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Abstract
Innate lymphoid cells are lymphocytes that are neither T cells nor B cells. They are relatively rare in 
lymphoid tissues and peripheral blood and are distinguished by their absence of an adaptive antigen 
receptor. In the present study, we describe the mechanisms underlying the generation of the various cell 
populations and highlight the functional importance of their plasticity. These cells are indeed capable of 
transdifferentiating from one type to another. This adds complexity to their functional program, and this 
feature appears to be crucial for adapting and modulating immune responses under different conditions. 
These lymphoid cells are of great hematological interest due to their pathophysiological and therapeutic 
role in many onco-hematological pathologies such as acute myeloid leukemia, multiple myeloma, and 
several types of lymphomas. In hematological disorders, innate lymphoid cells may exert differential effects 
on the pathogenesis of hematologic malignancies. Furthermore, within the same disease, certain cell 
populations have been shown to play a protective role in antitumor immune responses, whereas others 
appear to suppress these responses. This review aims to provide an integrated description of innate 
lymphoid cells, their alterations in hematological malignancies, and potential preventive strategies, by 
proposing new specific targets for correcting anomalies. We also discuss the use of innate lymphoid cells as 
new therapies by applying chimeric antigen receptor-modified natural killer cells. We examine the current 
knowledge and outline future perspectives.
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Introduction
General information on ILCs

Innate lymphoid cells (ILCs) are lymphocytes that do not belong to the T or B cell lineages and are relatively 
rare in lymphoid tissues and peripheral blood. They are defined by the absence of adaptive antigen 
receptors [1]. One of their principal functions is to initiate an early immune response upon pathogen 
invasion, preceding the activation of antigen-specific lymphocytes [2]. ILCs are predominantly located at 
mucosal surfaces of non-lymphoid organs [3]. Remarkably, even in the absence of recombination-activating 
genes (Rag-1 and Rag-2) and without the expression of conventional T and B cell antigen receptors, ILCs are 
still capable of maturing. Although they do not possess immunological memory, they are classified as 
components of the innate immune system [4, 5]. The mechanisms underlying their activation, however, 
remain largely undefined [6, 7].

ILCs are categorized into four major subgroups. Natural killer (NK) cells and type 1 ILCs represent two 
subsets of ILCs that express the T-box transcription factor TBX21 (T-bet). Although NK cells and type 1 
ILC1s both belong to the family of ILCs, they exhibit distinct functional, phenotypic, and developmental 
characteristics.

These cells exert their functions primarily through the production of interferon-gamma (IFN-γ). NK 
cells are involved in type 1 immune responses and are classified as cytotoxic ILCs. In contrast, ILC1s are 
widely distributed across various tissues, including the liver, adipose tissue, intestine, and salivary glands. 
They are activated by soluble cytokines such as interleukin (IL)-15, IL-12, and IL-18. ILC1s contribute to 
host defense against viral and intracellular bacterial infections by producing effector cytokines and 
initiating a rapid, first-line immune response [8].

The second group of ILCs (ILC2s) is defined by the expression of the GATA-binding protein 3 (GATA3) 
and is highly prevalent in mucosal tissues such as the gastrointestinal (GI) tract, lungs, tonsils, and skin. 
These cells mediate type 2 immune responses by producing IL-5, IL-13, IL-4, and members of the epidermal 
growth factor family. They also secrete cytokines such as amphiregulin, which play a role in combating 
helminth infections and regulating tissue repair [9].

ILC3s are characterized by the presence of RAR-related orphan receptor gamma T (RORγt). ILC3s are 
further subdivided into NKp46+ and NKp46– subsets based on surface marker expression. These cells 
secrete a range of cytokines and growth factors, including IFN-γ, tumor necrosis factor-alpha (TNF-α), IL-
22, IL-17, granulocyte-macrophage colony-stimulating factor (GM-CSF), and heparin-binding epidermal 
growth factor-like growth factor (HB-EGF) [10, 11]. ILC3s are abundant in the skin, lungs, intestinal 
mucosa, and mesenteric lymph nodes, where they play a key role in initiating rapid immune responses 
against extracellular microorganisms and maintaining tissue homeostasis [12].

The final group of ILCs, known as lymphoid tissue inducer (LTi) cells, comprises lymphoid tissue-
derived cells that are also dependent on RORγt and originate from fetal liver progenitor cells. These cells 
contribute to the development of secondary lymphoid organs by promoting lymphoid tissue proliferation, a 
process mediated by lymphotoxin, a member of the TNF superfamily. LTis are present in various organs 
and tissues during early embryonic development. By regulating adaptive immune responses and 
supporting the formation of secondary lymphoid structures, they play a critical role in the establishment of 
both primary and secondary lymphoid tissues [13, 14].

The differentiation of ILCs from a common progenitor cell is illustrated in Figure 1.
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Figure 1. The development of ILCs starts with CLPs (common lymphoid progenitors). CLPs can differentiate into NK cell 
precursors. These cells will differentiate into CILPs, which themselves differentiate into natural killer progenitors (NKP) cells or 
into common helper innate lymphoid progenitors (CHILPs), which give rise to lymphoid tissue inducer progenitors (LTiPs) and 
innate lymphoid cell precursors (ILCPs). LTiPs differentiate into LTis and ILCPs into ILC1, ILC2, or ILC3. Each differentiation 
step is correlated with the expression of the following transcription factors: NFIL3, ID2, TOX, TCF-1, ETS-1, GATA3, PLZF, T-
bet, EOMES, RUNX3, RORα, Bcl11B, GFI1, RORγt, and AHR. The human ILC1 group might have spread from a different 
ancestor, the identity of which is still unknown. Transcription factors and proteins in ILC development: NFIL3: nuclear factor IL-3 
induced; ID2: inhibitor of DNA binding 2; TOX: thymocyte selection-associated high mobility group box protein; TCF-1: T cell 
factor 1; ETS-1: avian erythroblastosis virus E26 homolog-1; GATA3: GATA binding protein 3; PLZF: promyelocytic leukemia 
zinc finger; T-bet: T-box transcription factor TBX21; Eomes: eomesodermin; RUNX3: runt-related transcription factor 3; RORα: 
RAR-related orphan receptor α; Bcl11B: B cell lymphoma/leukemia 11B; GFI1: growth factor independent 1; RORγt: RAR-
related orphan receptor gamma T; AHR: aryl hydrocarbon receptor. Created in BioRender. Mirabile, G. (2025) https://
BioRender.com/rtss29h.

