Exploration of Immunology

Open Access Review

HLA-KIRs interactions in modulating natural killer cell responses against viral hepatitis: a concise review

Ata Shirizadeh^{1,2,3}, Amir Mohammad Zargar⁴, Tohid Kazemi^{2,3}, Ghasem Solgi^{5,6*}

*Correspondence: Ghasem Solgi, Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Hamadan 6517838736, Iran. gh.solgi@umsha.ac.ir

Academic Editor: Apostolos P. Georgopoulos, Minneapolis Veterans Affairs Medical Center, USA **Received:** March 16, 2025 **Accepted:** October 20, 2025 **Published:** November 23, 2025

Cite this article: Shirizadeh A, Zargar AM, Kazemi T, Solgi G. HLA-KIRs interactions in modulating natural killer cell responses against viral hepatitis: a concise review. Explor Immunol. 2025;5:1003229. https://doi.org/10.37349/ei.2025. 1003229

Abstract

Killer immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) molecules play an essential role in regulating immune responses against hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. HLA-KIRs interactions are crucial for activating and inhibiting the natural killer (NK) cell system through a modulation that shapes these cells to kill infected cells and release cytokines. Regulation underlies the anti-viral function of the NK cell and profoundly affects viral clearance, immune evasion, and the course of disease. Activating KIRs such as KIR2DS1 and KIR3DS1 cooperate with specific HLA ligands in boosting NK cell responses against the virus, thereby facilitating viral elimination. In contrast, inhibitory KIRs like KIR2DL1 and KIR3DL1 bind to HLA-C2 and HLA-Bw4, respectively, imposing a dampening influence on NK cell activation, which allows the virus to persist and progress to chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). These variations in KIRs and HLA genes will also affect an individual's susceptibility to infections, disease severity, and their response to antiviral therapies. Observation of the role of KIRs and their interaction with HLA at the immunogenetic level provides valuable insight into hostvirus dynamics and opens up many therapeutic avenues. Targeting immunotherapies toward NK cell pathways and developing personalized medicine may boost antiviral immune responses and improve treatment outcomes in chronic viral hepatitis patients. This review recognizes HLA-KIRs interactions as potent biomarkers for disease progression and determining treatment strategies.

Keywords

HLA, KIRs, NK cell, viral hepatitis

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

¹Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran

²Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran

³Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran

⁴Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran

⁵Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran

⁶Cancer Research Center, Institute of Cancer, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran

Introduction

Viral hepatitis

Hepatitis has been defined as an inflammatory disease of the liver tissue [1]. Several conditions lead to this disease, including autoimmune liver disease, excessive alcohol consumption, hepatitis B virus (HBV), and hepatitis C virus (HCV) [2]. Among these, HBV and HCV are recognized as the leading causes of viral hepatitis. HBV, which belongs to the Hepadnaviridae family, is a double-stranded DNA virus with an envelope. In contrast, HCV is classified under the Flaviviridae family and is an enveloped single-stranded RNA virus [1]. As much as a very effective vaccination is available for HBV, around 260 million people live with the chronic form of HBV infection, and about 1% of the world population is infected with HCV, confirming an enormous public health dilemma caused by these pathogens [1, 3]. Liver cirrhosis and hepatocellular carcinoma (HCC) are among the most common chronic diseases resulting from the progression of HBV and HCV infections worldwide [1, 4]. About 80% of individuals with HCV infection are predisposed to develop chronic liver disease, of whom up to 40% further progress to cirrhosis, and about 3% to HCC after several decades of chronic infection [1, 4]. HBV infections present symptoms that can range from asymptomatic or subclinical conditions, along with acute or chronic hepatitis. Alarmingly, the yearly mortality resulting from complications associated with chronic HBV infection that progresses to cirrhosis or HCC is approximated to be 900,000 cases [1, 5].

Immunopathogenesis of viral hepatitis

The immunopathogenesis of HBV and HCV infections involves complex interactions between the viruses and the host immune system. In this evolving relationship, immune responses play a critical dual role: they are required to control viral replication, which, alternatively, may mediate liver damage [6–8]. Both HBV and HCV are typically considered non-cytopathic viruses, and liver inflammation, as well as the potential for viral clearance and recovery, result from a cooperation of innate and adaptive immune responses [9, 10]. Within HBV infection, most of the liver damage can be attributed to the immune response itself, with HBV possessing distinct limitations with regard to cytopathic effects on hepatocytes [1, 6]. Chronic activation of inflammatory pathways and sustained infiltration of lymphocytes into the liver can trigger fibrosis, cirrhosis, and ultimately HCC [1, 4, 11]. Following being infected with HCV, persistent inflammatory responses activated by lymphocytic infiltration into the liver and excessive production of pro-inflammatory cytokines further aggravate the progression of fibrosis and cirrhosis [9, 12]. The situation is further complicated by the release of reactive oxygen species (ROS) and inflammatory cytokines from immune cells, which is detrimental to liver injury. Collectively, these create a microenvironment in favor of HCC progression [9, 12].

Innate immunity in viral hepatitis

HBV evades innate immune recognition by inducing minimal activation of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors, thereby dampening type I interferon (IFN-I) and proinflammatory cytokine production and facilitating viral persistence [6, 8, 9, 12]. In contrast, HCV actively disrupts innate signaling by encoding proteins, such as NS3/4A, that degrade key mediators of the mitochondrial antiviral-signaling (MAVS) and TIR-domain-containing adapter-inducing IFN- β (TRIF) pathways [10, 13], resulting in the suppression of IFN-I responses [14]. Within this immunological context, natural killer (NK) cells constitute a pivotal component of the host defense, contributing to viral clearance or persistence through the secretion of cytokines, particularly IFN- γ [12, 15] which activate hepatic Kupffer cells and CD4+ T lymphocytes, as well as through the direct cytotoxic elimination of hepatocytes in concert with cytotoxic T lymphocytes (CTLs) [15]. The functional outcome of NK cell activity is critically shaped by interactions between killer immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands (Figure 1), which collectively influence the balance between protective immunity, immunopathogenesis, and therapeutic responsiveness in viral hepatitis; in parallel, natural cytotoxicity receptors (NCRs) further amplify NK cell activation and antiviral defense, while their dysregulation may contribute to hepatic injury [6, 15].

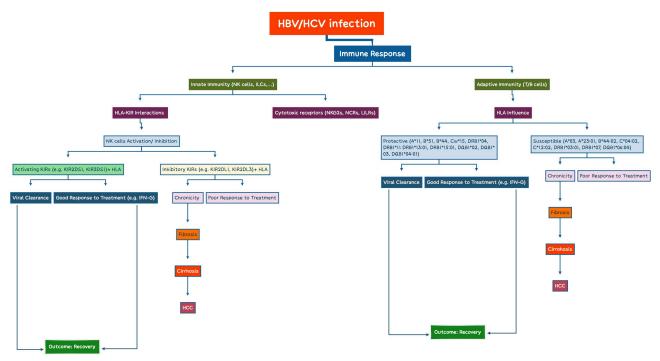


Figure 1. Flowchart of the immune response pathways in HBVs and HCVs: the role of HLA-KIRs interactions and treatment outcomes. HBV: hepatitis B virus; HCV: hepatitis C virus; HLA: human leukocyte antigen; KIRs: killer immunoglobulin-like receptors; NK: natural killer; HCC: hepatocellular carcinoma. This figure was created with XMind.

Adaptive immunity in viral hepatitis

B cells play a central role in the immune response against HBV, via producing antibodies against hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg), and hepatitis B e antigen (HBeAg) [12]. HBcAgspecific B cells are more abundant and functional, whereas HBsAg-specific B cells are fewer and less effective, with distinct mRNA profiles linked to antigen presentation and innate immunity [12, 16]. IL-27 can partially restore HBsAg-specific antibody production by promoting plasmablast and plasma cell differentiation via B lymphocyte induced maturation protein-1 (BLIMP-1) induction [12]. Anti-HBc IgG is present in past, active, and occult infections, while anti-HBc IgM indicates acute infection or severe chronic hepatitis B (CHB) flares [12]. Early anti-HBe appearance reflects a better prognosis, but robust HBsAgspecific humoral responses are essential for viral control. In CHB, memory B cells display elevated programmed cell death protein-1 (PD-1) expression; their functional capacity can be restored through PD-1 blockade combined with IL-2, IL-21, and CD40L stimulation, underscoring the potential of targeted immunomodulation strategies [12, 16, 17]. T follicular helper (TFH) cell-derived IL-21 deficiency limits B cell responses, whereas Treg-derived IL-27 can enhance antibody production [12]. Impaired memory B cell maturation into anti-HBs-secreting plasma cells contributes to HBV persistence. Elevated B-cell activating factor (BAFF) in CHB is linked to B cell hyperactivation, cirrhosis, and HCC [12]. Although early studies suggested that antibodies against HCV could protect chimpanzees from homologous viral strains, their significance in human infection was often underestimated. Evidence indicates viral clearance in agammaglobulinemic patients, the presence of non-neutralizing autoantibodies (nnAbs) such as rheumatoid factor, and weak correlations between standard serological antibodies and infection outcomes [7, 18]. Active neutralizing antibodies (nAbs) primarily target hypervariable region 1 (HVR1) of E1, but their effectiveness is often limited by rapid viral mutation and the use of surrogate viral strains in earlier studies [7]. Recent work using autologous viral sequences has highlighted the critical role of early nAb responses in viral clearance, particularly through broadly nAbs (bnAbs) [7]. Unlike strain-specific nAbs, bnAbs can target multiple HCV genotypes and effectively control infection in various models [7, 19]. These bnAbs recognize key structural epitopes on the E1E2 envelope protein, including antigenic regions AR1-AR5 and the CD81 receptor binding site, as defined by alanine-scanning studies [7, 18]. Their importance is supported by both natural infection and vaccination studies [7]. However, the mechanisms underlying bnAb production in most patients remain unclear, possibly reflecting B cell deficiencies or suboptimal TFH support [7, 18].

CD4⁺ T helper cells are central to the immune response, promoting the activation of CD8⁺ T cells and B lymphocytes [9]. Robust, multifunctional CD4⁺ T-cell responses are associated with clearance of HBV and HCV infections, whereas weak responses contribute to chronicity [5, 9]. CD8⁺ T cells play a critical role in HBV control by eliminating infected hepatocytes and secreting antiviral cytokines, including IFN- γ and tumor necrosis factor- α (TNF- α) [6, 15], but their overactivation can induce liver injury and fibrosis [15]. Similarly, HCV-specific CD8⁺ T cells are essential for viral control but often become exhausted during chronic infection, exhibiting upregulation of inhibitory receptors such as PD-1 and reduced effector functions [7, 10, 15].

