression and determining treatment strategies.

Keywords
HLA, KIRs, NK cell, viral hepatitis

https://orcid.org/0009-0001-2334-9294
https://orcid.org/0000-0003-2589-2191
https://orcid.org/0000-0002-8583-1270
https://orcid.org/0000-0001-8929-5658
mailto:gh.solgi@umsha.ac.ir
https://doi.org/10.37349/ei.2025.1003229
https://doi.org/10.37349/ei.2025.1003229
http://crossmark.crossref.org/dialog/?doi=10.37349/ei.2025.1003229&domain=pdf&date_stamp=2025-11-23


Explor Immunol. 2025;5:1003229 | https://doi.org/10.37349/ei.2025.1003229 Page 2

Introduction
Viral hepatitis

Hepatitis has been defined as an inflammatory disease of the liver tissue [1]. Several conditions lead to this 
disease, including autoimmune liver disease, excessive alcohol consumption, hepatitis B virus (HBV), and 
hepatitis C virus (HCV) [2]. Among these, HBV and HCV are recognized as the leading causes of viral 
hepatitis. HBV, which belongs to the Hepadnaviridae family, is a double-stranded DNA virus with an 
envelope. In contrast, HCV is classified under the Flaviviridae family and is an enveloped single-stranded 
RNA virus [1]. As much as a very effective vaccination is available for HBV, around 260 million people live 
with the chronic form of HBV infection, and about 1% of the world population is infected with HCV, 
confirming an enormous public health dilemma caused by these pathogens [1, 3]. Liver cirrhosis and 
hepatocellular carcinoma (HCC) are among the most common chronic diseases resulting from the 
progression of HBV and HCV infections worldwide [1, 4]. About 80% of individuals with HCV infection are 
predisposed to develop chronic liver disease, of whom up to 40% further progress to cirrhosis, and about 
3% to HCC after several decades of chronic infection [1, 4]. HBV infections present symptoms that can range 
from asymptomatic or subclinical conditions, along with acute or chronic hepatitis. Alarmingly, the yearly 
mortality resulting from complications associated with chronic HBV infection that progresses to cirrhosis 
or HCC is approximated to be 900,000 cases [1, 5].

Immunopathogenesis of viral hepatitis
The immunopathogenesis of HBV and HCV infections involves complex interactions between the viruses 
and the host immune system. In this evolving relationship, immune responses play a critical dual role: they 
are required to control viral replication, which, alternatively, may mediate liver damage [6–8]. Both HBV 
and HCV are typically considered non-cytopathic viruses, and liver inflammation, as well as the potential for 
viral clearance and recovery, result from a cooperation of innate and adaptive immune responses [9, 10]. 
Within HBV infection, most of the liver damage can be attributed to the immune response itself, with HBV 
possessing distinct limitations with regard to cytopathic effects on hepatocytes [1, 6]. Chronic activation of 
inflammatory pathways and sustained infiltration of lymphocytes into the liver can trigger fibrosis, 
cirrhosis, and ultimately HCC [1, 4, 11]. Following being infected with HCV, persistent inflammatory 
responses activated by lymphocytic infiltration into the liver and excessive production of pro-inflammatory 
cytokines further aggravate the progression of fibrosis and cirrhosis [9, 12]. The situation is further 
complicated by the release of reactive oxygen species (ROS) and inflammatory cytokines from immune 
cells, which is detrimental to liver injury. Collectively, these create a microenvironment in favor of HCC 
progression [9, 12].

Innate immunity in viral hepatitis

HBV evades innate immune recognition by inducing minimal activation of pattern recognition receptors 
(PRRs), such as Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors, thereby 
dampening type I interferon (IFN-I) and proinflammatory cytokine production and facilitating viral 
persistence [6, 8, 9, 12]. In contrast, HCV actively disrupts innate signaling by encoding proteins, such as 
NS3/4A, that degrade key mediators of the mitochondrial antiviral-signaling (MAVS) and TIR-domain-
containing adapter-inducing IFN-β (TRIF) pathways [10, 13], resulting in the suppression of IFN-I 
responses [14]. Within this immunological context, natural killer (NK) cells constitute a pivotal component 
of the host defense, contributing to viral clearance or persistence through the secretion of cytokines, 
particularly IFN-γ [12, 15] which activate hepatic Kupffer cells and CD4⁺ T lymphocytes, as well as through 
the direct cytotoxic elimination of hepatocytes in concert with cytotoxic T lymphocytes (CTLs) [15]. The 
functional outcome of NK cell activity is critically shaped by interactions between killer immunoglobulin-
like receptors (KIRs) and their human leukocyte antigen (HLA) ligands (Figure 1), which collectively 
influence the balance between protective immunity, immunopathogenesis, and therapeutic responsiveness 
in viral hepatitis; in parallel, natural cytotoxicity receptors (NCRs) further amplify NK cell activation and 
antiviral defense, while their dysregulation may contribute to hepatic injury [6, 15].
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Figure 1. Flowchart of the immune response pathways in HBVs and HCVs: the role of HLA-KIRs interactions and 
treatment outcomes. HBV: hepatitis B virus; HCV: hepatitis C virus; HLA: human leukocyte antigen; KIRs: killer 
immunoglobulin-like receptors; NK: natural killer; HCC: hepatocellular carcinoma. This figure was created with XMind.