Real ILCs: plastic and regulatory cells

Although the classification of ILCs provides a valuable theoretical framework for understanding their 
diversity, immune responses can introduce additional complexity into their functional programming. 
Evidence suggests that certain ILC subsets exhibit functional plasticity—a feature well-documented in T 
cells [15, 16]—which may be critical for adapting and modulating immune responses to diverse pathogenic 
stimuli.

In vitro, human RORγt+ ILC3s stimulated with IL-2 or IL-15 can differentiate into ILC1-like cells, 
characterized by upregulation of the transcription factor T-bet and the interleukin-12 receptor β2 (IL-
12Rβ2) [17] (Figure 2). These cells subsequently produce IFN-γ in response to IL-12 stimulation.

Furthermore, culturing ILC3s with IL-23 promotes their conversion into ILC1s. Interestingly, IL-23 is 
also the primary stimulus that induces IL-22 secretion by ILC3s. This seemingly paradoxical effect is 
enabled by the constitutively high expression of the transcription factor signal transducer and activator of 
transcription 4 (STAT4) in ILC3s [18, 19]. As a result, sustained exposure to IL-23 activates STAT4 and 
drives the polarization of ILC3s toward a type 1 phenotype. Some studies also suggest that IL-23 may 

https://BioRender.com/rtss29h
https://BioRender.com/rtss29h
https://BioRender.com/rtss29h
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Figure 2. Tissue ICL1s. T-bet+ ILC1s present within tissues might comprise: ILC1s derived from innate lymphoid cell 
precursors (ILCPs); ILC2s that transition upon exposure to IL-12 and IL-1β, leading to a reduction in GATA3 and an increase in 
T-bet; ILC3s that undergo conversion when exposed to IL-2, IL-15, and IL-23, resulting in decreased RORγt and elevated T-bet 
levels; and NK cells that minimize EOMES expression in environments abundant in TGF-β. T-bet: T-box transcription factor 
TBX21; RORγt: RAR-related orphan receptor gamma T; GATA3: GATA binding protein 3; EOMES: eomesodermin; AHR: aryl 
hydrocarbon receptor; TGF-β: transforming growth factor-beta. Created in BioRender. Mirabile, G. (2025) https://BioRender.
com/huv8ftc.

facilitate the reverse transition—from ILC1s back to ILC3s [17]—although the molecular mechanisms 
underlying this bidirectional plasticity remain to be elucidated.

ILCs and hematological malignancies
ILCs and acute myeloid leukemia

Acute myeloid leukemia (AML) is a hematological disease characterized by the growth and proliferation of 
immature cells. AML utilizes unique immune evasion strategies like those of solid cancers. This section 
provides an update on recent advances in understanding how AML affects each group of ILCs [20].

NK cells and AML

The antitumor activity of NK cells has been documented in several malignancies, including AML [21, 22]. In 
the early 2000s, NK cells emerged as promising candidates for immunotherapy, as those derived from 
haploidentical donors were shown to enhance alloreactive responses and improve patient survival [23].

Recent findings have provided new insights into NK cell development and their role in AML 
progression. NK cells originate in the bone marrow and reach full maturation in secondary lymphoid organs 
such as the tonsils and lymph nodes. The majority of circulating NK cells are mature CD56 dim cells, while a 
smaller subset consists of CD56 bright cells. Nevertheless, immature NK cell precursors can also be 
detected in peripheral blood, albeit at lower frequencies [24]. Several studies have reported a 
developmental block in NK cell maturation in AML patients. In a murine model of AML, splenic NK cells 
exhibited impaired progression from stage 2 (CD27+CD11b–) to stage 3 (CD27+CD11b+) [25]. Similar 
findings were observed in human ILC precursors, which failed to differentiate into NK cells in the presence 
of AML cells in an ex vivo co-culture system [26].

https://BioRender.com/huv8ftc
https://BioRender.com/huv8ftc
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Moreover, AML patients typically exhibit a significantly reduced proportion of circulating NK cells 
compared to healthy individuals, a condition associated with poorer clinical outcomes [27]. Some studies 
have also reported a less mature NK cell phenotype in AML, characterized by reduced expression of CD57 
and killer cell immunoglobulin-like receptors (KIRs) [28]. However, conflicting data exist, with other 
reports indicating a more mature NK phenotype in AML patients, marked by increased CD57 and KIR 
expression and decreased CD56 expression [29]. Notably, these latter studies did not directly assess NK cell 
functionality. It is possible that both immature and hyper-mature NK phenotypes share similar functional 
impairments, with hyper-mature cells representing an exhausted state with diminished antitumor activity.

A further reduction in NK cell function has been associated with increased expression of the inhibitory 
receptor NKG2A at diagnosis [30]. Similarly, decreased expression of activating receptors such as NKp46 
and NKp30 correlates with unfavorable clinical outcomes [31, 32], whereas higher expression levels of 
these receptors are linked to improved prognosis [33, 34].

In patients with myelodysplastic syndrome (MDS)—a condition that frequently progresses to AML—
reduced NK cell numbers and impaired function have also been observed, largely due to decreased 
expression of activating receptors such as NKG2D and NKp30 [35, 36]. In these individuals, the extent of NK 
cell dysfunction appears to be intermediate between that of healthy controls and AML patients. 
Furthermore, MDS patients with pronounced NK cell impairment exhibit a higher risk of progression to 
AML [35]. A genetic predisposition to MDS/AML involving dysfunctional NK cells has also been identified. 
Mutations in the transcription factor GATA2 predispose individuals to MDS/AML [37, 38] and result in 
severe NK cell defects, characterized by the preservation of the CD56 dim subset and the loss of CD56 
bright cells [35]. This NK cell abnormality has also been observed in individuals with GATA2 loss-of-
function mutations who do not present with MDS or AML.

Although NK cell function appears to be profoundly suppressed at AML diagnosis, these cells play a 
significant role in preventing or delaying relapse during post-remission phases [39–41]. Following 
chemotherapy, the NK cell compartment is rapidly reconstituted—typically within four months to one year 
after remission—with a predominance of immature CD56 bright cells [42]. Enhanced surface expression of 
NKp46 and increased CD107a expression upon exposure to K562 target cells indicate that NK cell activity is 
at least partially restored in remission, even in patients who exhibited impaired NK function at diagnosis 
[30]. Therapeutic strategies that promote the expression of additional activating receptors have also been 
shown to enhance NK cell-mediated cytotoxicity against leukemic targets [43].

Collectively, these findings suggest that NK cell dysfunction in AML may be at least partially reversible, 
and further research is warranted to better understand the endogenous role of NK cells in AML 
pathophysiology.