The role of HLA alleles in immunopathogenesis of viral hepatitis

Antigen-specific CD8+ and CD4+ T cells are activated upon recognition of viral peptides presented by HLA class I and II molecules (HLA-I, HLA-II), respectively [20]. Polymorphisms within HLA genes critically shape both the magnitude and quality of immune responses to hepatitis infections [21]. Studies have identified specific HLA alleles that influence the outcomes of viral hepatitis (Table 1). For example, DRB1*13:02 and A*03:01 are associated with viral clearance, whereas B*08, B*44, and the DRB1*11:02~DQA1*05:01~ DQB1*03:01 haplotype predispose to CHB infection [22-24]. In the Iranian population, DRB1*03:01, DQA1*05:01, and DQB1*06:04 have been linked to increased susceptibility to CHB, while DRB1*15:01, *DQB1*04:01*, and *DRB1*13:01* appear to be protective [25]. The implications of these associations extend beyond genetic predisposition, underscoring the complex interplay between viral infections and autoimmune responses. Notably, DRB1*13:02 has been implicated in protection against persistent HBV infection [26]. At the molecular level, HLA-II molecules contain nine binding pockets (P1-P9) within the peptide-binding groove that interact with antigenic peptides through non-covalent forces, including hydrogen and electrostatic bonds [27]. Importantly, DRB1*13:01 and DRB1*13:02 differ by a single amino acid at position β86 in pocket P9: valine in *DRB1*13:01* vs. glycine in *DRB1*13:02* [27, 28]. The presence of glycine generates a more open, less hydrophobic pocket, thereby permitting greater flexibility and diversity in peptide accommodation. Conversely, valine introduces bulk and hydrophobicity, narrowing the pocket and tightening peptide binding. These structural differences substantially influence peptide repertoires and the stability of HLA-peptide-T cell receptor (TCR) interactions, ultimately shaping T-cell responses. Specifically, DRB1*13:02 may present a broader and more immunogenic repertoire of HBV-derived peptides, enhance T-cell activation, and facilitate viral clearance [28]. In contrast, the restricted peptidepresenting capacity of DRB1*13:01 may limit effective antiviral responses, thereby predisposing carriers to viral persistence and autoimmune sequelae such as autoimmune hepatitis (AIH) [28, 29].

Additionally, Corghi et al. [30] reported an association between the DRB1*07 allele and the chronicity of HCV infection in Brazilian patients. A study conducted by Ursu et al. [31] on Romanian patients indicated that A*23:01, B*44:02, and C*04:02 alleles are linked to an increased genetic predisposition to chronic hepatitis due to HCV. Furthermore, they showed that the presence of C*12:02, A*03, and A*11 alleles is associated with the induction of fibrosis grading F3–F4 [31]. The patterns of HLA alleles and haplotypes not only influence the quality of the specific immune response to HBV and HCV infections but also significantly affect treatment response and viral clearance (Table 1). The impact of allelic and haplotypic diversity on treatment outcomes in patients with chronic hepatitis C (CHC) has been well documented [32]. The study involving patients in Taiwan, China, found a direct relationship between the presence of A*11, B*51, Cw*15, and DRB1*15 alleles and a favorable response to IFN- α treatment [33]. Also, Romero-Gómez et al. [34] study demonstrated that the presence of the HLA-B*44 was significantly associated with a sustained response to IFN and ribavirin combined therapy in CHC patients.

Table 1. Impact of HLA alleles and haplotypes on HBV and HCV outcomes: a global view.

References	Year	Population	Findings
Thio et al. [23]	1999	African American cohort	HLA-II alleles → pathogenesis of HBV infection
Malhotra et al. [22]	2001	American patients	DRB1*13~DQB1*06 haplotype → improved outcomes with early viral treatment

Table 1. Impact of HLA alleles and haplotypes on HBV and HCV outcomes: a global view. (continued)

References	Year	Population	Findings
Thio et al. [24]	2003	Caucasian individuals	HLA-I molecules influence the outcome of HBV infection and may provide insights into HBV pathogenesis
Yu et al. [33]	2003	Patients in Taiwan, China	A direct relationship between the presence of A*11, B*51, Cw*15, and DRB1*15 alleles and a favorable response to IFN- α therapy
			DRB1*15~DQB1*05 haplotype was associated with response to IFN-α and A*11~DRB1*15 haplotype was strongly associated with sustained response
Romero-Gómez et al. [34]	2003	Spanish patients	HLA-B*44—associated with sustained response to IFN-ribavirin in CHC patients
Corghi et al. [30]	2008	Brazilian patients	An association between the DRB1*07 allele and the chronicity of HCV infection
Gauthiez et al. [35]	2017	-	An association between <i>DQB1*02</i> , <i>DQB1*03</i> , <i>DRB1*04</i> and <i>DRB1*11</i> with spontaneous HCV clearance
Ursu et al. [31]	2021	Romanian patients	A*23:01, B*44:02, and C*04:02 alleles are linked to an increased genetic predisposition to chronic hepatitis due to HCV
Ursu et al. [31]	2021	Romanian patients	The presence of $C*12:02$, $A*03$, and $A*11$ alleles is associated with the induction of fibrosis grading F3–F4
Naderi et al. [25]	2023	Iranian population	DRB1*03:01, DQA1*05:01, DQB1*06:04—associated with increased susceptibility to CHB
			DRB1*15:01, DQB1*04:01, DRB1*13:01—protective against CHB
Tălăngescu et al. [36]	2024	Romanian population	Heterozygosity of <i>HLA-DQB1</i> and <i>HLA-DRB1</i> was significantly associated with a lower risk of HBV infection

CHB: chronic hepatitis B; CHC: chronic hepatitis C; HBV: hepatitis B virus; HCV: hepatitis C virus; HLA: human leukocyte antigen; IFN: interferon.

The regulation of HLA expression in viral hepatitis epitomizes the delicate balance between effective antiviral immunity and viral immune evasion. In both HBV and HCV infections, HLA-I molecules are frequently upregulated on hepatocytes, thereby enhancing cytotoxic T cell-mediated surveillance (Table 2), but concurrently increasing susceptibility to immune-mediated hepatic injury [37]. In contrast, viral proteins such as HBV X and the HCV core have been shown to suppress HLA-I surface expression, facilitating immune escape and promoting viral persistence [38]. Aberrant induction of HLA-II molecules on hepatocytes and cholangiocytes, cell types that normally lack such expression, has also been documented and may contribute to chronic inflammation and autoimmune-like manifestations [39] (Table 2). Notably, the extent and direction of HLA modulation appears to differ according to viral genotype, host genetic background, and therapeutic context, underscoring its dual role as both a mediator of protective immunity and a driver of immunopathogenesis [40].

Table 2. Comparative analysis of HLA expression in HBV and HCV infections.

Features	нву	нсу	References
HLA-I expression	Upregulation of hepatocytes enhances CD8 ⁺ T cell recognition but promotes immune-mediated liver injury	Consistent upregulation in hepatocytes supports sustained immune surveillance	[41]
Viral protein interference	HBV X protein downregulates HLA-I, enabling viral escape and persistence	HCV core, NS3, and NS5A proteins interfere with antigen processing, reducing peptide loading	[38]
Regulation pattern	Bidirectional: upregulation vs. suppression depending on stage and immune context	Predominantly upregulation with indirect suppression via antigen-processing disruption	[42]
HLA-II expression	Aberrant induction of hepatocytes and cholangiocytes, associated with chronic inflammation and autoimmune-like pathology	Similar aberrant induction fuels intrahepatic inflammation and autoimmune-like injury	[43]
Immune evasion strategy	Direct suppression of surface HLA expression by viral proteins	Disruption of antigen processing machinery, broader upstream dysregulation	[44]
Clinical implications	Balance between viral clearance and immune- mediated injury; linked to fibrosis progression	Persistent immune activation but dampened cytotoxicity; linked to chronicity and HCC risk	[45]

HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HLA: human leukocyte antigen.

The role of NK cells in viral hepatitis

NK cells are derived from the lymphoid lineage; however, unlike B and T cells, they have limited specificity, diversity, and memory [46]. These cells are part of the innate immune system and play crucial roles in the initial control of viral infections, enhancing innate immune responses, and guiding and assisting in the activation of acquired immunity [46, 47]. Some NK cells express the very late activation antigen-4 (VLA-4) molecule, allowing them to bind to vascular cell adhesion molecule-1 (VCAM-1) present on the surface of endothelial cells [46, 48]. This interaction plays a crucial role in facilitating the migration of NK cells to various tissues, including the liver, lungs, and the decidua layer of the uterus [49]. In these tissues, NK cells express CD69, an early activation marker expressed on the surface of various immune cells, including NK cells, upon activation. CD69 plays a key role in tissue residency by promoting retention of NK cells within specific organs, such as the liver, lungs, and decidua layer of the uterus. This expression reflects that NK cells are not only present in these tissues but are also functionally engaged in local immune surveillance and antiviral defense [49]. NK cells residing in lymphoid tissues (such as tonsils and lymph nodes), skin, gut, and the decidua primarily consist of NK-CD56^{bright} cells, whereas NK-CD56^{dim} cells are more abundant in the lung and liver [46, 50]. The activation or inhibition of NK cells is dependent on the balance of signals received from receptors on their surface. If target cells, such as HBV- or HCV-infected hepatocytes, express ligands that bind to the activating receptors of NK cells while displaying few or no inhibitory ligands, the NK cell becomes activated and triggers the death of the target cells [46, 51, 52]. This cytotoxic effect is mediated either through the release of perforin and granzymes, where perforin forms transmembrane pores allowing granzymes to enter and initiate caspase-dependent apoptosis, or via receptor-ligand interactions such as Fas-Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL receptor (TRAILR) signaling pathways, which also induce PD-1 in the infected hepatocytes [46, 51–53]. Conversely, if the target cells have inhibitory ligands and exhibit minimal or absent activating ligands, the NK cell recognizes them as healthy and refrains from mounting an attack [52]. In an effort to escape death by CD8⁺ T cells, virus-infected and cancerous hepatocytes reduce the expression of HLA-I molecules on their surface [47]. In such situations, these cells become more susceptible to killing by NK cells, as the presence of HLA-I molecules serves as an indicator of the target cell's health [52]. The differentiation between healthy and abnormal cells (recognition of missing self-cells, RMSCs) by NK cells is recognized as immune surveillance, which plays a critical role in the immune response to virus-infected and neoplastic hepatocytes [54, 55]. In addition to signaling through NK cell surface receptors, cytokines such as IL-12, IL-15, IL-18, and IFN-I produced by dendritic cells and macrophages bind to their receptors on NK cells, thereby promoting their growth and activation [55]. Upon activation, NK cells induce the death of virusinfected and cancerous hepatocytes through the exocytosis of granules containing perforin and granzymes [56]. Furthermore, NK cells contribute to the immune response by secreting IFN-γ, which activates macrophages and aids in the differentiation of Th cells and naive CTLs into Th1 cells and effector CTLs.

NK cell receptors

There are two groups of receptors on the surface of NK cells; some provide activating signals [NKG2C/E/D, NKP30/44/46, leukocyte immunoglobulin-like receptor (LILR) A1/2/4/5/6, KIR2DS1/2, KIR3DS1], while others deliver inhibitory signals (NKG2A/B, LILRA3, LILRB1–5, KIR2DL1/2/3, KIR3DL1) [48, 57]. The net outcome of signals received from these receptors determines the activation fate of NK cells.