Adaptive immunity in viral hepatitis

B cells play a central role in the immune response against HBV, via producing antibodies against hepatitis B 
surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and hepatitis B e antigen (HBeAg) [12]. HBcAg-
specific B cells are more abundant and functional, whereas HBsAg-specific B cells are fewer and less 
effective, with distinct mRNA profiles linked to antigen presentation and innate immunity [12, 16]. IL-27 
can partially restore HBsAg-specific antibody production by promoting plasmablast and plasma cell 
differentiation via B lymphocyte induced maturation protein-1 (BLIMP-1) induction [12]. Anti-HBc IgG is 
present in past, active, and occult infections, while anti-HBc IgM indicates acute infection or severe chronic 
hepatitis B (CHB) flares [12]. Early anti-HBe appearance reflects a better prognosis, but robust HBsAg-
specific humoral responses are essential for viral control. In CHB, memory B cells display elevated 
programmed cell death protein-1 (PD-1) expression; their functional capacity can be restored through PD-1 
blockade combined with IL-2, IL-21, and CD40L stimulation, underscoring the potential of targeted 
immunomodulation strategies [12, 16, 17]. T follicular helper (TFH) cell-derived IL-21 deficiency limits B 
cell responses, whereas Treg-derived IL-27 can enhance antibody production [12]. Impaired memory B cell 
maturation into anti-HBs-secreting plasma cells contributes to HBV persistence. Elevated B-cell activating 
factor (BAFF) in CHB is linked to B cell hyperactivation, cirrhosis, and HCC [12]. Although early studies 
suggested that antibodies against HCV could protect chimpanzees from homologous viral strains, their 
significance in human infection was often underestimated. Evidence indicates viral clearance in 
agammaglobulinemic patients, the presence of non-neutralizing autoantibodies (nnAbs) such as 
rheumatoid factor, and weak correlations between standard serological antibodies and infection outcomes 
[7, 18]. Active neutralizing antibodies (nAbs) primarily target hypervariable region 1 (HVR1) of E1, but 
their effectiveness is often limited by rapid viral mutation and the use of surrogate viral strains in earlier 
studies [7]. Recent work using autologous viral sequences has highlighted the critical role of early nAb 
responses in viral clearance, particularly through broadly nAbs (bnAbs) [7]. Unlike strain-specific nAbs, 
bnAbs can target multiple HCV genotypes and effectively control infection in various models [7, 19]. These 
bnAbs recognize key structural epitopes on the E1E2 envelope protein, including antigenic regions 
AR1–AR5 and the CD81 receptor binding site, as defined by alanine-scanning studies [7, 18]. Their 
importance is supported by both natural infection and vaccination studies [7]. However, the mechanisms 
underlying bnAb production in most patients remain unclear, possibly reflecting B cell deficiencies or 
suboptimal TFH support [7, 18].
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CD4⁺ T helper cells are central to the immune response, promoting the activation of CD8⁺ T cells and B 
lymphocytes [9]. Robust, multifunctional CD4⁺ T-cell responses are associated with clearance of HBV and 
HCV infections, whereas weak responses contribute to chronicity [5, 9]. CD8⁺ T cells play a critical role in 
HBV control by eliminating infected hepatocytes and secreting antiviral cytokines, including IFN-γ and 
tumor necrosis factor-α (TNF-α) [6, 15], but their overactivation can induce liver injury and fibrosis [15]. 
Similarly, HCV-specific CD8⁺ T cells are essential for viral control but often become exhausted during 
chronic infection, exhibiting upregulation of inhibitory receptors such as PD-1 and reduced effector 
functions [7, 10, 15].

The role of HLA alleles in immunopathogenesis of viral hepatitis

Antigen-specific CD8⁺ and CD4⁺ T cells are activated upon recognition of viral peptides presented by HLA 
class I and II molecules (HLA-I, HLA-II), respectively [20]. Polymorphisms within HLA genes critically shape 
both the magnitude and quality of immune responses to hepatitis infections [21]. Studies have identified 
specific HLA alleles that influence the outcomes of viral hepatitis (Table 1). For example, DRB1*13:02 and 
A*03:01 are associated with viral clearance, whereas B*08, B*44, and the DRB1*11:02~DQA1*05:01~
DQB1*03:01 haplotype predispose to CHB infection [22–24]. In the Iranian population, DRB1*03:01, 
DQA1*05:01, and DQB1*06:04 have been linked to increased susceptibility to CHB, while DRB1*15:01, 
DQB1*04:01, and DRB1*13:01 appear to be protective [25]. The implications of these associations extend 
beyond genetic predisposition, underscoring the complex interplay between viral infections and 
autoimmune responses. Notably, DRB1*13:02 has been implicated in protection against persistent HBV 
infection [26]. At the molecular level, HLA-II molecules contain nine binding pockets (P1–P9) within the 
peptide-binding groove that interact with antigenic peptides through non-covalent forces, including 
hydrogen and electrostatic bonds [27]. Importantly, DRB1*13:01 and DRB1*13:02 differ by a single amino 
acid at position β86 in pocket P9: valine in DRB1*13:01 vs. glycine in DRB1*13:02 [27, 28]. The presence of 
glycine generates a more open, less hydrophobic pocket, thereby permitting greater flexibility and diversity 
in peptide accommodation. Conversely, valine introduces bulk and hydrophobicity, narrowing the pocket 
and tightening peptide binding. These structural differences substantially influence peptide repertoires and 
the stability of HLA-peptide-T cell receptor (TCR) interactions, ultimately shaping T-cell responses. 
Specifically, DRB1*13:02 may present a broader and more immunogenic repertoire of HBV-derived 
peptides, enhance T-cell activation, and facilitate viral clearance [28]. In contrast, the restricted peptide-
presenting capacity of DRB1*13:01 may limit effective antiviral responses, thereby predisposing carriers to 
viral persistence and autoimmune sequelae such as autoimmune hepatitis (AIH) [28, 29].

Additionally, Corghi et al. [30] reported an association between the DRB1*07 allele and the chronicity 
of HCV infection in Brazilian patients. A study conducted by Ursu et al. [31] on Romanian patients indicated 
that A*23:01, B*44:02, and C*04:02 alleles are linked to an increased genetic predisposition to chronic 
hepatitis due to HCV. Furthermore, they showed that the presence of C*12:02, A*03, and A*11 alleles is 
associated with the induction of fibrosis grading F3–F4 [31]. The patterns of HLA alleles and haplotypes not 
only influence the quality of the specific immune response to HBV and HCV infections but also significantly 
affect treatment response and viral clearance (Table 1). The impact of allelic and haplotypic diversity on 
treatment outcomes in patients with chronic hepatitis C (CHC) has been well documented [32]. The study 
involving patients in Taiwan, China, found a direct relationship between the presence of A*11, B*51, Cw*15, 
and DRB1*15 alleles and a favorable response to IFN-α treatment [33]. Also, Romero-Gómez et al. [34] 
study demonstrated that the presence of the HLA-B*44 was significantly associated with a sustained 
response to IFN and ribavirin combined therapy in CHC patients.

Table 1. Impact of HLA alleles and haplotypes on HBV and HCV outcomes: a global view.