ILC1 cells and AML

Although the anti-tumor effects of NK cells are well established, the functional roles of other ILC subsets in 
cancer remain incompletely understood [44]. In particular, the role of ILC1s in AML is still unclear, and 
ongoing research is focused on elucidating their contribution. One of the major challenges in studying ILC1s 
is the lack of unique, definitive surface markers for their identification.

Early investigations of peripheral blood and bone marrow from AML patients revealed an enrichment 
of functionally impaired, lineage-negative ILC1s compared to healthy donors (HDs) [45]. More recently, a 
study identified a phenotypically distinct ILC1-like subset (Lin–CD56+CD94+CD16–CD127+) with reduced 
cytotoxic potential at diagnosis, which appeared to be restored in patients who achieved remission [46]. In 
this study, only surface markers were used to differentiate conventional NK cells from ILC1 or ILC1-like 
cells, and the phenotypic profile of the latter overlapped with that of circulating CD56 bright NK cells [46, 
47].

A key distinction between human and murine NK cells and ILC1s lies in their transcription factor 
expression: NK cells typically co-express EOMES and T-bet, whereas ILC1s express only T-bet. In mice, the 
inhibitory receptor CD200R1 has been proposed as a selective surface marker for liver-resident ILC1s and 
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is notably absent in NK cells [44, 48]. Interestingly, CD200 expression on human AML blasts has been 
shown to suppress IFN-γ production and reduce cytotoxic activity by engaging CD200R1 on human NK cells 
[49]. Although the expression pattern of CD200R1 in human ILCs is still under investigation, this interaction 
may reflect an increased presence of ILC1s in CD200 Hi AML cases [20].

Finally, in murine models, NKp46 expressed on ILC1s mediates direct interactions with tumor cells, 
enhancing cytotoxicity and promoting the production of TNF and IFN-γ. Deletion of NKp46 results in 
reduced survival and impaired ILC1-mediated tumor control in a mouse model of AML. This phenotype can 
be reversed by adoptive transfer of NKp46+ ILC1s into NKp46-deficient mice. In humans, NKp46+ ILC1s 
produce higher levels of cytokines and exhibit greater cytotoxicity compared to their NKp46– counterparts, 
suggesting that NKp46 plays a similarly critical role in human ILC1 function [50].

ILC2 cells and AML

Recent studies have revealed a tumor-promoting role for ILC2s. While ILC2s are primarily known for their 
involvement in allergic responses and anti-helminthic immunity, emerging evidence suggests they may also 
contribute to leukemogenesis. A study focusing on AML demonstrated that prostaglandin D2 (PGD2), 
secreted by mesenchymal stem cells (MSCs), activates ILC2s via the chemoattractant receptor-homologous 
molecule expressed on Th2 cells (CRTH2) [51]. This activation induces the secretion of IL-5, which in turn 
promotes the expansion of regulatory T cells (Tregs) and the proliferation of hematopoietic stem and 
progenitor cells (HSPCs). In an AML mouse model, this Treg expansion was associated with reduced 
survival and accelerated leukemia progression.

In addition, tumor-derived PGD2 and the NKp30 ligand B7-H6 have been shown to activate ILC2s, 
leading to the secretion of IL-13. This cytokine stimulates the activity of myeloid-derived suppressor cells 
(MDSCs), whose immunosuppressive functions are well-documented in promoting tumor progression [52]. 
These findings suggest that therapeutic strategies targeting the PGD2-ILC2-Treg or PGD2-ILC2-MDSC axes 
may hold promise in the treatment of AML.

However, contrasting evidence has emerged from another study, which found no significant differences 
in ILC2 frequency or IL-5 and IL-13 levels in the peripheral blood of untreated AML patients compared to 
healthy controls [53]. These discrepancies may be attributed to differences in the tissue microenvironment, 
as PGD2-producing mesenchymal cells are primarily located in the bone marrow rather than in peripheral 
blood. This highlights the importance of investigating the primary tissue microenvironment in systemic 
diseases such as AML, where distinct tissues may exhibit divergent immunological profiles.

Taken together, these investigations highlight the intricate and situation-specific function of ILC2 cells 
in the development of AML. Clinical data from peripheral blood studies do not support the tumor-
promoting axis suggested by preclinical models, which include PGD2-mediated ILC2 activation and the 
downstream proliferation of immunosuppressive Tregs and MDSCs. This disparity highlights the crucial 
role that the bone marrow microenvironment (BMME) plays in determining ILC2 function and most likely 
reflects the compartmentalized nature of immune regulation. To resolve these conflicting findings and 
improve therapeutic targeting of the PGD2-ILC2 axis in AML, future research should give priority to tissue-
specific analyses.

ILC3 cells and AML

Despite growing evidence that ILC3s play a significant role in post-chemotherapy prognosis and in the 
pathogenesis of graft-versus-host disease (GVHD), studies specifically investigating ILC3s in AML remain 
limited. One study reported a marked reduction in natural cytotoxic receptor-positive (NCR+) ILC3s—but 
not NCR– ILC3s—in the peripheral blood of treatment-naïve AML patients [54]. In this study, ILC3s were 
defined as Lin–CD127+CRTH2–CD117+NKp46+/– cells, a phenotype that overlaps with that of immature NK 
cells and ILC precursors circulating in the bloodstream. Interestingly, no significant differences in IL-17A or 
IL-22 levels were observed between the ILC compartments of AML patients and HDs [55].
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Emerging evidence suggests that NKp44 may be a more reliable marker than CD117 for identifying 
human ILC3 populations, as NKp44+ cells are typically absent from the circulation of healthy individuals. In 
A M L  p a t i e n t s  w h o  r e s p o n d e d  t o  s t a n d a r d  c h e m o t h e r a p y ,  t h e  f r e q u e n c y  o f  
Lin–CD127+CRTH2–CD117+NKp46+ cells was comparable to that of healthy controls. In contrast, non-
responders exhibited a reduced percentage of these cells, suggesting a potential prognostic value for this 
ILC3 subset.

Beyond their role in AML pathophysiology, ILC3s have also been detected during post-induction 
chemotherapy and hematopoietic stem cell transplantation (HSCT). A study evaluating the reconstitution of 
ILC subsets following induction chemotherapy and allogeneic HSCT (allo-HSCT) found that donor-derived 
ILC1s, ILC2s, and NKp44– ILC3s reconstituted more rapidly and at higher levels than other ILC subsets. 
NKp44+ ILC3s were also observed in the peripheral blood of AML patients undergoing these treatments. 
These ILC populations expressed activation markers such as CD69 and homing receptors for the gut and 
skin, including α4β7 integrin, CCR6, CCR10, and cutaneous lymphocyte-associated antigen (CLA). Their 
presence following chemotherapy or allo-HSCT was associated with a reduced incidence of GVHD [56].