NK group 2 (NKG2) receptors

NKG2 receptors, members of the C-type lectin family, are expressed on NK cells and CD8⁺ T cells and mediate both activating and inhibitory signals depending on the receptor subtype [57–62]. NKG2A/CD94 and NKG2B/CD94 heterodimers are inhibitory, whereas other NKG2 receptors, including the NKG2D homodimer, are activating [57–62]. NKG2A–C and NKG2E recognize HLA-E, whose binding affinity varies by receptor, allowing it to function as both an inhibitory and activating ligand [57, 63]. HLA-E presents hydrophobic leader peptides from classical HLA-I molecules, and its two major alleles, *HLA-E*01:01* and *HLA-E*01:03*, differ at codon 107, affecting membrane expression and peptide presentation [64–66]. *HLA-*

E*01:01 has been linked to increased HBV susceptibility [67], while the HLA-E*01:03 G/G genotype may confer protection by presenting virus-derived peptides to NK cells, enhancing lysis of infected hepatocytes [66, 68–70]. Elevated soluble HLA-E (sHLA-E) in CHB patients contributes to immune tolerance, inversely correlating with HBV DNA levels and modulating the timing of antiviral responses [66]. NKG2D recognizes stress-inducible HLA-I-like molecules, such as MHC class I polypeptide-related sequence A/B (MICA, MICB) and UL16-binding protein (ULBP). In CHB, exogenous HBsAg upregulates NKG2D on NK cells, promoting antiviral activity against HCV in co-infected patients [60]. MICA polymorphisms further modulate viral outcomes; MICA*015 is associated with enhanced HCV clearance but increased CHB susceptibility [71], while the promoter single nucleotide polymorphism (SNP) rs2596542 (TT genotype) confers higher HCC risk in HBV/HCV infection, likely via altered NKG2D binding and immune activation [71]. Collectively, these findings underscore the crucial role of NKG2-HLA interactions in shaping antiviral immunity, viral persistence, and disease progression in chronic hepatitis.

NCRs receptors

NCRs, including NKp30, NKp44, and NKp46, contribute to the cytotoxicity of NK cells [72]. NCRs mediate direct recognition of pathogen-associated ligands or stress-induced cellular alterations. Beyond this receptor-ligand interaction, the repertoire of peptides derived from viruses or infected cells [73], together with polymorphism in HLA-I molecules, most notably HLA-C, and the inherited distribution of activating and inhibitory KIR genes, critically determine the threshold and magnitude of NK cell responses [74]. NKp30 and NKp46 are constitutively expressed, whereas NKp44 is induced following cytokine stimulation [75]. In viral hepatitis, NKp44 demonstrates a dual functionality; upon engagement with stress-induced or viral ligands on hepatocytes, it amplifies NK cell cytotoxicity and cytokine secretion, yet in certain contexts it transmits inhibitory signals that dampen NK activity [75–77]. This bidirectional capacity positions NKp44 as a pivotal immunoregulatory checkpoint, orchestrating the balance between effective antiviral defense and the risk of immune-mediated liver injury, thereby influencing disease persistence and progression. NKp46, together with NKG2D, drives cytotoxicity in resting NK cells and is highly expressed on both NK cells and HBV-infected hepatocytes, facilitating viral clearance [62, 77]. Notably, an NKp46^{high}NKG2A^{high} subset exhibits strong cytotoxicity but reduced IFN-y production, correlating with liver injury, HBV replication, and elevated serum alanine transaminase (ALT) and HBV DNA [62]. In the context of CHB infection, NKp30 expression is markedly diminished and exhibits an inverse correlation with viral load, underscoring its contribution to antiviral immune surveillance and the containment of viral replication. In contrast, studies in HCV infection have paradoxically associated reduced NKp30 expression with spontaneous viral clearance, suggesting that the immunoregulatory consequences of NCR downregulation are pathogen-specific and context-dependent [78–80]. Furthermore, studies indicate that sex hormones exert additional modulatory effects on NKp30 expression, with consistently higher levels observed in males, cyclical fluctuations reported across the female menstrual cycle, and significant therapy-induced downregulation documented in female patients receiving antiviral treatment [81, 82]. Collectively, these observations highlight the intricate interplay between viral context, host sex-specific biology, and therapeutic interventions in shaping the functional impact of NCR expression on disease trajectory.

LILR receptors

LILRs are NK cell receptors that primarily interact with non-classical HLA-I molecules [83]. Encoded within the leukocyte receptor cluster (LRC) on chromosome 19, this family comprises 11 members, each containing two to four extracellular immunoglobulin-like domains with either inhibitory or activating functions [84, 85]. The inhibitory receptors LILRB1–5 and activating receptors LILRA1–6 (except LILRA3) play distinct roles in modulating NK cell activity [84, 85]. LILRB1, with four immunoglobulin-like domains, engages a broad spectrum of ligands, including HLA molecules and UL18, a cytomegalovirus HLA-I homolog [86], whereas LILRB2 selectively binds HLA-G alongside classical and non-classical HLA-I molecules [83, 86]. Functionally, Zhang et al. [87] reported that LILRB1 expression is markedly elevated in circulating CD56^{dim}CD16^{bright} NK cells from patients with active hepatitis compared to inactive carriers and healthy

controls. This upregulation impairs NK cell functionality and promotes apoptosis, suggesting a critical role for LILRB1-mediated inhibition in the pathogenesis of CHB [87].

KIR receptors

The most important receptors on NK cells are the KIRs, which can deliver either activating or inhibitory signals [52] (Figure 2). These receptors can be broadly categorized as either inhibitory or activating, depending on the structural configuration of their intracellular domains. Inhibitory KIRs contain long cytoplasmic tails (KIR**L*) harboring immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which recruit phosphatases to dampen NK cell activation. In contrast, activating KIRs are defined by short cytoplasmic tails (KIR**S*) that lack signaling capacity on their own but associate with adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) to initiate downstream activating pathways [88]. KIRs are encoded by the LRC region on chromosome 19 [89, 90]. Similar to HLA genes, KIRs are highly polymorphic, with allele distributions varying across populations and ethnic groups, and are inherited as two haplotypes, A and B [89, 90]. Haplotype A primarily contains genes encoding inhibitory receptors, and haplotype B predominantly consists of genes encoding activating receptors [90] (Figure 2). Polymorphism in KIRs, such as KIR2DL2 variants, influences the binding affinities of the receptors to their ligands, which affects the activation or inhibition of NK cells. Hence, inheritance of different KIR genes could contribute to an increased or decreased susceptibility to autoimmune diseases and assist in the clearance of hepatitis viruses [89, 91, 92]. KIRs interact with classical and non-classical HLA-I molecules through their extracellular immunoglobulin-like domains, thus regulating the activation or inhibition of NK cells [93, 94]. The most principal ligands for KIR receptors are classified into four groups according to the amino acid sequence of the KIR-binding epitopes in HLA molecules, as curated in the IPD-IMGT/HLA database (https://www.ebi.ac.uk/ipd/imgt/hla); 1. C1 alleles group (C*01, C*03, C*07, C*08, C*12, C*14 and C*16), 2. C2 alleles group (C*02, C*04, C*05, C*06, C*15, C*17 and C*18). 3. Bw4 alleles group (B*13, B*27, B*37, B*38, B*39, B*40, B*41, B*42, B*44, B*45, B*47, B*48, B*49, B*51, B*52, B*53, B*57, B*58, B*59). 4. Bw6 alleles group (B*07, B*08, B*15, B*18, B*35, B*40, B*42, B*44, B*46, B*47, B*48, B*50, B*54, B*55, B*56, B*62, B*63, *B**67, *B**73, *B**78, *B**81).

The genetic organization of KIRs into A and B haplotypes has profound implications for the immune response against viral infections. Lu et al. [95] demonstrated that in patients with HBV infection, the frequency of haplotype A, which is largely inhibitory in composition, is reduced, while haplotype B, which carries a greater number of activating receptors, is increased relative to healthy individuals. This skewing suggests that haplotype B may provide a selective advantage in the context of HBV infection by promoting more robust NK cell activation and antiviral responses, whereas haplotype A may be less effective due to its inhibitory bias. Also, Ursu et al. [31, 96] further implicated that multiple KIR alleles (*KIR2DL3, KIR2DL5, KIR3DL3, KIR2DP1, KIR3DP1, KIR2DS4*) are associated with CHC susceptibility, and the presence of *KIR2DL2* is related to elevated post-treatment aspartate transferase (AST) and bilirubin levels. Such observations underscore the importance of KIR haplotypic and allelic diversity in shaping host susceptibility or resistance to viral pathogens.

Structural studies have identified key amino acid residues that govern HLA-KIR interactions. Residues 80 of the HLA molecule and residue 44 of KIRs are critical contact points, mediating recognition through hydrogen and ionic bonds [94] (Figure 3). Beyond these conserved contacts, fine specificity is determined by subtle variations within KIRs. Yang et al. [97] demonstrated that a single amino acid substitution at position 45 distinguishes activating from inhibitory receptors: tyrosine (Tyr45) in the activating KIR2DS2 vs. phenylalanine (Phe45) in inhibitory KIRs. This structural difference alters binding geometry and affinity, thereby defining distinct interaction models. Moreover, KIR2DS2 recognition extends beyond the HLA-C framework to the bound peptide itself; in particular, interaction with the threonine residue at position P8 of the peptide is essential for stable binding. These findings highlight that KIR2DS2 specificity is shaped not only by the HLA-C allotype but also by the peptide repertoire it presents, underscoring the peptide-dependent nature of HLA-KIR interactions [97].

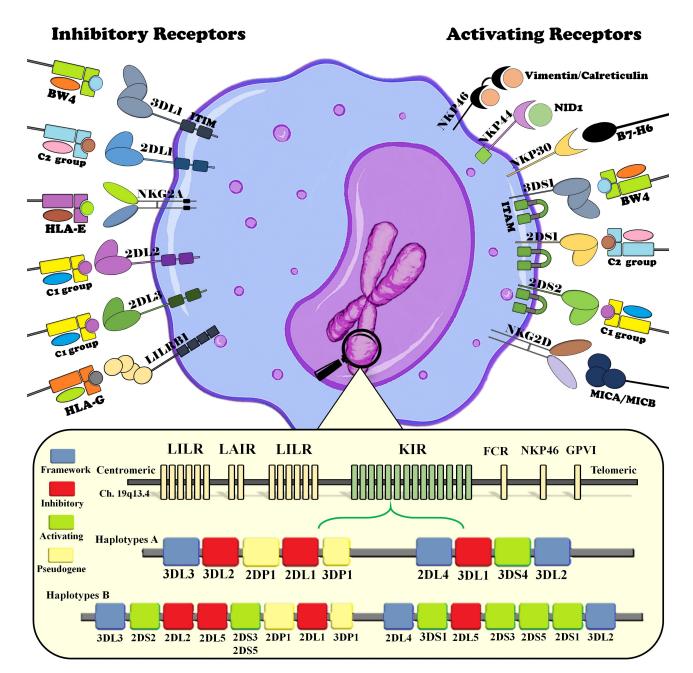
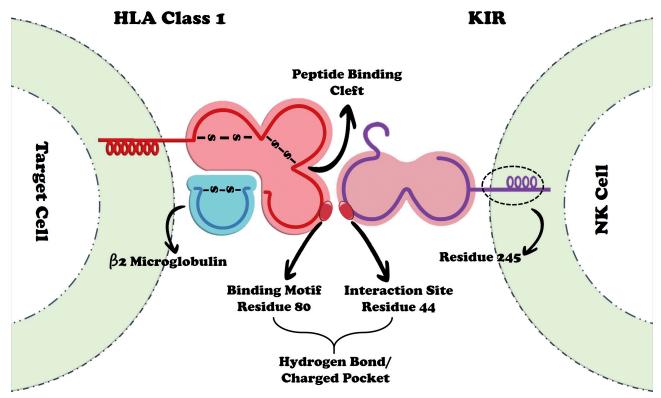



Figure 2. Composition of inhibitory and activating receptors on the surface of NK cells and their specific ligands on the surface of target cells. Also, the bottom of the figure illustrates the chromosomal arrangement of the leukocyte receptor cluster (LRC) on chromosome 19, with centromeric and telomeric regions labeled. Key polymorphic sites and gene content variations are highlighted, demonstrating how haplotype inheritance influences NK cell activation thresholds, susceptibility to viral hepatitis, and disease outcomes. NK: natural killer.