References Year Population Findings

Thio et al. [23] 1999 African American 
cohort

HLA-II alleles → pathogenesis of HBV infection

Malhotra et al. 
[22]

2001 American 
patients

DRB1*13~DQB1*06 haplotype → improved outcomes with early viral treatment
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Table 1. Impact of HLA alleles and haplotypes on HBV and HCV outcomes: a global view. (continued)

References Year Population Findings

Thio et al. [24] 2003 Caucasian 
individuals

HLA-I molecules influence the outcome of HBV infection and may provide 
insights into HBV pathogenesis

Yu et al. [33] 2003 Patients in 
Taiwan, China

A direct relationship between the presence of A*11, B*51, Cw*15, and DRB1*15 
alleles and a favorable response to IFN-α therapy 

DRB1*15~DQB1*05 haplotype was associated with response to IFN-α and 
A*11~DRB1*15 haplotype was strongly associated with sustained response

Romero-Gómez 
et al. [34]

2003 Spanish patients HLA-B*44—associated with sustained response to IFN-ribavirin in CHC patients

Corghi et al. [30] 2008 Brazilian patients An association between the DRB1*07 allele and the chronicity of HCV infection
Gauthiez et al. 
[35]

2017 -- An association between DQB1*02, DQB1*03, DRB1*04 and DRB1*11 with 
spontaneous HCV clearance

Ursu et al. [31] 2021 Romanian 
patients

Ursu et al. [31] 2021 Romanian 
patients

A*23:01, B*44:02, and C*04:02 alleles are linked to an increased genetic 
predisposition to chronic hepatitis due to HCV
The presence of C*12:02, A*03, and A*11 alleles is associated with the induction 
of fibrosis grading F3–F4

Naderi et al. [25] 2023 Iranian 
population

DRB1*03:01, DQA1*05:01, DQB1*06:04—associated with increased 
susceptibility to CHB

DRB1*15:01, DQB1*04:01, DRB1*13:01—protective against CHB
Tălăngescu et al. 
[36]

2024 Romanian 
population

Heterozygosity of HLA-DQB1 and HLA-DRB1 was significantly associated with a 
lower risk of HBV infection

CHB: chronic hepatitis B; CHC: chronic hepatitis C; HBV: hepatitis B virus; HCV: hepatitis C virus; HLA: human leukocyte 
antigen; IFN: interferon.

The regulation of HLA expression in viral hepatitis epitomizes the delicate balance between effective 
antiviral immunity and viral immune evasion. In both HBV and HCV infections, HLA-I molecules are 
frequently upregulated on hepatocytes, thereby enhancing cytotoxic T cell-mediated surveillance (Table 2), 
but concurrently increasing susceptibility to immune-mediated hepatic injury [37]. In contrast, viral 
proteins such as HBV X and the HCV core have been shown to suppress HLA-I surface expression, 
facilitating immune escape and promoting viral persistence [38]. Aberrant induction of HLA-II molecules on 
hepatocytes and cholangiocytes, cell types that normally lack such expression, has also been documented 
and may contribute to chronic inflammation and autoimmune-like manifestations [39] (Table 2). Notably, 
the extent and direction of HLA modulation appears to differ according to viral genotype, host genetic 
background, and therapeutic context, underscoring its dual role as both a mediator of protective immunity 
and a driver of immunopathogenesis [40].

Table 2. Comparative analysis of HLA expression in HBV and HCV infections.

Features HBV HCV References

HLA-I 
expression

Upregulation of hepatocytes enhances CD8+ T cell 
recognition but promotes immune-mediated liver 
injury

Consistent upregulation in hepatocytes 
supports sustained immune surveillance

[41]

Viral protein 
interference

HBV X protein downregulates HLA-I, enabling viral 
escape and persistence

HCV core, NS3, and NS5A proteins 
interfere with antigen processing, 
reducing peptide loading

[38]

Regulation 
pattern

Bidirectional: upregulation vs. suppression 
depending on stage and immune context

Predominantly upregulation with indirect 
suppression via antigen-processing 
disruption

[42]

HLA-II 
expression

Aberrant induction of hepatocytes and 
cholangiocytes, associated with chronic 
inflammation and autoimmune-like pathology

Similar aberrant induction fuels 
intrahepatic inflammation and 
autoimmune-like injury

[43]

Immune 
evasion 
strategy

Direct suppression of surface HLA expression by 
viral proteins

Disruption of antigen processing 
machinery, broader upstream 
dysregulation

[44]

Clinical 
implications

Balance between viral clearance and immune-
mediated injury; linked to fibrosis progression

Persistent immune activation but 
dampened cytotoxicity; linked to 
chronicity and HCC risk

[45]

HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HLA: human leukocyte antigen.
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The role of NK cells in viral hepatitis

NK cells are derived from the lymphoid lineage; however, unlike B and T cells, they have limited specificity, 
diversity, and memory [46]. These cells are part of the innate immune system and play crucial roles in the 
initial control of viral infections, enhancing innate immune responses, and guiding and assisting in the 
activation of acquired immunity [46, 47]. Some NK cells express the very late activation antigen-4 (VLA-4) 
molecule, allowing them to bind to vascular cell adhesion molecule-1 (VCAM-1) present on the surface of 
endothelial cells [46, 48]. This interaction plays a crucial role in facilitating the migration of NK cells to 
various tissues, including the liver, lungs, and the decidua layer of the uterus [49]. In these tissues, NK cells 
express CD69, an early activation marker expressed on the surface of various immune cells, including NK 
cells, upon activation. CD69 plays a key role in tissue residency by promoting retention of NK cells within 
specific organs, such as the liver, lungs, and decidua layer of the uterus. This expression reflects that NK 
cells are not only present in these tissues but are also functionally engaged in local immune surveillance 
and antiviral defense [49]. NK cells residing in lymphoid tissues (such as tonsils and lymph nodes), skin, 
gut, and the decidua primarily consist of NK-CD56bright cells, whereas NK-CD56dim cells are more abundant 
in the lung and liver [46, 50]. The activation or inhibition of NK cells is dependent on the balance of signals 
received from receptors on their surface. If target cells, such as HBV- or HCV-infected hepatocytes, express 
ligands that bind to the activating receptors of NK cells while displaying few or no inhibitory ligands, the NK 
cell becomes activated and triggers the death of the target cells [46, 51, 52]. This cytotoxic effect is 
mediated either through the release of perforin and granzymes, where perforin forms transmembrane 
pores allowing granzymes to enter and initiate caspase-dependent apoptosis, or via receptor-ligand 
interactions such as Fas-Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL 
receptor (TRAILR) signaling pathways, which also induce PD-1 in the infected hepatocytes [46, 51–53]. 
Conversely, if the target cells have inhibitory ligands and exhibit minimal or absent activating ligands, the 
NK cell recognizes them as healthy and refrains from mounting an attack [52]. In an effort to escape death 
by CD8+ T cells, virus-infected and cancerous hepatocytes reduce the expression of HLA-I molecules on 
their surface [47]. In such situations, these cells become more susceptible to killing by NK cells, as the 
presence of HLA-I molecules serves as an indicator of the target cell’s health [52]. The differentiation 
between healthy and abnormal cells (recognition of missing self-cells, RMSCs) by NK cells is recognized as 
immune surveillance, which plays a critical role in the immune response to virus-infected and neoplastic 
hepatocytes [54, 55]. In addition to signaling through NK cell surface receptors, cytokines such as IL-12, IL-
15, IL-18, and IFN-I produced by dendritic cells and macrophages bind to their receptors on NK cells, 
thereby promoting their growth and activation [55]. Upon activation, NK cells induce the death of virus-
infected and cancerous hepatocytes through the exocytosis of granules containing perforin and granzymes 
[56]. Furthermore, NK cells contribute to the immune response by secreting IFN-γ, which activates 
macrophages and aids in the differentiation of Th cells and naive CTLs into Th1 cells and effector CTLs.