In murine models, NCR+ ILC3s have been shown to promote intestinal tissue regeneration and prevent 
bacterial translocation—mechanisms that contribute to the mitigation of GVHD [57]. These effects are 
mediated through IL-22-dependent pathways. Indeed, IL-22 has been shown to confer protection against 
GVHD in mouse models of allo-HSCT [58]. Further research is needed to clarify the role of ILC3s in AML 
biology and to assess their potential as biomarkers for treatment response.

An overview of innate lymphoid cell abnormalities in AML is provided in Table 1.

Table 1. Anomalies of innate lymphoid cell populations in AML.

Population Findings in AML

NK CD57+ KIR+ NK cells are elevated in a subset of AML patients [29].
NK The inhibition of AHR increases the cytotoxic activity of NK cells on AML blasts and returns normal NK maturation.
NK A less mature peripheral NK cell phenotype characterized by the absence of CD57 and KIR is associated with a 

reduced overall survival rate [27].
NK IFN-γ secretion is reduced, and NK cytotoxic activity is compromised in AML patients with CD200 HI.
NK A lower level of NK cell function in AML patients is linked to decreased expression of factors that activate the 

receptors NKp30 and NKp46 and increased production of those that block the receptor NKG2A [31–34].
NK There have been no observed changes in overall survival in relation to the CMV+ serum status, which is linked to 

enhanced memory-like NK cell production and extended relapse-free life.
ILC1 In AML patients, we have an enrichment and reduced function of null-deficient ILC1 [45], with reduced cytotoxic 

capabilities [59], and a lower incidence of GVHD [56].
ILC2 It was observed that a Treg expansion and HSPC proliferation [51] increased IL-13 secretion [52] and a lower 

incidence of GVHD [56].
ILC3 We have a reduction in spontaneous natural cytotoxic receptor-positive (NCR+) ILC360 normal rates are 

associated with a favorable prognosis [45] and lower incidence of GVHD [56].
AML: acute myeloid leukemia; AHR: aryl hydrocarbon receptor; KIR: killer cell immunoglobulin-like receptor; IFN-γ: interferon-
gamma; NKp30: natural killer cell protein 30; NKp46: natural killer cell protein 46; CMV: cytomegalovirus; GVHD: graft-versus-
host disease; Treg: regulatory T cell; HSPC: hematopoietic stem and progenitor cell.

NK cells in chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults and is characterized by 
profound immune dysregulation, which contributes to increased morbidity and mortality [60].

A comparative analysis of NK cells and T cells in CLL reveals important distinctions. Higher NK cell 
counts are associated with improved prognosis in CLL patients, as NK cells are capable of targeting 
leukemic cells, highlighting their potential therapeutic relevance [61]. However, autologous NK cells often 
fail to mount an effective response against CLL cells, suggesting that leukemic cells have evolved 
mechanisms to evade NK cell-mediated surveillance [62].



Explor Immunol. 2025;5:1003226 | https://doi.org/10.37349/ei.2025.1003226 Page 8

Unlike T cells, which rely on antigen-specific receptors for target recognition, NK cells integrate signals 
from a repertoire of activating and inhibitory receptors to regulate their effector functions [63, 64]. Key 
activating receptors involved in anti-tumor responses include KIRs, NKp46, NKp30, CD16, and DNAX 
accessory molecule-1 (DNAM-1). However, the expression of these receptors on NK cells in CLL patients has 
been inconsistently reported [62, 65, 66]. CLL cells can impair NK cell recognition by downregulating 
ligands for activating receptors and releasing soluble factors that interfere with receptor-ligand 
interactions [60, 62, 67–69]. Additionally, CLL cells upregulate immunosuppressive molecules such as 
human leukocyte antigen (HLA)-E, HLA-G, and transforming growth factor-beta (TGF-β), which further 
inhibit NK cell activity [70, 71].

As a result, NK cell cytotoxic responses are diminished in the presence of CLL cells [62, 65, 66]. 
Nevertheless, therapeutic strategies such as anti-CD20 monoclonal antibodies can redirect NK cells to 
eliminate CLL cells via antibody-dependent cellular cytotoxicity (ADCC) [62, 67, 72]. Moreover, NK cell 
function can be at least partially restored when these cells are removed from the leukemic 
microenvironment, indicating that CLL cells create an imbalance between activating and inhibitory signals 
that impairs NK cell recognition and facilitates immune evasion [72, 73].

ILCs and multiple myeloma
Multiple myeloma and BMME

Recent advances in the understanding of multiple myeloma (MM) have highlighted the pivotal role of the 
immune system in disease progression. The BMME consists of both cellular components—including bone 
marrow stromal cells (BMSCs), endothelial cells, osteoclasts, osteoblasts, fibroblasts, T lymphocytes, and 
dendritic cells—and non-cellular components, such as the extracellular matrix (ECM) and soluble factors 
including chemokines, cytokines, and growth factors.

The primary function of the bone marrow stroma is to regulate and support the proliferation and 
differentiation of hematopoietic cells. During MM progression, interactions between microenvironmental 
cells—particularly endothelial cells and MSCs—and tumor clones are mediated by surface adhesion 
molecules, receptors, and soluble mediators secreted by these cells. These interactions promote MM cell 
survival, proliferation, and differentiation [74, 75].

Initial studies of tumor-infiltrating immune cells in MM suggested a dynamic relationship between 
immune system components and the tumor [76]. While these immune cells were initially believed to exert 
anti-tumor effects, more recent evidence indicates that they may also contribute to tumor progression. 
Interactions between ILCs and microenvironmental cells are critical for tumor development and 
dissemination, as both immune and tumor cells are influenced by cytokines, adhesion molecules, and 
metalloproteinases [77].

The early immune response to tumor formation involves the activation of cytotoxic mechanisms, 
recruitment of immune cells, and secretion of cytokines that induce tumor cell apoptosis [78]. However, as 
neoplastic cells proliferate and dominate the microenvironment, ILCs begin to produce factors that support 
tumor growth [3, 79]. The ECM plays a dual role in adaptive immunity: it facilitates T-cell migration into 
tissues while also exerting inhibitory effects on T-cell proliferation [80–82]. Interactions between ILCs and 
stromal cells are also evident, with ILCs potentially contributing to tumor tissue formation and expansion 
[83].

As previously discussed, a defining feature of ILCs is their plasticity—the ability to differentiate into 
various subtypes in response to environmental cues [81]. In MM, this plasticity can modulate ILC function, 
resulting in either anti-tumor or tumor-promoting activities [84] (Figure 3).