The peptide dependence of KIR2DS2 recognition illustrates a level of specificity that parallels TCR-peptide-HLA interactions, indicating that NK cell receptors, though innate in nature, can also exhibit highly refined selectivity. Indeed, the preference of KIR2DS2 for peptides containing an "AT" motif at positions P7 and P8 suggests that NK cells may have evolved to recognize conserved viral peptide sequences that are less likely to undergo immune escape mutations. One striking example is the HCV-derived nonstructural peptide LNPSVAATL, presented by HLA-C*01:02, which contains the conserved "AT" motif and has been validated as a ligand for KIR2DS2 [78]. Such findings not only deepen our understanding of peptide-specific KIR recognition but also emphasize the role of NK cells in directly sensing viral antigens in a manner once thought to be exclusive to adaptive immunity. The broader implications of these findings are considerable. First, they suggest that certain activating KIRs, such as KIR2DS2, may contribute to differential outcomes in viral hepatitis through peptide-dependent mechanisms that modulate NK cell activation thresholds. Second,

Figure 3. Schematic representation of polymorphic interactions between KIRs and HLA-I molecules. The critical residues identified are KIRs position 44 and HLA-I position 80, which govern specificity, alongside KIRs position 245, which exerts an influence on the strength of inhibitory signaling. HLA: human leukocyte antigen; KIRs: killer immunoglobulin-like receptors.

the identification of conserved recognition motifs raises the possibility of harnessing such sequences as biomarkers or therapeutic targets. For example, peptides bearing the "AT" motif could serve as prototypes for the development of NK cell-based vaccines or immunotherapies designed to enhance antiviral responses. Finally, these studies reinforce the concept that the evolutionary balance between activating and inhibitory KIRs reflects selective pressures exerted by pathogens such as HBV and HCV, with haplotypic variation and peptide-level recognition working in concert to shape disease susceptibility and progression.

The role of HLA-KIRs combinations in clearance or chronicity of viral hepatitis and HCC

The interplay between KIRs and HLA molecules is increasingly recognized as a critical determinant of NK cell-mediated immunity in viral hepatitis, influencing not only infection clearance but also disease progression to cirrhosis and HCC. The differential binding affinities, expression patterns, and functional capacities of these receptors shape NK cell activation thresholds and downstream effector functions, including cytotoxicity and cytokine secretion [74].

Protective and susceptibility effects of HLA-KIR combinations

HLA-KIR interactions critically shape NK cell responses in chronic viral hepatitis, yet their effects diverge across receptor-ligand combinations and disease contexts. In HBV, KIR2DL3/HLA-C1 homozygosity confers protection by enabling NK activation through weak inhibitory signaling [98], whereas KIR2DL1/HLA-C2 combinations deliver stronger inhibition and increase susceptibility. Similarly, HLA-Bw4 allelic subtypes influence KIR3DL1-mediated inhibition: HLA-Bw4 80 isoleucine (80I) binds with higher affinity than HLA-Bw4 80 threonine (80T), intensifying NK suppression and elevating HCC risk [99]. Genetic profiles including HLA-C1 homozygosity, HLA-Bw4 (80I), and KIR2DS4/1D expression have all been associated with heightened HCC risk post-hepatitis [100] (Table 3).

Population-specific studies further highlight this heterogeneity. In Spanish men with alcoholic cirrhosis, KIR2DL2/HLA-C2C2 modulated susceptibility to viral hepatitis [101]. In the Japanese HBV cohort,

KIR2DS3 was associated with HBV-related HCC despite no overall HLA-KIR link to cirrhosis [102]. Other studies showed HLA-A (Bw4 group) and HLA-C2 increased HBV persistence, whereas *KIR2DL3* was protective [103]. In Bulgarian patients, reduced frequencies of *KIR2DL5B* and HLA-Bw4 (80I) were seen in self-limiting HBV, while *KIR3DL1*004* predisposed to chronicity [104]. Iranian cohorts instead revealed enrichment of *KIR2DL5A*, *KIR2DS1*, and *KIR3DS1*, along with protective *KIR3DS1/HLA-Bw4* and *KIR3DS1/HLA-A-Bw4* combinations in recovered cases, suggesting population-dependent drivers of clearance [105].

In contrast, in HCV, KIR2DL2/HLA-C1 and KIR2DL3/HLA-C1 combinations confer protection while *KIR2DS4* favors chronic infection [106]. Protective effect of KIR2DL3/HLA-C1 combination is lost in HIV coinfection, likely due to NK dysfunction [107]. Additionally, the presence of *KIR2DS2/KIR2DL2* has been associated with a predisposition to lymphoproliferative disorders, *KIR2DS3* carriage with disease progression, and the KIR3DL1/HLA-Bw6 combination with increased lymphoma susceptibility; in contrast, the presence of the KIR3DS1/HLA-Bw4 combination may confer protection against HCC [108]. In Japanese cohorts, KIR3DL1/Bw4 correlated with HCC progression [109], and post direct-acting antivirals (DAAs) treatment, inhibitory KIR2DL1/HLA-C2 and KIR3DL1/HLA-Bw4 combinations signaling predicted higher HCC risk [110]. These contrasting outcomes between HBV and HCV underscore that identical HLA-KIR pairs can exert either protective or pathogenic effects, depending on the viral context. Factors such as the repertoire and binding affinity of viral peptides presented by HLA molecules, which in turn modulate HLA-KIR recognition, critically shape the balance between NK cell activation and inhibition. Within this framework, KIR2DS3 represents a paradoxical activating receptor whose unique functional attributes defy conventional paradigms of NK cell biology, thereby warranting focused consideration in the context of viral persistence.

KIR2DS3: a paradoxical activating receptor in viral persistence

KIR2DS3, an activating receptor with atypical functional properties, has emerged as a key immunogenetic marker of impaired NK cell-mediated viral control. While classified as activating, KIR2DS3 exhibits low cell surface expression and suboptimal signaling efficiency, potentially retained intracellularly, which limits its ability to elicit effective NK responses [111, 112]. This atypical behavior may create an "immune decoy" effect, where the presence of the receptor genetically does not translate into functional activation, tipping the balance toward inhibitory HLA-KIR interactions and enabling viral persistence.

Clinical studies corroborate this functional paradox. In Chinese HBeAg-positive HBV patients, KIR2DS3 carriage is associated with reduced virological response to entecavir therapy, suggesting that impaired NK activation undermines antiviral treatment efficacy [113]. Studies on Europeans with HCV demonstrated that *KIR2DS3* is a major risk allele for failure of spontaneous viral clearance, favoring chronic infection and accelerated disease progression [35, 114]. Argentine cohorts further demonstrated that KIR2DS3-positive patients exhibit altered NK receptor expression and clinical phenotypes consistent with weakened immune control [115]. Mechanistically, KIR2DS3 may compete with other activating or inhibitory KIRs for HLA-C ligands, thereby dampening NK cell cytotoxicity and cytokine secretion (e.g., IFN- γ , TNF- α), reducing antiviral efficacy, and fostering a tolerogenic hepatic environment conducive to chronic inflammation, cirrhosis, and oncogenesis [116].

HLA-KIR interactions and spontaneous viral clearance

In HBV, KIR3DS1 carriers in Gambian populations are HBeAg-positive with higher viral loads, whereas homozygosity for telomeric haplotype A KIRs is associated with lower viral load and improved HBsAg clearance [117]. Correlations between KIR3DL1/HLA-Bw4 and nucleot(s)ide therapy response [102], as well as KIR3DS1/HLA-B (Bw4-80Ile group) and favorable IFN- α therapy outcomes in Chinese HBeAgpositive CHB patients, further emphasize the translational relevance of these interactions [116] (Table 3). In HCV, KIR2DL3 and KIR2DS4 predict positive IFN- α responses, whereas KIR2DL5 is associated with suboptimal treatment outcomes [118, 119].

The likelihood of spontaneous viral clearance in HCV infection is significantly influenced by HLA-KIR interactions. KIR2DL3/HLA-C1 is consistently associated with spontaneous clearance in transfusion- or high-risk-acquired HCV infections [118]. In HCV/HIV co-infection, HLA-C2C2 signaling through KIR2DL1 enhances NK-mediated viral clearance [120]. Chronic HCV patients exhibit reduced NK cells expressing KIR2DS1 and KIR2DL2, whereas recovered individuals show higher frequencies of T cells expressing KIR2DL2/L3/S2, indicating a coordinated role of NK and T cell KIR expression in viral resolution [120].

Table 3. Impact of HLA-KIR combinations on HBV and HCV outcomes: a global perspective.