NK cell receptors
There are two groups of receptors on the surface of NK cells; some provide activating signals [NKG2C/E/D, 
NKP30/44/46, leukocyte immunoglobulin-like receptor (LILR) A1/2/4/5/6, KIR2DS1/2, KIR3DS1], while 
others deliver inhibitory signals (NKG2A/B, LILRA3, LILRB1–5, KIR2DL1/2/3, KIR3DL1) [48, 57]. The net 
outcome of signals received from these receptors determines the activation fate of NK cells.

NK group 2 (NKG2) receptors

NKG2 receptors, members of the C-type lectin family, are expressed on NK cells and CD8⁺ T cells and 
mediate both activating and inhibitory signals depending on the receptor subtype [57–62]. NKG2A/CD94 
and NKG2B/CD94 heterodimers are inhibitory, whereas other NKG2 receptors, including the NKG2D 
homodimer, are activating [57–62]. NKG2A–C and NKG2E recognize HLA-E, whose binding affinity varies 
by receptor, allowing it to function as both an inhibitory and activating ligand [57, 63]. HLA-E presents 
hydrophobic leader peptides from classical HLA-I molecules, and its two major alleles, HLA-E*01:01 and 
HLA-E*01:03, differ at codon 107, affecting membrane expression and peptide presentation [64–66]. HLA-
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E*01:01 has been linked to increased HBV susceptibility [67], while the HLA-E*01:03 G/G genotype may 
confer protection by presenting virus-derived peptides to NK cells, enhancing lysis of infected hepatocytes 
[66, 68–70]. Elevated soluble HLA-E (sHLA-E) in CHB patients contributes to immune tolerance, inversely 
correlating with HBV DNA levels and modulating the timing of antiviral responses [66]. NKG2D recognizes 
stress-inducible HLA-I-like molecules, such as MHC class I polypeptide-related sequence A/B (MICA, MICB) 
and UL16-binding protein (ULBP). In CHB, exogenous HBsAg upregulates NKG2D on NK cells, promoting 
antiviral activity against HCV in co-infected patients [60]. MICA polymorphisms further modulate viral 
outcomes; MICA*015 is associated with enhanced HCV clearance but increased CHB susceptibility [71], 
while the promoter single nucleotide polymorphism (SNP) rs2596542 (TT genotype) confers higher HCC 
risk in HBV/HCV infection, likely via altered NKG2D binding and immune activation [71]. Collectively, these 
findings underscore the crucial role of NKG2-HLA interactions in shaping antiviral immunity, viral 
persistence, and disease progression in chronic hepatitis.

NCRs receptors

NCRs, including NKp30, NKp44, and NKp46, contribute to the cytotoxicity of NK cells [72]. NCRs mediate 
direct recognition of pathogen-associated ligands or stress-induced cellular alterations. Beyond this 
receptor-ligand interaction, the repertoire of peptides derived from viruses or infected cells [73], together 
with polymorphism in HLA-I molecules, most notably HLA-C, and the inherited distribution of activating 
and inhibitory KIR genes, critically determine the threshold and magnitude of NK cell responses [74]. 
NKp30 and NKp46 are constitutively expressed, whereas NKp44 is induced following cytokine stimulation 
[75]. In viral hepatitis, NKp44 demonstrates a dual functionality; upon engagement with stress-induced or 
viral ligands on hepatocytes, it amplifies NK cell cytotoxicity and cytokine secretion, yet in certain contexts 
it transmits inhibitory signals that dampen NK activity [75–77]. This bidirectional capacity positions NKp44 
as a pivotal immunoregulatory checkpoint, orchestrating the balance between effective antiviral defense 
and the risk of immune-mediated liver injury, thereby influencing disease persistence and progression. 
NKp46, together with NKG2D, drives cytotoxicity in resting NK cells and is highly expressed on both NK 
cells and HBV-infected hepatocytes, facilitating viral clearance [62, 77]. Notably, an NKp46highNKG2Ahigh 
subset exhibits strong cytotoxicity but reduced IFN-γ production, correlating with liver injury, HBV 
replication, and elevated serum alanine transaminase (ALT) and HBV DNA [62]. In the context of CHB 
infection, NKp30 expression is markedly diminished and exhibits an inverse correlation with viral load, 
underscoring its contribution to antiviral immune surveillance and the containment of viral replication. In 
contrast, studies in HCV infection have paradoxically associated reduced NKp30 expression with 
spontaneous viral clearance, suggesting that the immunoregulatory consequences of NCR downregulation 
are pathogen-specific and context-dependent [78–80]. Furthermore, studies indicate that sex hormones 
exert additional modulatory effects on NKp30 expression, with consistently higher levels observed in 
males, cyclical fluctuations reported across the female menstrual cycle, and significant therapy-induced 
downregulation documented in female patients receiving antiviral treatment [81, 82]. Collectively, these 
observations highlight the intricate interplay between viral context, host sex-specific biology, and 
therapeutic interventions in shaping the functional impact of NCR expression on disease trajectory.

LILR receptors

LILRs are NK cell receptors that primarily interact with non-classical HLA-I molecules [83]. Encoded within 
the leukocyte receptor cluster (LRC) on chromosome 19, this family comprises 11 members, each 
containing two to four extracellular immunoglobulin-like domains with either inhibitory or activating 
functions [84, 85]. The inhibitory receptors LILRB1–5 and activating receptors LILRA1–6 (except LILRA3) 
play distinct roles in modulating NK cell activity [84, 85]. LILRB1, with four immunoglobulin-like domains, 
engages a broad spectrum of ligands, including HLA molecules and UL18, a cytomegalovirus HLA-I homolog 
[86], whereas LILRB2 selectively binds HLA-G alongside classical and non-classical HLA-I molecules [83, 
86]. Functionally, Zhang et al. [87] reported that LILRB1 expression is markedly elevated in circulating 
CD56dimCD16bright NK cells from patients with active hepatitis compared to inactive carriers and healthy 
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controls. This upregulation impairs NK cell functionality and promotes apoptosis, suggesting a critical role 
for LILRB1-mediated inhibition in the pathogenesis of CHB [87].