ILCs and prevention of MM

Recent research has shed light on how ILCs may play a role in preventing MM. These insights could lead to 
novel therapeutic strategies aimed at leveraging the immune system to combat MM.



Explor Immunol. 2025;5:1003226 | https://doi.org/10.37349/ei.2025.1003226 Page 9

Figure 3. ILCs in the MM microenvironment. The BMME (bone marrow microenvironment) is composed of a cellular and non-
cellular component (ECM: extracellular matrix). Through interactions with the BMME, ILCs produce inflammatory mediators, 
adhesion molecules, and metalloproteinases, which play a crucial role in controlling tissue homeostasis. BMSCs: bone marrow 
stromal cells. Created in BioRender. Mirabile, G. (2025) https://BioRender.com/zy2uoib.

Function of NK cells in MM

NK cells play a critical role in cancer immunosurveillance through both direct cytotoxic mechanisms and 
indirect immunomodulatory functions [85].

In MM, malignant plasma cells frequently express CD1d, a member of the CD1 family of antigen-
presenting molecules. Structurally similar to major histocompatibility complex (MHC) class I molecules, 
CD1d consists of α1, α2, and α3 domains associated with β2-microglobulin. Although CD1d is 
monomorphic, its surface expression on MM cells renders them more susceptible to NK cell-mediated 
cytotoxicity [86, 87].

Interestingly, as MM progresses, a gradual decline in CD1d surface expression has been observed. 
While CD1d remains detectable within the cytoplasm, its surface expression diminishes significantly in 
advanced disease stages. This loss of surface CD1d correlates with reduced transcriptional activity, 
suggesting a mechanism by which MM cells may evade NK cell recognition and immune-mediated clearance 
[88].

The role of ILC1s in MM

ILC1s contribute to cancer prevention primarily through the production of IFN-γ [89–92]. IFN-γ induces 
apoptosis in malignant cells by upregulating the expression of Fas and Fas ligand (FasL) on their surface. 
Additionally, IFN-γ enhances tumor antigen presentation by increasing the expression of MHC molecules, 
thereby improving immune recognition and targeting of cancer cells [93]. It also promotes a shift toward 
Th1-type immune responses while suppressing Th2 cell activity [94].

In the context of MM, IFN-γ has been shown to modulate oncogenic transcription factors within 
malignant cells. Notably, several studies have demonstrated that IFN-γ can inhibit MM progression with 
efficacy comparable to that of the corticosteroid dexamethasone [94–101].

https://BioRender.com/zy2uoib
https://BioRender.com/zy2uoib
https://BioRender.com/zy2uoib
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Therefore, although early research focused on IFN-γ’s anti-proliferative and immunostimulatory 
actions in MM, more recent research has shown that these effects can be enhanced or inhibited by complex 
regulatory networks, depending on the tumor microenvironment (TME) and epigenetic variables.

Although more direct comparison clinical data would support this assertion, IFN-γ’s ability to decrease 
IL-6 signaling and modify transcription factors supports its therapeutic equivalency to dexamethasone, as 
suggested in any works.

ILC dysfunctions in the evolution of MM
NK cells

Studies have reported an increased frequency of CD56+CD3– NK cells in both the bone marrow and 
peripheral blood of patients with monoclonal gammopathy of undetermined significance (MGUS) and MM. 
Paradoxically, higher NK cell counts at diagnosis have been associated with poorer prognosis in MM 
patients [85]. This observation suggests that the immune system’s inability to effectively control MM cell 
proliferation may be linked to the increased presence of dysfunctional NK cells [85, 102].

Elevated serum immunoglobulin levels in MM can impair NK cell function, diminishing their cytotoxic 
capacity. Morphological and functional abnormalities—such as the presence of intracellular vacuoles, 
reduced ADCC, and decreased cytolytic granule content—further indicate compromised NK cell activity 
[103]. Moreover, monomeric IgG, as well as monoclonal IgA and IgG proteins commonly found in MM 
patients, have been shown to negatively affect NK cell function [97].

ILC1

Although data on the role of ILC1s in the development and progression of MM remain limited, recent 
findings underscore their potential significance. In patients with plasmacytosis, an increased proportion of 
ILC1s has been observed in the bone marrow. Under normal conditions, ILC1s produce IFN-γ in individuals 
with MGUS; however, this production is markedly reduced in patients with asymptomatic MM [104].

Elevated expression of Ikzf3 (Aiolos)—a transcription factor essential for B-cell development and a 
known target of immunomodulatory drugs (IMiDs)—has been identified in human ILC1 subsets. IMiDs such 
as pomalidomide, which are used in MM treatment, have been shown to stimulate IFN-γ production by 
ILC1s, suggesting a potential therapeutic mechanism involving modulation of ILC1 activity [105].

ILC2

ILC2s have been identified as a cell subset with potential pro-tumorigenic properties [105]. The ILC2/IL-
13/MDSC axis contributes to the establishment of an immunosuppressive microenvironment that may 
facilitate tumor progression [106, 107]. Elucidating the role of this axis in MM could provide valuable 
insights into disease pathogenesis. However, current data on the involvement of ILC2s in MM remain 
limited.

In patients with plasmacytosis, a reduction in bone marrow-resident ILC2s and a concomitant increase 
in circulating ILC2 subsets have been observed. While ILC2s from MGUS patients retain the ability to 
secrete IL-13, this function appears to be lost in asymptomatic MM patients [105].

Studies suggest that ILC2s in MM are activated by IL-33, which induces phenotypic changes and 
upregulation of maturation markers. Nevertheless, these cells exhibit a diminished capacity to produce 
cytokines in response to IL-2 and IL-33 stimulation. These findings do not strongly support a direct role for 
ILC2s in promoting MM cell proliferation. Rather, IL-33 appears to suppress type 1 immune responses 
against MM and promote the expansion of circulating inflammatory populations, such as KLRG1 high ILC2s 
[107].

The observed depletion of ILC2s in MM may be mediated by PD-1/PD-L1 interactions, as ILC2s express 
the PD-1 immune checkpoint receptor, and PD-L1 is abundantly expressed within the MM 
microenvironment [108, 109].
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Despite the fact that ILC2s have been linked to the development of an immunosuppressive milieu in 
MM, the available data are still few and inconsistent. Although PD-1-mediated malfunction and IL-33-driven 
expansion point to a regulatory role, the stage-dependent changes in ILC2 function and inconsistent 
cytokine responsiveness rule out a direct pro-tumorigenic effect. To elucidate their role in MM 
pathophysiology and therapeutic targeting, more research is required.