References	Year	Population	Findings
Lu et al. [95]	2008	CHB Chinese patients	Lower and higher frequencies of A and B haplotypes in patients with HBV, respectively
Gao et al. [98]	2010	HBV Chinese patients	The homozygosity of KIR2DL3/HLA-C1 has a protective role against HBV
Pan et al. [100]	2011	HBV Chinese patients	Increased risk of developing HCC following viral hepatitis through homozygous genotype for HLA-C group 1, <i>HLA-Bw480I</i> , and a combined pattern of <i>KIR2DS4/1D</i>
Moralès et al. [99]	2012	-	HLA-Bw480I allele inhibits NK cells more effectively than HLA-Bw480T via stronger binding affinity for KIR3DL1
De Re et al. [108]	2015	CHC Italian patients	The KIR2DS3 gene is related to the progression of HCV-related liver disease
Buchanan et al. [114]	2015		KIR2DS3 promotes chronic infection and rapid progression
Di Bona et al. [103]	2017	CHB Italian patients	KIR2DL3 is protective in controlling HBV infection
Shah-Hosseini et al. [105]	2017	HBV Iranian patients	Recovered individuals had higher frequencies of KIR2DL5A, KIR2DS1, KIR3DS1 alleles, and specific KIR3DS1 genotypes
Yindom et al. [117]	2017	Gambian HCC and Cirrhosis patients	Patients with HBV carrying the <i>KIR3DS1</i> allele are HBe antigen-positive and exhibit high viral loads
Li et al. [116]	2017	CHB Chinese patients	A direct relationship between the <i>KIR3DS1/HLA-BBw4-80lle</i> gene combination and favorable response to IFN-α therapy
Podhorzer et al. [115]	2017	Argentine HCV cohorts	NK receptor alterations accompany KIR2DS3 positivity
Zhuang et al. [113]	2018	Chinese HBeAg- positive cohorts	KIR2DS3 carriage reduced entecavir response; impaired NK activation reduces antiviral efficacy
Djigma et al. [121]	2020	West African Cohort (Burkina Faso)	A and B KIR haplotypes were associated with protection against HBV chronic infection evolution to cirrhosis and/or HCC
Auer et al. [106]	2020	HBV Vietnamese patients	KIR2DS4 allele is linked to chronic infection, whereas the combinations KIR2DL2/HLA-C1 and KIR2DL3/HLA-C1 lower the risk of CHB
Ursu et al. [96]	2020	CHC Romanian patients	Associations between the KIR2DL3, KIR2DL5, KIR3DL3, KIR2DP1, KIR3DP1, and KIR2DS4 norm allele and an increased genetic predisposition to CHC
Joshita et al. [102]	2021	HBV Japanese patients	A direct association between the presence of the <i>KIR2DS3</i> allele and HBV-related HCC
Varbanova et al. [104]	2021	HBV Bulgarian patients	A direct association between the presence of the <i>KIR3DL1*004</i> allele and the development of CHB
Umemura et al. [109]	2021	HCV cirrhotic Japanese patients	KIR3DL1/HLA-Bw4 combination correlates with the progression of disease to HCC
Ursu et al. [31]	2021	CHC Romanian patients	Elevated AST, ALT, and GGT levels in patients with the <i>KIR2DL2/KIR2DL2-C1C1</i> genotype
Legaz et al. [101]	2024	Spanish man with alcoholic cirrhosis	The KIR2DL2/C2C2 combination plays a role in determining the genetic susceptibility of patients with alcoholic cirrhosis to viral hepatitis infections
Ryan et al. [110]	2024	HCV American patients	KIR2DL1/HLA-C2 and KIR3DL1/Bw4 combinations are associated with an increased risk of HCC
Martín-Sierra et al. [122]	2024	HCV Spanish patients	No association found between HLA-KIR combinations and seroconversion following virus exposure in patients with HCV

ALT: alanine transaminase; AST: aspartate transferase; CHB: chronic hepatitis B; CHC: chronic hepatitis C; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HLA: human leukocyte antigen; IFN: interferon; KIR: killer immunoglobulin-like receptor; NK: natural killer; GGT: gamma-glutamyl transferase.

HLA-KIRs contribute to NK cell activation in viral hepatitis

In CHB and CHC infections, NK cells play a paradoxical role, contributing both to viral control and to liver pathology (Figure 4). Activated NK cells upregulate cytotoxic receptors, enabling lysis of infected hepatocytes and, importantly, apoptosis of hepatic stellate cells (HSCs), thereby limiting fibrosis progression [9, 12, 54]. However, their effector functions are finely tuned by the balance between activating and inhibitory HLA-KIR combinations [52]. Strong inhibitory signaling, mediated through KIR2DL1/HLA-C2 and KIR3DL1/HLA-Bw4, dampens cytotoxicity and IFN-γ release [48], facilitating viral persistence, NK exhaustion, and fibrogenesis [54]. Over time, persistent engagement of high-affinity inhibitory pathways drives immune tolerance, impaired surveillance, and heightened risk of cirrhosis and HCC [104, 110]. Conversely, weaker inhibitory interactions such as KIR2DL3/HLA-C1 provide only limited suppression, enabling sustained NK activity and favoring spontaneous HCV clearance [104]. Individuals carrying this genotype often exhibit stronger antiviral potential and reduced chronicity compared with those with highaffinity inhibitory HLA-KIR combinations [91]. In parallel, activating KIRs, including KIR2DS1 and KIR3DS1, recognize HLA-C2 and HLA-Bw4 ligands to potentiate cytotoxicity and IFN-γ production [52]. These highaffinity activating interactions promote viral clearance and support adaptive immunity, although excessive NK activation may exacerbate hepatocyte injury and inflammation. Overall, NK cell function in viral hepatitis reflects the delicate balance of HLA-KIR signaling. High-affinity inhibitory interactions foster viral persistence, fibrosis, and HCC risk, whereas low-affinity inhibitory or strong activating combinations favor viral clearance and limit disease progression. Thus, HLA-KIR combinations serve as critical immunogenetic determinants of NK cell functional thresholds, disease outcome, and responsiveness to therapy (Figure 4).

NK cell modulation by IFN-γ and antiviral therapies

NK cells are central to innate defense against viral hepatitis, exerting antiviral activity through direct lysis of infected hepatocytes and secretion of cytokines such as IFN- γ . Exogenous IFN- γ mediates pleiotropic antiviral effects by upregulating HLA-I for improved antigen presentation to cytotoxic T cells, activating macrophages and dendritic cells, and inducing IFN-stimulated genes (ISG) expression to restrict viral replication [123, 124]. Despite the proven efficacy of nucleos(t)ide analogs and DAAs in suppressing HBV and HCV replication, these agents rarely restore NK cell function in chronic infection [110]. In contrast, IFN-based regimens, particularly pegylated IFN- α (Peg-IFN- α), enhance NK activity by upregulating activating receptors (e.g., NKG2D, NKp30, NKp46), promoting degranulation, and partially reversing NK cell exhaustion [56, 77]. Patients harboring favorable activating HLA-KIR combinations (e.g., KIR2DS1/HLA-C2 or KIR3DS1/HLA-Bw4) demonstrate stronger IFN- γ responses and improved outcomes under IFN- α -based therapies, whereas individuals dominated by inhibitory HLA-KIR profiles exhibit impaired NK function, poor viral clearance, and accelerated fibrosis progression [116]. Notably, IFN- γ also mitigates inhibitory checkpoint pathways such as PD-1 and NKG2A, further amplifying NK effector responses [17, 61].

Building on these insights, novel immunotherapies are being designed to directly reprogram NK cell responses by targeting the HLA-KIR axis [125]. The most advanced strategy involves KIR-blocking antibodies [126]. The fully human anti-KIR2DL1/2DL2/2DL3 antibody lirilumab (IPH2102/BMS-986015) has demonstrated safety and durable disruption of inhibitory signaling in early-phase oncology trials [127]. While primarily tested in hematologic malignancies, preclinical data suggest that KIR blockade can restore NK cytotoxicity against HBV- and HCV-infected hepatocytes, particularly when combined with DAAs or checkpoint inhibitors. Combination approaches offer additional translational promise [127]. KIR blockade synergizes with anti-NKG2A antibodies (e.g., monalizumab), targeting parallel inhibitory pathways, and may be further enhanced by PD-1/PD-L1 inhibitors, already approved for HBV-related HCC, by reversing NK and T cell exhaustion [128].

Adoptive NK cell transfer provides another platform for KIR modulation. Donor NK cells can be selected or engineered for HLA-KIR mismatch to maximize antiviral alloreactivity [129]. Advances in genetic editing, particularly CRISPR/Cas9, enable deletion of inhibitory KIRs or introduction of activating alleles (e.g., KIR2DS1, KIR3DS1), reprogramming NK cells toward sustained antiviral and antitumor activity. Early studies have confirmed the feasibility of multiplex CRISPR editing in primary NK cells, offering proof-

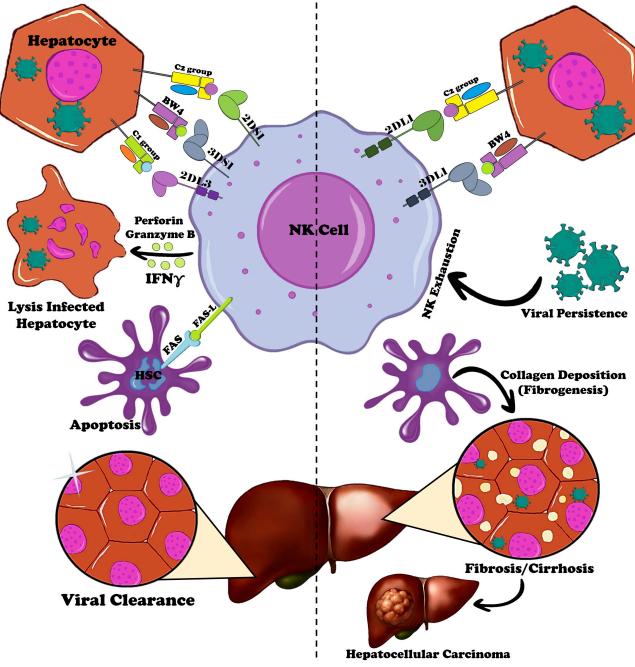


Figure 4. Immune responses in hepatitis B and C virus infections: key mechanisms and HLA-KIR interactions driving viral clearance, chronic infection, and progression to hepatocellular carcinoma. Key HLA-KIR interactions are depicted, with inhibitory pairs (e.g., KIR2DL1/HLA-C2, KIR3DL1/HLA-Bw4) shown in red, promoting viral persistence, exhaustion, and fibrosis, while activating or low-affinity inhibitory pairs (e.g., KIR2DL3/HLA-C1, KIR2DS1/HLA-C2) in green favor NK cell cytotoxicity, IFN-γ production, and clearance. The diagram includes pathways for NK cell-mediated lysis of infected hepatocytes and HSCs, cytokine modulation (e.g., IFN-γ enhancing adaptive immunity), and the paradoxical role of NK cells in both antiviral defense and liver pathology. HLA: human leukocyte antigen; HSCs: hepatic stellate cells; IFN-γ: interferon gamma; KIR: killer immunoglobulin-like receptor; NK: natural killer.

of-concept for application in viral hepatitis and related cancers [129]. Additionally, chimeric antigen receptor (CAR)-NK cells represent a rapidly advancing modality in which inhibitory KIRs can be knocked out to prevent host HLA-mediated suppression, while engineered CAR constructs direct NK activity toward viral or tumor targets [130]. Dual-modified CAR-NK cells are already under investigation in hematologic malignancies and may be adapted for HBV- or HCV-driven HCC [125, 130].

Collectively, these emerging approaches underscore that direct modulation of HLA-KIR interactions, via blocking antibodies, adoptive transfer, genetic engineering, or CAR platforms, may overcome one of the central immune bottlenecks in CHB and CHC. By restoring NK effector function, these interventions hold the

potential not only to improve viral control but also to reduce progression to HCC. Future directions should emphasize integration of KIR-targeted therapies with antiviral and checkpoint-based regimens, guided by biomarker-driven patient selection, to fully exploit the therapeutic potential of NK cells in viral hepatitis.

Conclusions

In conclusion, this review highlights the essential function of interactions between HLA and KIRs in influencing the immune responses of NK cells against infections caused by HBV and HCV. The presence of activating KIRs, such as KIR2DS1 and KIR3DS1, alongside certain HLA ligands, promotes the cytotoxic activity of NK cells and enhances the production of cytokines, thereby facilitating viral elimination and favorable treatment results. In contrast, inhibitory KIRs, including KIR2DL1 and KIR3DL1, by binding with high affinity to HLA-C2 and HLA-Bw4 epitopes, reduce NK cell activation, which contributes to the persistence of the virus, chronic inflammation, fibrosis, cirrhosis, and the advancement to HCC. Genetic differences in *KIR* haplotypes and *HLA* alleles that are specific to populations further affect the likelihood of disease occurrence, severity, and response to treatment, emphasizing the immunogenetic variances that govern the interactions between the host and virus.