KIR receptors

The most important receptors on NK cells are the KIRs, which can deliver either activating or inhibitory 
signals [52] (Figure 2). These receptors can be broadly categorized as either inhibitory or activating, 
depending on the structural configuration of their intracellular domains. Inhibitory KIRs contain long 
cytoplasmic tails (KIR**L*) harboring immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which 
recruit phosphatases to dampen NK cell activation. In contrast, activating KIRs are defined by short 
cytoplasmic tails (KIR**S*) that lack signaling capacity on their own but associate with adaptor molecules 
bearing immunoreceptor tyrosine-based activation motifs (ITAMs) to initiate downstream activating 
pathways [88]. KIRs are encoded by the LRC region on chromosome 19 [89, 90]. Similar to HLA genes, KIRs 
are highly polymorphic, with allele distributions varying across populations and ethnic groups, and are 
inherited as two haplotypes, A and B [89, 90]. Haplotype A primarily contains genes encoding inhibitory 
receptors, and haplotype B predominantly consists of genes encoding activating receptors [90] (Figure 2). 
Polymorphism in KIRs, such as KIR2DL2 variants, influences the binding affinities of the receptors to their 
ligands, which affects the activation or inhibition of NK cells. Hence, inheritance of different KIR genes could 
contribute to an increased or decreased susceptibility to autoimmune diseases and assist in the clearance of 
hepatitis viruses [89, 91, 92]. KIRs interact with classical and non-classical HLA-I molecules through their 
extracellular immunoglobulin-like domains, thus regulating the activation or inhibition of NK cells [93, 94]. 
The most principal ligands for KIR receptors are classified into four groups according to the amino acid 
sequence of the KIR-binding epitopes in HLA molecules, as curated in the IPD-IMGT/HLA database 
(https://www.ebi.ac.uk/ipd/imgt/hla); 1. C1 alleles group (C*01, C*03, C*07, C*08, C*12, C*14 and C*16), 2. 
C2 alleles group (C*02, C*04, C*05, C*06, C*15, C*17 and C*18). 3. Bw4 alleles group (B*13, B*27, B*37, B*38, 
B*39, B*40, B*41, B*42, B*44, B*45, B*47, B*48, B*49, B*51, B*52, B*53, B*57, B*58, B*59). 4. Bw6 alleles 
group (B*07, B*08, B*15, B*18, B*35, B*40, B*42, B*44, B*46, B*47, B*48, B*50, B*54, B*55, B*56, B*62, B*63, 
B*67, B*73, B*78, B*81).

The genetic organization of KIRs into A and B haplotypes has profound implications for the immune 
response against viral infections. Lu et al. [95] demonstrated that in patients with HBV infection, the 
frequency of haplotype A, which is largely inhibitory in composition, is reduced, while haplotype B, which 
carries a greater number of activating receptors, is increased relative to healthy individuals. This skewing 
suggests that haplotype B may provide a selective advantage in the context of HBV infection by promoting 
more robust NK cell activation and antiviral responses, whereas haplotype A may be less effective due to its 
inhibitory bias. Also, Ursu et al. [31, 96] further implicated that multiple KIR alleles (KIR2DL3, KIR2DL5, 
KIR3DL3, KIR2DP1, KIR3DP1, KIR2DS4) are associated with CHC susceptibility, and the presence of KIR2DL2 
is related to elevated post-treatment aspartate transferase (AST) and bilirubin levels. Such observations 
underscore the importance of KIR haplotypic and allelic diversity in shaping host susceptibility or 
resistance to viral pathogens.

Structural studies have identified key amino acid residues that govern HLA-KIR interactions. Residues 
80 of the HLA molecule and residue 44 of KIRs are critical contact points, mediating recognition through 
hydrogen and ionic bonds [94] (Figure 3). Beyond these conserved contacts, fine specificity is determined 
by subtle variations within KIRs. Yang et al. [97] demonstrated that a single amino acid substitution at 
position 45 distinguishes activating from inhibitory receptors: tyrosine (Tyr45) in the activating KIR2DS2 
vs. phenylalanine (Phe45) in inhibitory KIRs. This structural difference alters binding geometry and affinity, 
thereby defining distinct interaction models. Moreover, KIR2DS2 recognition extends beyond the HLA-C 
framework to the bound peptide itself; in particular, interaction with the threonine residue at position P8 of 
the peptide is essential for stable binding. These findings highlight that KIR2DS2 specificity is shaped not 
only by the HLA-C allotype but also by the peptide repertoire it presents, underscoring the peptide-
dependent nature of HLA-KIR interactions [97].

https://www.ebi.ac.uk/ipd/imgt/hla
https://www.ebi.ac.uk/ipd/imgt/hla
https://www.ebi.ac.uk/ipd/imgt/hla


Explor Immunol. 2025;5:1003229 | https://doi.org/10.37349/ei.2025.1003229 Page 9

Figure 2. Composition of inhibitory and activating receptors on the surface of NK cells and their specific ligands on the 
surface of target cells. Also, the bottom of the figure illustrates the chromosomal arrangement of the leukocyte receptor cluster 
(LRC) on chromosome 19, with centromeric and telomeric regions labeled. Key polymorphic sites and gene content variations 
are highlighted, demonstrating how haplotype inheritance influences NK cell activation thresholds, susceptibility to viral hepatitis, 
and disease outcomes. NK: natural killer.

The peptide dependence of KIR2DS2 recognition illustrates a level of specificity that parallels TCR-
peptide-HLA interactions, indicating that NK cell receptors, though innate in nature, can also exhibit highly 
refined selectivity. Indeed, the preference of KIR2DS2 for peptides containing an “AT” motif at positions P7 
and P8 suggests that NK cells may have evolved to recognize conserved viral peptide sequences that are 
less likely to undergo immune escape mutations. One striking example is the HCV-derived nonstructural 
peptide LNPSVAATL, presented by HLA-C*01:02, which contains the conserved “AT” motif and has been 
validated as a ligand for KIR2DS2 [78]. Such findings not only deepen our understanding of peptide-specific 
KIR recognition but also emphasize the role of NK cells in directly sensing viral antigens in a manner once 
thought to be exclusive to adaptive immunity. The broader implications of these findings are considerable. 
First, they suggest that certain activating KIRs, such as KIR2DS2, may contribute to differential outcomes in 
viral hepatitis through peptide-dependent mechanisms that modulate NK cell activation thresholds. Second, 
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Figure 3. Schematic representation of polymorphic interactions between KIRs and HLA-I molecules. The critical residues 
identified are KIRs position 44 and HLA-I position 80, which govern specificity, alongside KIRs position 245, which exerts an 
influence on the strength of inhibitory signaling. HLA: human leukocyte antigen; KIRs: killer immunoglobulin-like receptors.

the identification of conserved recognition motifs raises the possibility of harnessing such sequences as 
biomarkers or therapeutic targets. For example, peptides bearing the “AT” motif could serve as prototypes 
for the development of NK cell-based vaccines or immunotherapies designed to enhance antiviral 
responses. Finally, these studies reinforce the concept that the evolutionary balance between activating and 
inhibitory KIRs reflects selective pressures exerted by pathogens such as HBV and HCV, with haplotypic 
variation and peptide-level recognition working in concert to shape disease susceptibility and progression.