ILC3

ILC3s have demonstrated pro-tumorigenic activity in various cancers through the release of 
proinflammatory cytokines such as IL-22, IL-17, and IL-23 [110–115]. Although data on the role of ILC3s in 
MM are currently limited, these cells may play a critical role in disease progression, particularly given the 
involvement of several regulatory cytokines known to influence ILC3 activation.

The participation of ILCs in MM—encompassing both their dysfunctions and their potential roles in 
promoting or restraining tumor development—underscores the complexity of the immune 
microenvironment in this disease. A deeper understanding of these interactions could pave the way for 
novel therapeutic strategies aimed at targeting specific ILC subsets to enhance anti-tumor immunity or 
mitigate tumor-promoting effects (see Table 2).

Table 2. Role of innate lymphoid cell populations in MM.

Population MM

ILC Anti-tumor or tumor-promoting activities have been reported [84].
NK cells Anti-tumor activity was described [86, 87].
ILC1 This cell population is able to prevent cancer by producing IFN-γ [89–91, 93, 95–97].

It causes induction of programmed cell death [92].
MM: multiple myeloma; ILC: innate lymphoid cell; NK: natural killer.

ILCs and lymphomas
The role of ILCs in lymphomas remains incompletely understood. Nevertheless, several studies have begun 
to elucidate how ILCs contribute to these malignancies, offering insights that may inform the development 
of novel therapeutic strategies [116–117].

ILCs and non-Hodgkin lymphomas (NHLs)

In patients with NHL, the cytotoxic activity of NK cells is significantly reduced compared to HDs. Multiple 
studies have identified three NK cell subtypes in the peripheral blood of NHL patients: CD56 bright NK cells, 
CD16+ NK cells, and unconventional CD56 dim (uCD56 dim) NK cells [116–117]. Among these, CD16+ NK 
cells—known for their potent cytotoxic capabilities—are notably less prevalent in NHL patients than in 
HDs, suggesting a downregulation of this critical subset. Furthermore, CD16+ NK cells in NHL patients 
exhibit increased expression of CD73 and CD39, ectoenzymes involved in ATP hydrolysis and commonly 
upregulated in inflammatory conditions. Conversely, expression of activation markers such as CD69 and 
KLRG1 is reduced [116]. In CD56 dim NK cells, only CD69 expression is significantly lower in patients 
compared to HDs. These findings suggest that the TME in NHL may impair NK cell-mediated antitumor 
responses.

Within neoplastic lymph nodes of NHL patients, NK cells—particularly CD56 bright and CD16+ 
subsets—show elevated expression of immunosuppressive markers CD73 and CD39 compared to their 
counterparts in peripheral blood, further supporting the notion that the TME contributes to NK cell 
dysfunction [116].

In the context of B-cell lymphomas, both type I and type II natural killer T (NKT) cells have been 
investigated for their roles in lymphoma pathogenesis. Type I NKT cells appear to exert protective 
antitumor effects, whereas type II NKT cells may suppress immune responses. Although research on NKT 
cell involvement in hematologic tumor immune evasion is still in its early stages, findings from a murine T-
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cell lymphoma model indicate that type I NKT cells can inhibit tumor growth. CD1d, a molecule expressed 
on various human hematopoietic cells, plays a role in antitumor immunity, although its precise function 
remains to be fully defined. Some hematologic malignancies secrete glycolipids that interfere with CD1d-
mediated antigen presentation to NKT cells, thereby facilitating immune escape. Notably, recent studies 
have shown that type I NKT cells can eliminate EL-4 T-cell lymphoblastic lymphoma cells both in vitro and 
in vivo in a CD1d-dependent manner [117].

The data show that NHL patients have a significant deficit in NK and NKT cell-mediated immune 
surveillance. A tumor-driven reprogramming of innate immunity is suggested by the decreased frequency 
and changed phenotype of cytotoxic CD16+ NK cells, which are characterized by decreased activation 
markers (CD69, KLRG1) and increased expression of inhibitory ectonucleotidases (CD73, CD39). In the 
TME, where NK cells display an even more marked immunosuppressive character, this dysfunction is 
further aggravated. A complicated regulatory axis is further highlighted by the distinct roles that type I and 
type II NKT cells play in regulating antitumor responses, with type I NKT cells showing promise as 
antineoplastic immune effectors. All of these results suggest that the TME plays a crucial role in regulating 
the activity of innate lymphocytes.

ILCs and digestive lymphomas

The relationship between GI lymphomas and ILCs is an emerging area of research, with intriguing yet 
inconclusive findings. The GI mucosa represents a highly dynamic environment, constantly exposed to a 
wide array of microorganisms, and relies heavily on the rapid and precise immune responses mediated by 
ILCs to maintain homeostasis. ILCs serve as a first line of defense against pathogens such as Helicobacter 
pylori (H. pylori), a well-established etiological agent of gastric lymphoma [118].

NK cells are abundant in GI tissues, particularly within the lamina propria and intraepithelial 
compartments [119, 120]. Their activation thresholds are modulated by environmental cues and 
interactions with commensal microbiota through the regulation of activating and inhibitory receptor 
expression [121, 122]. The functional maturation of mucosal NK cells is dependent on microbial priming via 
dendritic cell interactions [123, 124], and in germ-free mice, NK cell function is significantly impaired due 
to the absence of microbial stimulation [125]. In the context of gastric mucosal inflammation, appropriately 
activated NK cells can exert direct cytotoxic effects against pathogens and tumor cells, while also amplifying 
inflammation through cytokine and chemokine production—processes that may influence the development 
of lymphoproliferative disorders.

Among the helper-like ILC subsets, ILC2s have garnered particular attention in gastric mucosal and 
tumor immunology. ILC2s are essential for maintaining mucosal integrity and promoting tissue remodeling 
[126]. They are predominantly localized in the gastric mucosa and rely on signals from the stomach 
microbiota for their development, particularly via IL-7 receptor (IL-7R) signaling [127]. Unlike ILC2s in the 
intestines or lungs, which are relatively unaffected by the absence of commensal bacteria, gastric ILC2s are 
significantly reduced in germ-free mice [128, 129]. These cells exhibit high IL-7R expression, underscoring 
their dependence on IL-7 signals derived from commensal bacteria [130]. Moreover, commensal microbes 
stimulate the secretion of IL-7 and IL-33 in the gastric mucosa, which in turn activate ILC2s to mount 
immune responses against pathogens such as H. pylori [131].

Targeting ILC2s may offer novel therapeutic strategies for managing gastric inflammation and 
preventing tumor development. However, ILC2s may also contribute to gastric oncogenesis by promoting 
chronic inflammation, supporting tumor growth, polarizing macrophages toward an M2 phenotype, and 
interacting with other immunosuppressive cells such as MDSCs [126, 131]. Notably, the absence of ILC2s 
has been associated with a reduced risk of gastric cancer.