These findings present combinations of HLA and KIRs as potential biomarkers for anticipating disease progression, spontaneous viral clearance, and the effectiveness of antiviral treatments. From a therapeutic perspective, focusing on the HLA-KIR interaction through strategies such as KIR-blocking antibodies, adoptive transfers of NK cells, genetic modifications, or combination immunotherapy provides new paths to restore NK cell functionality, counteract immune fatigue, and enhance outcomes in chronic viral hepatitis. Future investigations should emphasize longitudinal studies across varied populations to confirm these relationships, clarify peptide-specific mechanisms, and further develop personalized medical approaches, thereby ultimately alleviating the global impact of liver diseases associated with HBV and HCV.

Abbreviations

AIH: autoimmune hepatitis

ALT: alanine transaminase

AST: aspartate transferase

BAFF: B-cell activating factor

BLIMP-1: B lymphocyte induced maturation protein-1

bnAbs: broadly neutralizing antibodies

CAR: chimeric antigen receptor

CHB: chronic hepatitis B

CHC: chronic hepatitis C

CTLs: cytotoxic T lymphocytes DAAs: direct-acting antivirals

GGT: gamma-glutamyl transferase

HBcAg: hepatitis B core antigen

HBeAg: hepatitis B e antigen

HBsAg: hepatitis B surface antigen

HBV: hepatitis B virus

HCC: hepatocellular carcinoma

HCV: hepatitis C virus

HLA: human leukocyte antigen

HSCs: hepatic stellate cells

IFN-I: type I interferon

ITAMs: immunoreceptor tyrosine-based activation motifs ITIMs: immunoreceptor tyrosine-based inhibitory motifs

KIRs: killer immunoglobulin-like receptors

LILR: leukocyte immunoglobulin-like receptor

LRC: leukocyte receptor cluster

MAVS: mitochondrial antiviral-signaling

MICA: MHC class I polypeptide-related sequence A

nAbs: neutralizing antibodies

NCRs: natural cytotoxicity receptors

NK: natural killer

NKG2: natural killer group 2

PD-1: programmed cell death protein-1

PRRs: pattern recognition receptors RIG-I: retinoic acid-inducible gene-I

RMSCs: recognition of missing self-cells

ROS: reactive oxygen species

sHLA-E: soluble human leukocyte antigen-E

SNP: single nucleotide polymorphism

TCR: T cell receptor

TFH: T follicular helper

TLRs: Toll-like receptors

TNF-α: tumor necrosis factor-α

TRAIL: tumor necrosis factor-related apoptosis-inducing ligand

TRAILR: tumor necrosis factor-related apoptosis-inducing ligand receptor

TRIF: TIR-domain-containing adapter-inducing interferon-B

VCAM-1: vascular cell adhesion molecule-1

VLA-4: very late activation antigen-4

Declarations

Author contributions

AS and AMZ: Investigation, Writing—original draft. AS and TK: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. GS: Conceptualization, Investigation, Writing—original draft, Writing—review & editing, Validation, Supervision. All authors read and approved the submitted version.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Availability of data and materials

Not applicable.

Funding

The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences [Grant No: 76511]. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright

© The Author(s) 2025.

Publisher's note

Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.

References

- 1. Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. World J Gastroenterol. 2021;27:4018–44. [DOI] [PubMed] [PMC]
- 2. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79:516–37. [DOI] [PubMed]
- 3. Nguyen MH, Wong G, Gane E, Kao JH, Dusheiko G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin Microbiol Rev. 2020;33:e00046–19. [DOI] [PubMed] [PMC]
- 4. Alberts CJ, Clifford GM, Georges D, Negro F, Lesi OA, Hutin YJ, et al. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: a systematic review. Lancet Gastroenterol Hepatol. 2022;7:724–35. [DOI] [PubMed] [PMC]
- 5. Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol. 2022; 13:1075916. [DOI] [PubMed] [PMC]
- 6. Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol. 2022;22:19–32. [DOI] [PubMed]
- 7. Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci. 2020;21:5644. [DOI] [PubMed] [PMC]
- 8. Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity. 2014;40: 13–24. [DOI] [PubMed] [PMC]
- 9. Zheng P, Dou Y, Wang Q. Immune response and treatment targets of chronic hepatitis B virus infection: innate and adaptive immunity. Front Cell Infect Microbiol. 2023;13:1206720. [DOI] [PubMed] [PMC]
- 10. Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host–Virus Interaction and Mechanisms of Viral Persistence. Cells. 2019;8:376. [DOI] [PubMed] [PMC]
- 11. Schinzari V, Barnaba V, Piconese S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin Microbiol Infect. 2015;21:969–74. [DOI] [PubMed]

- 12. Khanam A, Chua JV, Kottilil S. Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci. 2021;22:5497. [DOI] [PubMed] [PMC]
- 13. Pietschmann T, Brown RJP. Hepatitis C Virus. Trends Microbiol. 2019;27:379–80. [DOI] [PubMed]
- 14. Matthew AN, Zephyr J, Nageswara Rao D, Henes M, Kamran W, Kosovrasti K, et al. Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors. mBio. 2020;11:e00172–20. [DOI] [PubMed] [PMC]
- 15. Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, et al. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel). 2022;14:1255. [DOI] [PubMed] [PMC]
- 16. Burton AR, Pallett LJ, McCoy LE, Suveizdyte K, Amin OE, Swadling L, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest. 2018;128:4588–603. [DOI] [PubMed] [PMC]
- 17. Salimzadeh L, Le Bert N, Dutertre CA, Gill US, Newell EW, Frey C, et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin Invest. 2018;128: 4573–87. [DOI] [PubMed] [PMC]
- 18. Law M. Antibody Responses in Hepatitis C Infection. Cold Spring Harb Perspect Med. 2021;11: a036962. [DOI] [PubMed] [PMC]
- 19. Keck ZY, Wang Y, Lau P, Lund G, Rangarajan S, Fauvelle C, et al. Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. Hepatology. 2016;64:1922–33. [DOI] [PubMed] [PMC]
- 20. Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–36. [DOI] [PubMed]
- 21. Yengo CK, Torimiro J, Kowo M, Lebon PA, Tiedeu BA, Luma H, et al. Variation of HLA class I (-A and -C) genes in individuals infected with hepatitis B or hepatitis C virus in Cameroon. Heliyon. 2020;6: e05232. [DOI] [PubMed] [PMC]
- 22. Malhotra U, Holte S, Dutta S, Berrey MM, Delpit E, Koelle DM, et al. Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment. J Clin Invest. 2001;107: 505–17. [DOI] [PubMed] [PMC]
- 23. Thio CL, Carrington M, Marti D, O'Brien SJ, Vlahov D, Nelson KE, et al. Class II HLA alleles and hepatitis B virus persistence in African Americans. J Infect Dis. 1999;179:1004–6. [DOI] [PubMed]
- 24. Thio CL, Thomas DL, Karacki P, Gao X, Marti D, Kaslow RA, et al. Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B virus infection. J Virol. 2003;77:12083–7. [DOI] [PubMed] [PMC]
- 25. Naderi M, Hosseini SM, Behnampour N, Shahramian I, Moradi A. Association of HLADQ-B1 polymorphisms in three generations of chronic hepatitis B patients. Virus Res. 2023;325:199036. [DOI] [PubMed] [PMC]
- 26. Medhasi S, Chantratita N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res. 2022;2022:9710376. [DOI] [PubMed] [PMC]
- 27. Abualrous ET, Stolzenberg S, Sticht J, Wieczorek M, Roske Y, Günther M, et al. MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange. Nat Chem Biol. 2023;19: 1196–204. [DOI] [PubMed] [PMC]
- 28. Cancado ELR, Goldbaum-Crescente J, Terrabuio DRB. HLA-related genetic susceptibility in autoimmune hepatitis according to autoantibody profile. Front Immunol. 2022;13:1032591. [DOI] [PubMed] [PMC]
- 29. Pando M, Larriba J, Fernandez GC, Fainboim H, Ciocca M, Ramonet M, et al. Pediatric and adult forms of type I autoimmune hepatitis in Argentina: evidence for differential genetic predisposition. Hepatology. 1999;30:1374–80. [DOI] [PubMed]

- 30. Corghi DB, Gonçales NS, Marques SB, Gonçales FL Jr. Distribution of the human leukocyte antigen class II alleles in Brazilian patients with chronic hepatitis C virus infection. Braz J Med Biol Res. 2008; 41:884–9. [DOI] [PubMed]
- 31. Ursu LD, Calenic B, Diculescu M, Dima A, Stoian IT, Constantinescu I. Clinical and histopathological changes in different KIR gene profiles in chronic HCV Romanian patients. Int J Immunogenet. 2021; 48:16–24. [DOI] [PubMed]
- 32. Łoś-Rycharska E, Szaflarska-Popławska A. Influence of selected HLA tissue compatibility antigens on the course and efficacy of viral hepatitis C treatment--actual knowledge position. Adv Med Sci. 2009; 54:14–9. [DOI] [PubMed]
- 33. Yu ML, Dai CY, Chen SC, Chiu CC, Lee LP, Lin ZY, et al. Human leukocyte antigen class I and II alleles and response to interferon-alpha treatment, in Taiwanese patients with chronic hepatitis C virus infection. J Infect Dis. 2003;188:62–5. [DOI] [PubMed]
- 34. Romero-Gómez M, González-Escribano MF, Torres B, Barroso N, Montes-Cano MA, Sánchez-Muñoz D, et al. HLA class I B44 is associated with sustained response to interferon + ribavirin therapy in patients with chronic hepatitis C. Am J Gastroenterol. 2003;98:1621–6. [D0I] [PubMed]
- 35. Gauthiez E, Habfast-Robertson I, Rüeger S, Kutalik Z, Aubert V, Berg T, et al.; Swiss Hepatitis C Cohort Study. A systematic review and meta-analysis of HCV clearance. Liver Int. 2017;37:1431–45. [DOI] [PubMed]
- 36. Tălăngescu A, Tizu M, Calenic B, Mihăilescu DF, Constantinescu AE, Constantinescu I. HLA Genetic Diversity and Chronic Hepatitis B Virus Infection: Effect of Heterozygosity Advantage. Med Sci (Basel). 2024;12:44. [DOI] [PubMed] [PMC]
- 37. Shimizu Y. Immunopathogenesis and immunotherapy for viral hepatitis. In: Mukomolov S, editor. Viral Hepatitis-Selected Issues of Pathogenesis and Diagnosis. Shanghai, China: InTech; 2011. pp. 65–82.
- 38. Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel). 2017;5:24. [DOI] [PubMed] [PMC]
- 39. Lu JG, Ji P, French SW. The Major Histocompatibility Complex Class II-CD4 Immunologic Synapse in Alcoholic Hepatitis and Autoimmune Liver Pathology: The Role of Aberrant Major Histocompatibility Complex Class II in Hepatocytes. Am J Pathol. 2020;190:25–32. [DOI] [PubMed] [PMC]
- 40. Schwarz T, Ptok J, Damagnez M, Menne C, Alizei ES, Lang-Meli J, et al. HBV shows different levels of adaptation to HLA class I-associated selection pressure correlating with markers of replication. J Hepatol. 2025;82:805–15. [DOI] [PubMed]
- 41. Xu HC, Huang J, Pandyra AA, Pandey P, Wang R, Zhang Z, et al. Single MHC-I Expression Promotes Virus-Induced Liver Immunopathology. Hepatol Commun. 2022;6:1620–33. [DOI] [PubMed] [PMC]
- 42. Boonstra A, Woltman AM, Janssen HL. Immunology of hepatitis B and hepatitis C virus infections. Best Pract Res Clin Gastroenterol. 2008;22:1049–61. [DOI] [PubMed]
- 43. Lu JG, Iyasu A, French B, Tillman B, French SW. Overexpression of MHCII by hepatocytes in alcoholic hepatitis (AH) compared to non-alcoholic steatohepatitis (NASH) and normal controls. Alcohol. 2020;84:27–32. [DOI] [PubMed]
- 44. Zehentmeier M, Ambike S, Protzer U, Michler T. Unravelling the role of hepatocytes in hepatitis B virus specific immunotolerance. In: Konferenz: 38. Jahrestagung der Deutschen Arbeitsgemeinschaft zum Studium der Leber. Zeitschrift für Gastroenterologie; 2022. [DOI]
- 45. Heim K, Sagar, Sogukpinar Ö, Llewellyn-Lacey S, Price DA, Emmerich F, et al. Attenuated effector T cells are linked to control of chronic HBV infection. Nat Immunol. 2024;25:1650–62. [DOI] [PubMed] [PMC]
- 46. Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, et al. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol. 2023;14:1192907. [DOI] [PubMed] [PMC]