The role of HLA-KIRs combinations in clearance or chronicity of viral 
hepatitis and HCC
The interplay between KIRs and HLA molecules is increasingly recognized as a critical determinant of NK 
cell-mediated immunity in viral hepatitis, influencing not only infection clearance but also disease 
progression to cirrhosis and HCC. The differential binding affinities, expression patterns, and functional 
capacities of these receptors shape NK cell activation thresholds and downstream effector functions, 
including cytotoxicity and cytokine secretion [74].

Protective and susceptibility effects of HLA-KIR combinations

HLA-KIR interactions critically shape NK cell responses in chronic viral hepatitis, yet their effects diverge 
across receptor-ligand combinations and disease contexts. In HBV, KIR2DL3/HLA-C1 homozygosity confers 
protection by enabling NK activation through weak inhibitory signaling [98], whereas KIR2DL1/HLA-C2 
combinations deliver stronger inhibition and increase susceptibility. Similarly, HLA-Bw4 allelic subtypes 
influence KIR3DL1-mediated inhibition: HLA-Bw4 80 isoleucine (80I) binds with higher affinity than HLA-
Bw4 80 threonine (80T), intensifying NK suppression and elevating HCC risk [99]. Genetic profiles 
including HLA-C1 homozygosity, HLA-Bw4 (80I), and KIR2DS4/1D expression have all been associated 
with heightened HCC risk post-hepatitis [100] (Table 3).

Population-specific studies further highlight this heterogeneity. In Spanish men with alcoholic 
cirrhosis, KIR2DL2/HLA-C2C2 modulated susceptibility to viral hepatitis [101]. In the Japanese HBV cohort, 
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KIR2DS3 was associated with HBV-related HCC despite no overall HLA-KIR link to cirrhosis [102]. Other 
studies showed HLA-A (Bw4 group) and HLA-C2 increased HBV persistence, whereas KIR2DL3 was 
protective [103]. In Bulgarian patients, reduced frequencies of KIR2DL5B and HLA-Bw4 (80I) were seen in 
self-limiting HBV, while KIR3DL1*004 predisposed to chronicity [104]. Iranian cohorts instead revealed 
enrichment of KIR2DL5A, KIR2DS1, and KIR3DS1, along with protective KIR3DS1/HLA-Bw4 and 
KIR3DS1/HLA-A-Bw4 combinations in recovered cases, suggesting population-dependent drivers of 
clearance [105].

In contrast, in HCV, KIR2DL2/HLA-C1 and KIR2DL3/HLA-C1 combinations confer protection while 
KIR2DS4 favors chronic infection [106]. Protective effect of KIR2DL3/HLA-C1 combination is lost in HIV co-
infection, likely due to NK dysfunction [107]. Additionally, the presence of KIR2DS2/KIR2DL2 has been 
associated with a predisposition to lymphoproliferative disorders, KIR2DS3 carriage with disease 
progression, and the KIR3DL1/HLA-Bw6 combination with increased lymphoma susceptibility; in contrast, 
the presence of the KIR3DS1/HLA-Bw4 combination may confer protection against HCC [108]. In Japanese 
cohorts, KIR3DL1/Bw4 correlated with HCC progression [109], and post direct-acting antivirals (DAAs) 
treatment, inhibitory KIR2DL1/HLA-C2 and KIR3DL1/HLA-Bw4 combinations signaling predicted higher 
HCC risk [110]. These contrasting outcomes between HBV and HCV underscore that identical HLA-KIR pairs 
can exert either protective or pathogenic effects, depending on the viral context. Factors such as the 
repertoire and binding affinity of viral peptides presented by HLA molecules, which in turn modulate HLA-
KIR recognition, critically shape the balance between NK cell activation and inhibition. Within this 
framework, KIR2DS3 represents a paradoxical activating receptor whose unique functional attributes defy 
conventional paradigms of NK cell biology, thereby warranting focused consideration in the context of viral 
persistence.

KIR2DS3: a paradoxical activating receptor in viral persistence

KIR2DS3, an activating receptor with atypical functional properties, has emerged as a key immunogenetic 
marker of impaired NK cell-mediated viral control. While classified as activating, KIR2DS3 exhibits low cell 
surface expression and suboptimal signaling efficiency, potentially retained intracellularly, which limits its 
ability to elicit effective NK responses [111, 112]. This atypical behavior may create an “immune decoy” 
effect, where the presence of the receptor genetically does not translate into functional activation, tipping 
the balance toward inhibitory HLA-KIR interactions and enabling viral persistence.

Clinical studies corroborate this functional paradox. In Chinese HBeAg-positive HBV patients, KIR2DS3 
carriage is associated with reduced virological response to entecavir therapy, suggesting that impaired NK 
activation undermines antiviral treatment efficacy [113]. Studies on Europeans with HCV demonstrated 
that KIR2DS3 is a major risk allele for failure of spontaneous viral clearance, favoring chronic infection and 
accelerated disease progression [35, 114]. Argentine cohorts further demonstrated that KIR2DS3-positive 
patients exhibit altered NK receptor expression and clinical phenotypes consistent with weakened immune 
control [115]. Mechanistically, KIR2DS3 may compete with other activating or inhibitory KIRs for HLA-C 
ligands, thereby dampening NK cell cytotoxicity and cytokine secretion (e.g., IFN-γ, TNF-α), reducing 
antiviral efficacy, and fostering a tolerogenic hepatic environment conducive to chronic inflammation, 
cirrhosis, and oncogenesis [116].

HLA-KIR interactions and spontaneous viral clearance

In HBV, KIR3DS1 carriers in Gambian populations are HBeAg-positive with higher viral loads, whereas 
homozygosity for telomeric haplotype A KIRs is associated with lower viral load and improved HBsAg 
clearance [117]. Correlations between KIR3DL1/HLA-Bw4 and nucleot(s)ide therapy response [102], as 
well as KIR3DS1/HLA-B (Bw4-80Ile group) and favorable IFN-α therapy outcomes in Chinese HBeAg-
positive CHB patients, further emphasize the translational relevance of these interactions [116] (Table 3). 
In HCV, KIR2DL3 and KIR2DS4 predict positive IFN-α responses, whereas KIR2DL5 is associated with 
suboptimal treatment outcomes [118, 119].
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The likelihood of spontaneous viral clearance in HCV infection is significantly influenced by HLA-KIR 
interactions. KIR2DL3/HLA-C1 is consistently associated with spontaneous clearance in transfusion- or 
high-risk-acquired HCV infections [118]. In HCV/HIV co-infection, HLA-C2C2 signaling through KIR2DL1 
enhances NK-mediated viral clearance [120]. Chronic HCV patients exhibit reduced NK cells expressing 
KIR2DS1 and KIR2DL2, whereas recovered individuals show higher frequencies of T cells expressing 
KIR2DL2/L3/S2, indicating a coordinated role of NK and T cell KIR expression in viral resolution [120].