ILC3s, due to their abundance and close relationship with the gut microbiota, are key players in 
intestinal mucosal immunity, although their role in the gastric mucosa is less well defined. ILC3s produce 
IL-22 and IL-33 in response to commensal bacteria, promoting the secretion of antimicrobial peptides and 
indirectly activating ILC2s via IL-33 [131, 132]. Additionally, ILC3s are capable of presenting antigens to 
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CD4+ T cells, potentially enhancing adaptive anti-tumor immune responses [133–135]. However, under the 
influence of TGF-β, ILC3s can transdifferentiate into regulatory ILCs or ILC1s, thereby reducing their pro-
inflammatory and anti-tumor functions [135].

Collectively, accumulating evidence suggests that ILCs contribute to pro-inflammatory immune 
responses, direct cytotoxicity, and the initiation of adaptive immunity following H. pylori infection—
functions that are critical in reducing the risk of gastric lymphoma [136].

ILCs and HL

A recent study has demonstrated direct interactions between ILCs and malignant cells in HL [137]. The 
research showed that a dual cytokine fusion protein, IL-12–IL-2, activates T cells and NK cells more 
effectively than single-cytokine formulations. CD3+ T cells and CD16+ NK cells isolated from peripheral 
blood exhibited enhanced proliferation in response to the IL-12–IL-2 fusion protein compared to IL-12 
alone, underscoring the synergistic effect of these cytokines in amplifying immune responses.

Further analysis revealed that the fusion protein could stimulate T and NK cells upon binding to the 
membrane of CD30+ target cells. Notably, the IL-12–IL-2 fusion protein did not induce IFN-γ release from T 
cells in the absence of target cells, indicating that its immunostimulatory effects are context-dependent. 
When targeted to CD30+ cells via a combined antibody, the fusion protein retained its biological activity and 
effectively stimulated T cells, reinforcing its therapeutic potential [137].

The effects of NK cells in both NHL and HL are summarized in Table 3.

Table 3. Anomalies of ILCs in NHL and HL.

Population NHL HL

NK cells CD56 bright NK cells showed an increased 
downregulation of the maturation molecule 
KLRG1, the activation markers CD38, CD62L, 
and CD94, and an upregulation of CD73 [120].

CD73 and CD39 expression increased in CD16+ 
NKs [115].

Type II NKT cells had a suppressive role in the 
immune response against cancer, while type I 
NKT cells had a protective role [93].

When joined in an IL-12–IL-2 fusion protein, the IL-2 and IL-12 
cytokine domains displayed reciprocal activity to activate T-
cells; they also maintained their activity when connected to 
CD30+ target cells via a fused antibody.

The growth of cancer in mice given saline solution as a control 
was prevented by a dual cytokine fusion protein. Since the 
HRS3-IL12-Fc-IL2 fusion protein had no effect on the growth of 
the C10 hybridoma, the inhibition of cancer growth was target-
antigen-specific [136].

ILCs: innate lymphoid cells; NHLs: non-Hodgkin lymphomas; HLs: Hodgkin lymphomas; NK: natural killer; KLRG1: killer cell 
lectin-like receptor G1. These findings highlight the complex roles of ILCs in lymphomas and suggest promising therapeutic 
avenues that involve modulating ILC activity to enhance anti-tumor immunity or mitigate tumor-promoting effects.

Immunotherapy of hematological diseases
NK cell therapy in AML

While chimeric antigen receptor (CAR) T-cell therapy has shown considerable success in treating B-cell 
malignancies expressing CD19, its application in AML has been limited. This is due to fundamental 
biological differences between these diseases, a narrow therapeutic window, the risk of severe adverse 
effects, and the challenge of identifying universal surface antigens suitable for targeted therapy [138–145].

Allogeneic NK cell therapy represents a distinct and promising form of adoptive cell therapy, 
particularly when combined with allo-HSCT in patients with relapsed or refractory AML. Notably, one study 
demonstrated the successful use of IL-2-stimulated allogeneic NK cells [144]. In another approach, NK cells 
were induced and expanded ex vivo from CD34+ HSPCs derived from HLA-matched umbilical cord blood 
(UCB) [145]. In this study, six out of ten AML patients relapsed at a median of 364 days post-infusion, while 
four patients remained alive. Importantly, the infused NK cells continued to mature in vivo, acquiring KIRs 
and CD16 expression.

These findings underscore both the safety and therapeutic potential of NK cell-based therapies. 
Adverse events of grade 2 or higher were rare [146]. Unlike CAR T-cell therapy, clinical trials involving 
CAR-engineered NK cells have not reported dose-limiting toxicities, even at doses as high as five billion cells 
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per patient [147]. However, a limitation of NK-92 cells—a continuously growing NK cell line used in some 
therapies—is their requirement for irradiation prior to infusion to prevent uncontrolled proliferation, 
necessitating repeated dosing for sustained efficacy. Future strategies may involve genetically engineering 
NK-92 cells with a “kill switch” to eliminate the need for irradiation.

In a phase I clinical trial, NK cells expanded ex vivo using K562 feeder cells expressing membrane-
bound IL-21 (mbIL-21) were well tolerated, with only minor injection-related reactions and limited GVHD 
symptoms reported [148]. At a median follow-up of 14.7 months, all 13 patients remained in remission, 
with only one experiencing relapse. The use of mbIL-21 significantly enhanced NK cell proliferation and in 
vivo persistence. These encouraging results have led to a phase II trial evaluating CSTD002, a haploidentical 
donor-derived NK cell product generated ex vivo using PM21 nanoparticles in combination with mThbIL-
21 and 4-1BB ligand (4-1BBL) [149].

Additionally, research into induced pluripotent stem cell (iPSC)-derived anti-CD19 CAR-NK cells has 
shown promising results in preclinical models of CD19-expressing lymphoid malignancies [150].

In conclusion, given their intrinsic and particular anti-tumor activity, accessibility as an “off the shelf” 
cellular therapy, lower costs, and enhanced safety, CAR-NK cells may have advantages over CAR-T cells 
[151].

Future efforts will focus on customizing CAR-NK cells to specifically target AML cells (Table 4).

Table 4. Some of the ongoing studies on the treatment of acute myeloid leukemia with NK cells.