- 47. Deng X, Terunuma H, Nieda M. Immunosurveillance of Cancer and Viral Infections with Regard to Alterations of Human NK Cells Originating from Lifestyle and Aging. Biomedicines. 2021;9:557. [DOI] [PubMed] [PMC]
- 48. Huntington ND, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. Nat Rev Cancer. 2020;20:437–54. [DOI] [PubMed]
- 49. Le T, Reeves RK, McKinnon LR. The functional diversity of tissue-resident natural killer cells against infection. Immunology. 2022;167:28–39. [DOI] [PubMed]
- 50. Selim MA, Suef RA, Saied E, Abdel-Maksoud MA, Almutairi SM, Aufy M, et al. Peripheral NK cell phenotypic alteration and dysfunctional state post hepatitis B subviral particles stimulation in CHB patients: evading immune surveillance. Front Immunol. 2024;15:1427519. [DOI] [PubMed] [PMC]
- 51. Tsukanov VV, Savchenko AA, Cherepnin MA, Kasparov EV, Tikhonova EP, Vasyutin AV, et al. Association of Blood NK Cell Phenotype with the Severity of Liver Fibrosis in Patients with Chronic Viral Hepatitis C with Genotype 1 or 3. Diagnostics (Basel). 2024;14:472. [DOI] [PubMed] [PMC]
- 52. Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, et al. KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease. Cells. 2021;10:1777. [DOI] [PubMed] [PMC]
- 53. Zou Y, Chen T, Han M, Wang H, Yan W, Song G, et al. Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol. 2010;184:466–75. [DOI] [PubMed]
- 54. Zuo W, Zhao X. Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clin Immunol. 2021;227:108727. [DOI] [PubMed] [PMC]
- 55. Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol. 2023;14:1148111. [DOI] [PubMed] [PMC]
- 56. Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol. 2022;13:887186. [DOI] [PubMed] [PMC]
- 57. Lenart M, Rutkowska-Zapała M, Siedlar M. NK-cell receptor modulation in viral infections. Clin Exp Immunol. 2024;217:151–8. [DOI] [PubMed] [PMC]
- 58. Lin Z, Bashirova AA, Viard M, Garner L, Quastel M, Beiersdorfer M, et al. HLA class I signal peptide polymorphism determines the level of CD94/NKG2-HLA-E-mediated regulation of effector cell responses. Nat Immunol. 2023;24:1087–97. [DOI] [PubMed] [PMC]
- 59. Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol. 2021;12: 712722. [DOI] [PubMed] [PMC]
- 60. Wang XX, Pan XB, Han JC, Cong X, Jin Q, Kong XS, et al. HBsAg stimulates NKG2D receptor expression on natural killer cells and inhibits hepatitis C virus replication. Hepatobiliary Pancreat Dis Int. 2018; 17:233–40. [DOI] [PubMed]
- 61. Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao Y, et al. Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell. 2023;41:272–87.e9. [DOI] [PubMed]
- 62. Yoshioka T, Tatsumi T, Miyagi T, Mukai K, Nishio K, Nishio A, et al. Frequency and role of NKp46 and NKG2A in hepatitis B virus infection. PLoS One. 2017;12:e0174103. [DOI] [PubMed] [PMC]
- 63. Prasetyo AA, Dharmawan R, Raharjo I, Hudiyono. Human Leukocyte Antigen-E Alleles are Associated with Hepatitis C Virus, Torque Teno Virus, and Toxoplasma Co-infections but are not Associated with Hepatitis B Virus, Hepatitis D Virus, and GB Virus C Co-infections in Human Immunodeficiency Virus Patients. J Glob Infect Dis. 2016;8:75–81. [DOI] [PubMed] [PMC]
- 64. Kraemer T, Blasczyk R, Bade-Doeding C. HLA-E: a novel player for histocompatibility. J Immunol Res. 2014;2014:352160. [DOI] [PubMed] [PMC]

- 65. Murugesan G, Paterson RL, Kulkarni R, Ilkow V, Suckling RJ, Connolly MM, et al. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat Commun. 2024;15: 10126. [DOI] [PubMed] [PMC]
- 66. Zidi I, Laaribi AB, Bortolotti D, Belhadj M, Mehri A, Yahia HB, et al. HLA-E polymorphism and soluble HLA-E plasma levels in chronic hepatitis B patients. HLA. 2016;87:153–9. [DOI] [PubMed]
- 67. Zhang J, Pan L, Chen L, Feng X, Zhou L, Zheng S. Non-classical MHC-I genes in chronic hepatitis B and hepatocellular carcinoma. Immunogenetics. 2012;64:251–8. [DOI] [PubMed]
- 68. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, López-Botet M, et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci U S A. 1998;95:5199–204. [DOI] [PubMed] [PMC]
- 69. Grimsley C, Ober C. Population genetic studies of HLA-E: evidence for selection. Hum Immunol. 1997; 52:33–40. [DOI] [PubMed]
- 70. Lajoie J, Hargrove J, Zijenah LS, Humphrey JH, Ward BJ, Roger M. Genetic variants in nonclassical major histocompatibility complex class I human leukocyte antigen (HLA)-E and HLA-G molecules are associated with susceptibility to heterosexual acquisition of HIV-1. J Infect Dis. 2006;193:298–301. [DOI] [PubMed]
- 71. Luo X, Wang Y, Shen A, Deng H, Ye M. Relationship between the rs2596542 polymorphism in the MICA gene promoter and HBV/HCV infection-induced hepatocellular carcinoma: a meta-analysis. BMC Med Genet. 2019;20:142. [DOI] [PubMed] [PMC]
- 72. Luczo JM, Ronzulli SL, Tompkins SM. Influenza A Virus Hemagglutinin and Other Pathogen Glycoprotein Interactions with NK Cell Natural Cytotoxicity Receptors NKp46, NKp44, and NKp30. Viruses. 2021;13:156. [DOI] [PubMed] [PMC]
- 73. Bastidas-Legarda LY, Khakoo SI. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology. 2019;156:319–28. [DOI] [PubMed] [PMC]
- 74. Ahlenstiel G. The natural killer cell response to HCV infection. Immune Netw. 2013;13:168–76. [DOI] [PubMed] [PMC]
- 75. Parodi M, Favoreel H, Candiano G, Gaggero S, Sivori S, Mingari MC, et al. NKp44-NKp44 Ligand Interactions in the Regulation of Natural Killer Cells and Other Innate Lymphoid Cells in Humans. Front Immunol. 2019;10:719. [DOI] [PubMed] [PMC]
- 76. Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol. 2021;43:519–33. [DOI] [PubMed] [PMC]
- 77. Li W, Jiang Y, Wang X, Jin J, Qi Y, Chi X, et al. Natural Killer p46 Controls Hepatitis B Virus Replication and Modulates Liver Inflammation. PLoS One. 2015;10:e0135874. [DOI] [PubMed] [PMC]
- 78. Tjwa ET, van Oord GW, Hegmans JP, Janssen HL, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol. 2011;54: 209–18. [DOI] [PubMed]
- 79. Alter G, Jost S, Rihn S, Reyor LL, Nolan BE, Ghebremichael M, et al. Reduced frequencies of NKp30+ NKp46+, CD161+, and NKG2D+ NK cells in acute HCV infection may predict viral clearance. J Hepatol. 2011;55:278–88. [DOI] [PubMed] [PMC]
- 80. Ji HF, Wang J, Yu L, Niu JQ, Ayana DA, Jiang YF. High frequencies of CD158b+ NK cells are associated with persistent hepatitis C virus infections. Ann Hepatol. 2013;12:539–47. [PubMed]
- 81. Zientarska A, Mikuła-Pietrasik J, Kaczmarek M, Witkowska A, Rozpłochowski B, Kowala-Piaskowska A, et al. Gender as a factor affecting NK cell activity in patients successfully treated for chronic hepatitis C with direct-acting antivirals. Cent Eur J Immunol. 2021;46:481–91. [DOI] [PubMed] [PMC]
- 82. Ponnampalam AP, Gargett CE, Rogers PA. Identification and hormonal regulation of a novel form of NKp30 in human endometrial epithelium. Eur J Immunol. 2008;38:216–26. [DOI] [PubMed]
- 83. De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight. 2022;7:e151553. [DOI] [PubMed] [PMC]