Table 3. Impact of HLA-KIR combinations on HBV and HCV outcomes: a global perspective.

References Year Population Findings

Lu et al. [95] 2008 CHB Chinese 
patients

Lower and higher frequencies of A and B haplotypes in patients with HBV, 
respectively

Gao et al. [98] 2010 HBV Chinese patients The homozygosity of KIR2DL3/HLA-C1 has a protective role against HBV
Pan et al. [100] 2011 HBV Chinese patients Increased risk of developing HCC following viral hepatitis through 

homozygous genotype for HLA-C group 1, HLA-Bw480I, and a combined 
pattern of KIR2DS4/1D

Moralès et al. 
[99]

2012 - HLA-Bw480I allele inhibits NK cells more effectively than HLA-Bw480T via 
stronger binding affinity for KIR3DL1

De Re et al. 
[108]

2015 CHC Italian patients The KIR2DS3 gene is related to the progression of HCV-related liver disease

Buchanan et al. 
[114]

2015 -- KIR2DS3 promotes chronic infection and rapid progression

Di Bona et al. 
[103]

2017 CHB Italian patients KIR2DL3 is protective in controlling HBV infection

Shah-Hosseini et 
al. [105]

2017 HBV Iranian patients Recovered individuals had higher frequencies of KIR2DL5A, KIR2DS1, 
KIR3DS1 alleles, and specific KIR3DS1 genotypes

Yindom et al. 
[117]

2017 Gambian HCC and 
Cirrhosis patients

Patients with HBV carrying the KIR3DS1 allele are HBe antigen-positive and 
exhibit high viral loads

Li et al. [116] 2017 CHB Chinese 
patients

A direct relationship between the KIR3DS1/HLA-BBw4-80Ile gene 
combination and favorable response to IFN-α therapy

Podhorzer et al. 
[115]

2017 Argentine HCV 
cohorts

NK receptor alterations accompany KIR2DS3 positivity

Zhuang et al. 
[113]

2018 Chinese HBeAg-
positive cohorts

KIR2DS3 carriage reduced entecavir response; impaired NK activation 
reduces antiviral efficacy

Djigma et al. 
[121]

2020 West African Cohort 
(Burkina Faso)

A and B KIR haplotypes were associated with protection against HBV chronic 
infection evolution to cirrhosis and/or HCC

Auer et al. [106] 2020 HBV Vietnamese 
patients

KIR2DS4 allele is linked to chronic infection, whereas the combinations 
KIR2DL2/HLA-C1 and KIR2DL3/HLA-C1 lower the risk of CHB

Ursu et al. [96] 2020 CHC Romanian 
patients

Associations between the KIR2DL3, KIR2DL5, KIR3DL3, KIR2DP1, 
KIR3DP1, and KIR2DS4 norm allele and an increased genetic predisposition 
to CHC

Joshita et al. 
[102]

2021 HBV Japanese 
patients

A direct association between the presence of the KIR2DS3 allele and HBV-
related HCC

Varbanova et al. 
[104]

2021 HBV Bulgarian 
patients

A direct association between the presence of the KIR3DL1*004 allele and the 
development of CHB

Umemura et al. 
[109]

2021 HCV cirrhotic 
Japanese patients

KIR3DL1/HLA-Bw4 combination correlates with the progression of disease to 
HCC

Ursu et al. [31] 2021 CHC Romanian 
patients

Elevated AST, ALT, and GGT levels in patients with the KIR2DL2/KIR2DL2-
C1C1 genotype

Legaz et al. 
[101]

2024 Spanish man with 
alcoholic cirrhosis

The KIR2DL2/C2C2 combination plays a role in determining the genetic 
susceptibility of patients with alcoholic cirrhosis to viral hepatitis infections

Ryan et al. [110] 2024 HCV American 
patients

KIR2DL1/HLA-C2 and KIR3DL1/Bw4 combinations are associated with an 
increased risk of HCC

Martín-Sierra et 
al. [122]

2024 HCV Spanish patients No association found between HLA-KIR combinations and seroconversion 
following virus exposure in patients with HCV

ALT: alanine transaminase; AST: aspartate transferase; CHB: chronic hepatitis B; CHC: chronic hepatitis C; HBeAg: hepatitis B 
e antigen; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HLA: human leukocyte antigen; IFN: 
interferon; KIR: killer immunoglobulin-like receptor; NK: natural killer; GGT: gamma-glutamyl transferase.
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HLA-KIRs contribute to NK cell activation in viral hepatitis

In CHB and CHC infections, NK cells play a paradoxical role, contributing both to viral control and to liver 
pathology (Figure 4). Activated NK cells upregulate cytotoxic receptors, enabling lysis of infected 
hepatocytes and, importantly, apoptosis of hepatic stellate cells (HSCs), thereby limiting fibrosis 
progression [9, 12, 54]. However, their effector functions are finely tuned by the balance between activating 
and inhibitory HLA-KIR combinations [52]. Strong inhibitory signaling, mediated through KIR2DL1/HLA-C2 
and KIR3DL1/HLA-Bw4, dampens cytotoxicity and IFN-γ release [48], facilitating viral persistence, NK 
exhaustion, and fibrogenesis [54]. Over time, persistent engagement of high-affinity inhibitory pathways 
drives immune tolerance, impaired surveillance, and heightened risk of cirrhosis and HCC [104, 110]. 
Conversely, weaker inhibitory interactions such as KIR2DL3/HLA-C1 provide only limited suppression, 
enabling sustained NK activity and favoring spontaneous HCV clearance [104]. Individuals carrying this 
genotype often exhibit stronger antiviral potential and reduced chronicity compared with those with high-
affinity inhibitory HLA-KIR combinations [91]. In parallel, activating KIRs, including KIR2DS1 and KIR3DS1, 
recognize HLA-C2 and HLA-Bw4 ligands to potentiate cytotoxicity and IFN-γ production [52]. These high-
affinity activating interactions promote viral clearance and support adaptive immunity, although excessive 
NK activation may exacerbate hepatocyte injury and inflammation. Overall, NK cell function in viral 
hepatitis reflects the delicate balance of HLA-KIR signaling. High-affinity inhibitory interactions foster viral 
persistence, fibrosis, and HCC risk, whereas low-affinity inhibitory or strong activating combinations favor 
viral clearance and limit disease progression. Thus, HLA-KIR combinations serve as critical immunogenetic 
determinants of NK cell functional thresholds, disease outcome, and responsiveness to therapy (Figure 4).