Study title NCT number Interventions Status Study type

Haploidentical NK-cell Infusion in Acute 
Myeloid Leukemia

NCT01947322 Drug: allogenic NK cells infusion Copleted Interventional

Cytokine-Induced Memory-Like Natural Killer 
Cells (CIML-NK) for Relapsed & Refractory 
Acute Myeloid Leukemia (AML)

NCT05580601 Drug: CIML-NK cells Recruiting Interventional

CD123-CD16-NK Cells Immunotherapy for 
AML

NCT06835140 Drug: donor-derived CD123-
CD16 bispecific antibody-
modified NK cells

Recruiting Interventional

Interleukin-21 (IL-21)- Expanded Natural Killer 
Cells for Induction of Acute Myeloid Leukemia

NCT02809092 Biological: NK cells + 
chemotherapy starting

Unknown 
status

Interventional

NK Cells as Consolidation Therapy of Acute 
Myeloid Leukemia in Children/Adolescents

NCT02763475 Drug: cyclophosphamide

Drug: fludarabine
Procedure: NK cell infusion

Completed Interventional

NK Cell Infusion for Remission Consolidation 
in AML: A Phase II Trial

NCT06783478 Biological: NK cell infusion
Other: placebo

Not yet 
recruiting

Interventional

Safety and Efficacy of Allogenic NK Cells in 
Combination With Chemotherapy in the 
Treatment of r/r AML After Allo-HSCT

NCT05744440 Drug: allogenic NK cells Unknown 
status

Interventional

NK Cell Infusion for Patients With Acute 
Myeloid Leukemia

NCT04221971 Drug: chemotherapy combined 
with NK cell infusion

Unknown 
status

Interventional

Natural Killer (NK) Cell Transplantation for 
AML

NCT00187096 Drug: cyclophosphamide, 
fludarabine, clofarabine, 
etoposide, interleukin-2

Procedure: NK cell infusion
Device: CliniMACS system

Completed Interventional

Study of Anti-CD33/CLL1 CAR-NK in Acute 
Myeloid Leukemia

NCT05215015 Biological: anti-CD33/CLL1 
CAR-NK cells

Unknown 
status

Interventional

Expanded Haploidentical Natural Killer Cells 
as Consolidation Strategy for Children/Young 
Adults With AML

NCT05334693 Biological: expanded 
haploidentical NK cells

Recruiting Interventional

Allogenic CD123-CAR-NK Cells in the 
Treatment of Refractory/Relapsed Acute 
Myeloid Leukemia

NCT05574608 Biological: CD123-CAR-NK cells Unknown 
status

Interventional
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Table 4. Some of the ongoing studies on the treatment of acute myeloid leukemia with NK cells. (continued)

Study title NCT number Interventions Status Study type

CIML NK Cells With Venetoclax for AML NCT06152809 Biological: cytokine-induced 
memory-like natural killer cells

Biological: interleukin-2
Drug: venetoclax

Recruiting Interventional

Reference from: www.clinicaltrials.gov (accessed August 30, 2025). NK: natural killer.

ILCs in MM immunotherapy
CAR-NK cells and MM

CARs are crucial in CAR-T cell therapy, enabling T cells to detect cancer antigens independently of HLA and 
recognize a broader range of antigens compared to natural T-cell surface receptors (TCRs) [152–167].

CAR-NK cell therapy offers several advantages over CAR-T cell therapy. CAR-NK cells can be derived 
from bone marrow or peripheral blood mononuclear cells and are less likely to induce GVHD due to their 
HLA-restricted nature. Moreover, they exhibit a distinct cytokine profile that reduces the risk of cytokine 
release syndrome (CRS) and neurotoxicity. CAR-NK cells can also be generated from iPSCs and 
immortalized cell lines such as NK-92. Notably, CAR-NK cells can bypass tumor immune evasion 
mechanisms by engaging alternative cytotoxic pathways, including those mediated by CD16 and NKG2D 
[168].

Several promising CAR targets have been identified for MM [169, 170]. For instance, CD138-targeted 
CARs expressed in NK-92 cells have demonstrated superior efficacy against MM compared to unmodified 
NK-92 cells [171]. Additionally, elotuzumab, which targets CS1, has shown potential as a CAR-NK target in 
preclinical models [172–174].

Importantly, CAR-NK cell therapy appears to have a more favorable safety profile than CAR-T cell 
therapy [175–182].

Conclusions
In the immunological landscape of hematologic malignancies, ILCs have become important players. They 
play a crucial role in the pathophysiology of certain blood malignancies due to their quick reaction to 
environmental stimuli and capacity to influence immunological responses. Disease development, 
progression, and immune evasion strategies have all been linked to changes in the distribution, phenotype, 
and function of ILC subsets. Furthermore, certain ILC signatures—like surface marker expression and 
cytokine profiles—are becoming more widely acknowledged as possible biomarkers for risk assessment 
and illness classification. In diseases such as AML and lymphomas, where their presence is correlated with 
inflammatory status, immunological suppression, and clinical outcomes, recent research has demonstrated 
the prognostic significance of ILC dysregulation [183].

Thus, a better comprehension of ILC biology in the hematopoietic setting may improve the accuracy of 
diagnosis and aid in the creation of more accurate prognostic models. To completely understand their role 
in the dynamics of hematologic diseases, more research into their ontogeny, plasticity, and interactions 
with the TME is necessary.

ILCs are increasingly recognized as a critical component of CAR-based cellular therapies and are 
considered pivotal to the future of onco-hematology [184, 185]. CAR-NK cells, in particular, show promise 
as a bridging therapy to allogeneic hematopoietic cell transplantation (allo-HCT) or in combination with 
other agents for patients with AML, including those with relapsed or refractory disease.

Ongoing research and clinical trials are exploring various generations of CAR constructs and their 
therapeutic efficacy. However, overcoming adverse effects such as CRS and improving target selectivity 
remain essential for optimizing CAR-cell therapy. Future strategies should aim to enhance therapeutic 
efficacy while minimizing toxicity. In this context, investigating the interplay between CAR therapy and 
oxidative stress may prove crucial. Elevated levels of reactive oxygen species (ROS), produced by both 

http://www.clinicaltrials.gov
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cancer cells and tumor-infiltrating immune cells, contribute to a hostile TME that impairs immune function 
[186–191].

Reducing ROS levels may help counteract this immunosuppressive effect. For example, studies have 
shown that agents such as histamine or ceplene can reduce ROS production by monocytes, thereby 
preserving the cytotoxic function of NK and T cells [192–197]. Additionally, enhancing the production of 
molecules that promote anti-inflammatory cytokines while suppressing pro-inflammatory cytokines could 
further improve clinical outcomes.

Overall, CAR-NK cell therapy holds significant potential to advance clinical practice and improve 
prognosis in hematologic malignancies.
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