- 84. Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, et al. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol. 2021;12:717998. [DOI] [PubMed] [PMC]
- 85. Storm L, Bruijnesteijn J, de Groot NG, Bontrop RE. The Genomic Organization of the *LILR* Region Remained Largely Conserved Throughout Primate Evolution: Implications for Health And Disease. Front Immunol. 2021;12:716289. [DOI] [PubMed] [PMC]
- 86. Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, et al. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol. 2023;14: 1240275. [DOI] [PubMed] [PMC]
- 87. Zhang Y, Tong S, Li S, Wang X, Ren H, Yin W. Increased ILT2 expression contributes to dysfunction of CD56^{dim}CD16⁺NK cells in chronic hepatitis B virus infection. Antiviral Res. 2022;205:105385. [DOI] [PubMed]
- 88. Stefańska K, Tomaszewicz M, Dębska-Zielkowska J, Zamkowska D, Piekarska K, Sakowska J, et al. KIR- Ligand Interactions in Hypertensive Disorders in Pregnancy. Front Immunol. 2022;13:868175. [DOI] [PubMed] [PMC]
- 89. Sabouri Ghannad M, Hajilooi M, Solgi G. HLA-KIR interactions and immunity to viral infections. Res Mol Med. 2014;2:1–20. [DOI]
- 90. Roe D, Vierra-Green C, Pyo CW, Geraghty DE, Spellman SR, Maiers M, et al. A Detailed View of KIR Haplotype Structures and Gene Families as Provided by a New Motif-Based Multiple Sequence Alignment. Front Immunol. 2020;11:585731. [DOI] [PubMed] [PMC]
- 91. Umemura T, Joshita S, Saito H, Yoshizawa K, Norman GL, Tanaka E, et al. KIR/HLA genotypes confer susceptibility and progression in patients with autoimmune hepatitis. JHEP Rep. 2019;1:353–60. [DOI] [PubMed] [PMC]
- 92. Solgi G, Ghafari H, Ashouri E, Alimoghdam K, Rajalingam R, Amirzargar A. Comparison of KIR gene content profiles revealed a difference between northern and southern Persians in the distribution of KIR2DS5 and its linked loci. Hum Immunol. 2011;72:1079–83. [DOI] [PubMed]
- 93. Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells. 2021;10:1955. [DOI] [PubMed] [PMC]
- 94. Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology. 2017;150: 248–64. [DOI] [PubMed] [PMC]
- 95. Lu Z, Zhang B, Chen S, Gai Z, Feng Z, Liu X, et al. Association of KIR genotypes and haplotypes with susceptibility to chronic hepatitis B virus infection in Chinese Han population. Cell Mol Immunol. 2008;5:457–63. [DOI] [PubMed] [PMC]
- 96. Ursu L, Calenic B, Diculescu M, Dima A, Constantinescu I. HLA Alleles and KIR Genes in Romanian Patients with Chronic Hepatitis C. J Gastrointestin Liver Dis. 2020;29:595–601. [DOI] [PubMed]
- 97. Yang Y, Bai H, Wu Y, Chen P, Zhou J, Lei J, et al. Activating receptor KIR2DS2 bound to HLA-C1 reveals the novel recognition features of activating receptor. Immunology. 2022;165:341–54. [DOI] [PubMed]
- 98. Gao X, Jiao Y, Wang L, Liu X, Sun W, Cui B, et al. Inhibitory KIR and specific HLA-C gene combinations confer susceptibility to or protection against chronic hepatitis B. Clin Immunol. 2010;137:139–46. [DOI] [PubMed]
- 99. Moralès O, Richard A, Martin N, Mrizak D, Sénéchal M, Miroux C, et al. Activation of a helper and not regulatory human CD4+ T cell response by oncolytic H-1 parvovirus. PLoS One. 2012;7:e32197. [DOI] [PubMed] [PMC]
- 100. Pan N, Jiang W, Sun H, Miao F, Qiu J, Jin H, et al. KIR and HLA loci are associated with hepatocellular carcinoma development in patients with hepatitis B virus infection: a case-control study. PLoS One. 2011;6:e25682. [DOI] [PubMed] [PMC]

- 101. Legaz I, Navarro-Noguera E, Collados-Ros A, Bolarín JM, Muro M. Biomarkers of Innate Immunity and Immunological Susceptibility to Viral Infection in Patients with Alcoholic Cirrhosis. Biomedicines. 2024;12:336. [DOI] [PubMed] [PMC]
- 102. Joshita S, Ota M, Kobayashi H, Wakabayashi SI, Yamashita Y, Sugiura A, et al. Association analysis of KIR/HLA genotype with liver cirrhosis, hepatocellular carcinoma, and NUC freedom in chronic hepatitis B patients. Sci Rep. 2021;11:21424. [DOI] [PubMed] [PMC]
- 103. Di Bona D, Aiello A, Colomba C, Bilancia M, Accardi G, Rubino R, et al.; KIRIIND (KIR Infectious and Inflammatory Diseases) Collaborative Group. KIR2DL3 and the KIR ligand groups HLA-A-Bw4 and HLA-C2 predict the outcome of hepatitis B virus infection. J Viral Hepat. 2017;24:768–75. [DOI] [PubMed]
- 104. Varbanova V, Popov G, Grigorova V, Petrova D, Naumova E, Mihaylova A. KIR/HLA ligands immunogenetics markers associated with outcome of hepatitis B virus infection in the Bulgarian population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2021;165:270–6. [DOI] [PubMed]
- 105. Shah-Hosseini A, Jafari M, Mohammadi A, Sanaei R, Alavian SM, Doosti-Irani A, et al. The impact of KIR-HLA genotype on hepatitis B virus clearance in Iranian infected individuals. Med Microbiol Immunol. 2017;206:463–70. [DOI] [PubMed]
- 106. Auer ED, Tong HV, Amorim LM, Malheiros D, Hoan NX, Issler HC, et al. Natural killer cell receptor variants and chronic hepatitis B virus infection in the Vietnamese population. Int J Infect Dis. 2020; 96:541–7. [DOI] [PubMed]
- 107. Jamil KM, Khakoo SI. KIR/HLA interactions and pathogen immunity. J Biomed Biotechnol. 2011; 2011:298348. [DOI] [PubMed] [PMC]
- 108. De Re V, Caggiari L, De Zorzi M, Repetto O, Zignego AL, Izzo F, et al. Genetic diversity of the KIR/HLA system and susceptibility to hepatitis C virus-related diseases. PLoS One. 2015;10:e0117420. [DOI] [PubMed] [PMC]
- 109. Umemura T, Joshita S, Saito H, Wakabayashi SI, Kobayashi H, Yamashita Y, et al. Investigation of the Effect of KIR-HLA Pairs on Hepatocellular Carcinoma in Hepatitis C Virus Cirrhotic Patients. Cancers (Basel). 2021;13:3267. [DOI] [PubMed] [PMC]
- 110. Ryan JC, Haight C, Niemi EC, Grab JD, Dodge JL, Lanier LL, et al. Hepatocellular carcinoma after direct-acting antivirals for hepatitis C is associated with KIR-HLA types predicting weak NK cell-mediated immunity. Eur J Immunol. 2024;54:e2350678. [DOI] [PubMed] [PMC]
- 111. Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet. 2020;47:1–12. [DOI] [PubMed]
- 112. VandenBussche CJ, Mulrooney TJ, Frazier WR, Dakshanamurthy S, Hurley CK. Dramatically reduced surface expression of NK cell receptor KIR2DS3 is attributed to multiple residues throughout the molecule. Genes Immun. 2009;10:162–73. [DOI] [PubMed] [PMC]
- 113. Zhuang YL, Li XX, Xu HC, Ye H, Sun D, Liu XZ, et al. Association between KIR Genes and Efficacy of Treatment of HBeAg-Positive Chronic Hepatitis B Patients with Entecavir. Iran J Immunol. 2018;15: 112–21. [PubMed]
- 114. Buchanan R, Hydes T, Khakoo SI. Innate and adaptive genetic pathways in HCV infection. Tissue Antigens. 2015;85:231–40. [DOI] [PubMed]
- 115. Podhorzer A, Dirchwolf M, Machicote A, Belen S, Montal S, Paz S, et al. The Clinical Features of Patients with Chronic Hepatitis C Virus Infections Are Associated with Killer Cell Immunoglobulin-Like Receptor Genes and Their Expression on the Surface of Natural Killer Cells. Front Immunol. 2018;8:1912. [DOI] [PubMed] [PMC]
- 116. Li W, Shen X, Fu B, Guo C, Liu Y, Ye Y, et al. KIR3DS1/HLA-B Bw4-80Ile Genotype Is Correlated with the IFN-α Therapy Response in hepatitis B e antigen-Positive Chronic Hepatitis B. Front Immunol. 2017;8:1285. [DOI] [PubMed] [PMC]

- 117. Yindom LM, Mendy M, Bodimeade C, Chambion C, Aka P, Whittle HC, et al. KIR content genotypes associate with carriage of hepatitis B surface antigen, e antigen and HBV viral load in Gambians. PLoS One. 2017;12:e0188307. [DOI] [PubMed] [PMC]
- 118. Gallez-Hawkins GM, Franck AE, Li X, Thao L, Oki A, Gendzekhadze K, et al. Expression of activating KIR2DS2 and KIR2DS4 genes after hematopoietic cell transplantation: relevance to cytomegalovirus infection. Biol Blood Marrow Transplant. 2011;17:1662–72. [DOI] [PubMed] [PMC]
- 119. Dhiman N, Bonilla RG, Jacobson RM, O'Kane D, Poland GA. Differential HLA gene expression in measles vaccine seropositive and seronegative subjects: a pilot study. Scand J Infect Dis. 2003;35: 332–6. [DOI] [PubMed]
- 120. Legrand N, David G, Rodallec A, Gaultier A, Salmon D, Cesbron A, et al. Influence of HLA-C environment on the spontaneous clearance of hepatitis C in European HIV-HCV co-infected individuals. Clin Exp Immunol. 2021;204:107–24. [DOI] [PubMed] [PMC]
- 121. Djigma FW, Sorgho PA, Setor MA, Nagalo BM, Bagora B, Traore L, et al. Association of KIR haplotypes with propensity for developing chronic hepatitis B induced liver diseases (cirrhosis and hepatocellular carcinoma) and HIV-1 infection in a West African Cohort. Ann Mol Genet Med. 2020;4: 001–5. [DOI]
- 122. Martín-Sierra C, Bravo MJ, Sáez ME, De Rojas I, Santos M, Martín-Carmona J, et al. The absence of seroconversion after exposition to hepatitis C virus is not related to KIR-HLA genotype combinations (GEHEP-012 study). Antiviral Res. 2024;222:105795. [DOI] [PubMed]
- 123. Markova AA, Mihm U, Schlaphoff V, Lunemann S, Filmann N, Bremer B, et al. PEG-IFN alpha but not ribavirin alters NK cell phenotype and function in patients with chronic hepatitis C. PLoS One. 2014; 9:e94512. [DOI] [PubMed] [PMC]
- 124. He Y, Guo Y, Fan C, Lei Y, Zhou Y, Zhang M, et al. Interferon-α-Enhanced CD100/Plexin-B1/B2 Interactions Promote Natural Killer Cell Functions in Patients with Chronic Hepatitis C Virus Infection. Front Immunol. 2017;8:1435. [DOI] [PubMed] [PMC]
- 125. Njiomegnie GF, Read SA, Fewings N, George J, McKay F, Ahlenstiel G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J Clin Med. 2020;9:1030. [DOI] [PubMed] [PMC]
- 126. Perez-Santos M, Guerrero-González T, Gómez-Conde E, Cebada J, Flores A, Villa-Ruano N. Treatment of cancer with an anti-KIR antibody: a patent evaluation of US9879082 and US2018208652. Expert Opin Ther Pat. 2020;30:159–62. [DOI] [PubMed]
- 127. Lorig-Roach N, Harpell NM, DuBois RM. Structural basis for the activity and specificity of the immune checkpoint inhibitor lirilumab. Sci Rep. 2024;14:742. [DOI] [PubMed] [PMC]
- 128. Huang Y, Liao H, Luo J, Wei H, Li A, Lu Y, et al. Reversing NK cell exhaustion: a novel strategy combining immune checkpoint blockade with drug sensitivity enhancement in the treatment of hepatocellular carcinoma. Front Oncol. 2025;14:1502270. [DOI] [PubMed] [PMC]
- 129. Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal. 2024;124:111405. [DOI] [PubMed]
- 130. Graham LV, Fisher JG, Khakoo SI, Blunt MD. Targeting KIR as a novel approach to improve CAR-NK cell function. J Transl Genet Genom. 2023;7:230–5. [DOI] [PubMed] [PMC]