NK cell modulation by IFN-γ and antiviral therapies
NK cells are central to innate defense against viral hepatitis, exerting antiviral activity through direct lysis 
of infected hepatocytes and secretion of cytokines such as IFN-γ. Exogenous IFN-γ mediates pleiotropic 
antiviral effects by upregulating HLA-I for improved antigen presentation to cytotoxic T cells, activating 
macrophages and dendritic cells, and inducing IFN-stimulated genes (ISG) expression to restrict viral 
replication [123, 124]. Despite the proven efficacy of nucleos(t)ide analogs and DAAs in suppressing HBV 
and HCV replication, these agents rarely restore NK cell function in chronic infection [110]. In contrast, IFN-
based regimens, particularly pegylated IFN-α (Peg-IFN-α), enhance NK activity by upregulating activating 
receptors (e.g., NKG2D, NKp30, NKp46), promoting degranulation, and partially reversing NK cell 
exhaustion [56, 77]. Patients harboring favorable activating HLA-KIR combinations (e.g., KIR2DS1/HLA-C2 
or KIR3DS1/HLA-Bw4) demonstrate stronger IFN-γ responses and improved outcomes under IFN-α-based 
therapies, whereas individuals dominated by inhibitory HLA-KIR profiles exhibit impaired NK function, 
poor viral clearance, and accelerated fibrosis progression [116]. Notably, IFN-γ also mitigates inhibitory 
checkpoint pathways such as PD-1 and NKG2A, further amplifying NK effector responses [17, 61].

Building on these insights, novel immunotherapies are being designed to directly reprogram NK cell 
responses by targeting the HLA-KIR axis [125]. The most advanced strategy involves KIR-blocking 
antibodies [126]. The fully human anti-KIR2DL1/2DL2/2DL3 antibody lirilumab (IPH2102/BMS-986015) 
has demonstrated safety and durable disruption of inhibitory signaling in early-phase oncology trials [127]. 
While primarily tested in hematologic malignancies, preclinical data suggest that KIR blockade can restore 
NK cytotoxicity against HBV- and HCV-infected hepatocytes, particularly when combined with DAAs or 
checkpoint inhibitors. Combination approaches offer additional translational promise [127]. KIR blockade 
synergizes with anti-NKG2A antibodies (e.g., monalizumab), targeting parallel inhibitory pathways, and 
may be further enhanced by PD-1/PD-L1 inhibitors, already approved for HBV-related HCC, by reversing 
NK and T cell exhaustion [128].

Adoptive NK cell transfer provides another platform for KIR modulation. Donor NK cells can be 
selected or engineered for HLA-KIR mismatch to maximize antiviral alloreactivity [129]. Advances in 
genetic editing, particularly CRISPR/Cas9, enable deletion of inhibitory KIRs or introduction of activating 
alleles (e.g., KIR2DS1, KIR3DS1), reprogramming NK cells toward sustained antiviral and antitumor activity. 
Early studies have confirmed the feasibility of multiplex CRISPR editing in primary NK cells, offering proof-
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Figure 4. Immune responses in hepatitis B and C virus infections: key mechanisms and HLA-KIR interactions driving 
viral clearance, chronic infection, and progression to hepatocellular carcinoma. Key HLA-KIR interactions are depicted, 
with inhibitory pairs (e.g., KIR2DL1/HLA-C2, KIR3DL1/HLA-Bw4) shown in red, promoting viral persistence, exhaustion, and 
fibrosis, while activating or low-affinity inhibitory pairs (e.g., KIR2DL3/HLA-C1, KIR2DS1/HLA-C2) in green favor NK cell 
cytotoxicity, IFN-γ production, and clearance. The diagram includes pathways for NK cell-mediated lysis of infected hepatocytes 
and HSCs, cytokine modulation (e.g., IFN-γ enhancing adaptive immunity), and the paradoxical role of NK cells in both antiviral 
defense and liver pathology. HLA: human leukocyte antigen; HSCs: hepatic stellate cells; IFN-γ: interferon gamma; KIR: killer 
immunoglobulin-like receptor; NK: natural killer.

of-concept for application in viral hepatitis and related cancers [129]. Additionally, chimeric antigen 
receptor (CAR)-NK cells represent a rapidly advancing modality in which inhibitory KIRs can be knocked 
out to prevent host HLA-mediated suppression, while engineered CAR constructs direct NK activity toward 
viral or tumor targets [130]. Dual-modified CAR-NK cells are already under investigation in hematologic 
malignancies and may be adapted for HBV- or HCV-driven HCC [125, 130].

Collectively, these emerging approaches underscore that direct modulation of HLA-KIR interactions, 
via blocking antibodies, adoptive transfer, genetic engineering, or CAR platforms, may overcome one of the 
central immune bottlenecks in CHB and CHC. By restoring NK effector function, these interventions hold the 
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potential not only to improve viral control but also to reduce progression to HCC. Future directions should 
emphasize integration of KIR-targeted therapies with antiviral and checkpoint-based regimens, guided by 
biomarker-driven patient selection, to fully exploit the therapeutic potential of NK cells in viral hepatitis.

Conclusions
In conclusion, this review highlights the essential function of interactions between HLA and KIRs in 
influencing the immune responses of NK cells against infections caused by HBV and HCV. The presence of 
activating KIRs, such as KIR2DS1 and KIR3DS1, alongside certain HLA ligands, promotes the cytotoxic 
activity of NK cells and enhances the production of cytokines, thereby facilitating viral elimination and 
favorable treatment results. In contrast, inhibitory KIRs, including KIR2DL1 and KIR3DL1, by binding with 
high affinity to HLA-C2 and HLA-Bw4 epitopes, reduce NK cell activation, which contributes to the 
persistence of the virus, chronic inflammation, fibrosis, cirrhosis, and the advancement to HCC. Genetic 
differences in KIR haplotypes and HLA alleles that are specific to populations further affect the likelihood of 
disease occurrence, severity, and response to treatment, emphasizing the immunogenetic variances that 
govern the interactions between the host and virus.

These findings present combinations of HLA and KIRs as potential biomarkers for anticipating disease 
progression, spontaneous viral clearance, and the effectiveness of antiviral treatments. From a therapeutic 
perspective, focusing on the HLA-KIR interaction through strategies such as KIR-blocking antibodies, 
adoptive transfers of NK cells, genetic modifications, or combination immunotherapy provides new paths to 
restore NK cell functionality, counteract immune fatigue, and enhance outcomes in chronic viral hepatitis. 
Future investigations should emphasize longitudinal studies across varied populations to confirm these 
relationships, clarify peptide-specific mechanisms, and further develop personalized medical approaches, 
thereby ultimately alleviating the global impact of liver diseases associated with HBV and HCV.
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