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Abstract
Cancer remains one of the leading causes of morbidity and mortality globally, driven by genetic alterations, 
uncontrolled cell proliferation, and metabolic reprogramming. The tumor microenvironment (TME) is a 
highly dynamic and heterogeneous system composed of tumor cells, immune cells, stromal cells, and 
extracellular matrix (ECM) components, which influence cancer progression. Tumor-associated 
macrophages (TAMs), especially those polarized into the M2 phenotype, play a critical role in modulating 
this environment. M2 macrophages promote tumor progression through mechanisms such as immune 
suppression, angiogenesis, and metastasis. This polarization is heavily influenced by the altered metabolic 
landscape of tumors, where the Warburg effect leads to excessive lactate production, which in turn drives 
M2 polarization through G protein-coupled receptor 132 (GPR132). M2 macrophages secrete cytokines like 
IL-10, transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF), which 
contribute to immune escape, tumor growth, and metastasis. The metabolic shifts within TAMs, especially 
the transition from oxidative phosphorylation to glycolysis, further support the pro-tumoral functions of 
these cells. This review explores the intricate relationship between M2 macrophage polarization bias, 
tumor metabolism, and the resulting impact on cancer progression, highlighting the potential of targeting 
these pathways for therapeutic strategies. The findings suggest that M2 macrophage polarization could 
serve as a key prognostic factor for cancer outcomes and provide a basis for future research into 
therapeutic interventions that target macrophage polarization and the tumor metabolic milieu.
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Introduction
Projections for 2025 indicate that the United States will have about 2,041,910 new cancer cases and 
618,120 cancer-related deaths [1]. Estimates indicate that about one in five men or women will develop 
cancer in their lifetime, while roughly one in nine men and one in twelve women will die from cancer [2].

Cancer is a group of genetic diseases resulting from the accumulation of alterations in the genome of 
the cells [3]. Cancer can originate from any cell in the body [4]. Alterations in the cell’s genome produce 
high cell proliferation and the development of tumors, benign or malignant [5]. Malignant tumors grow 
uncontrollably and metastasize to other parts of the body, different from the origin of the tumor [6]. 
Tumors disseminate to distant sites through direct, lymphatic, and hematogenous spread [7, 8].

As mutations keep accumulating, cancer develops certain key features denominated “hallmarks of 
cancer” (Figure 1). As a result of this incessant mutation, tumors are formed of cancer cell populations with 
different genotypes and phenotypes [9]. This heterogeneity and the cancer cell’s adaptability dictate the 
progression, dissemination, and treatment of the tumor [5, 9].

Figure 1. The hallmarks of cancer. The image shows the main features of cancer, including its capacity to maintain 
proliferative signaling and promote the tumor’s survival and dissemination. Remarkably, one feature is the deregulation of 
cellular energetics, which translates into the opportunistic way of cancer cells to acquire nutrients. Reprinted from Senga et al. 
[5]. © 2021 The Authors. CC BY 4.0

Otto Warburg defined the “Warburg effect” as an irreversible damage to cell respiration and an 
increase in the cell fermentation [10]. Malignant metabolism is a term that refers to cancer cells’ 
metabolism and altered aerobic, glycolysis also known as “Warburg effect” [11].
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The Warburg effect provides the cancer cell with more than just metabolic advantages; it also supports 
rapid proliferation [10, 12]. An altered metabolism is part of a “hallmark of cancer”, providing a sustaining 
proliferative signaling and deregulating cellular energetics, which accelerates malignant progression [5, 
12]. Hypoxia-inducible factor 1 alpha (HIF-1α) drives the Warburg effect by upregulating the enzymes 
necessary for aerobic glycolysis, such as hexokinase (HK), lactate dehydrogenase A (LDHA), transporters 
like glucose transporters (GLUTs) and monocarboxylate transporters (MCTs) (Figure 2) [12–15]. In cancer 
cells, glucose metabolism is diverted through the glycolytic pathway, which converts glucose to pyruvate 
and subsequently to lactate, even under aerobic conditions [12, 15]. Key isoforms of HK2, pyruvate kinase 
M2 (PKM2), and LDHA are overexpressed, enabling rapid ATP generation [14]. Critically, the terminal 
step—conversion of pyruvate to lactate by LDHA—not only sustains tumor growth but also acidifies the 
microenvironment through lactate export via MCTs [16]. As a result, cancer cells develop an opportunistic 
way to acquire nutrients [13]. Furthermore, the Warburg effect is a prevalent feature in aggressive cancers 
[17, 18].

Figure 2. The role of tumor metabolism, the immune microenvironment, and hypoxia. Tumors deplete the 
microenvironment of glucose due to a high expression of glucose transporter 1 (GLUT1) transporters. Malignant cells 
abundantly produce lactate as a consequence of aerobic glycolysis, and lactate is released into the tumor microenvironment 
through monocarboxylate transporters (MCTs), resulting in the acidity of the microenvironment. Lactate activates hypoxia-
inducible factor 1 alpha (HIF-1α), which promotes glucose metabolism by upregulating hexokinase (HK) and pyruvate 
dehydrogenase kinase 1 (PDK1). HIF-1α promotes vascular endothelial growth factor (VEGF) production, thereby promoting 
neo-vessel formation and metastasis. Lactate-rich, glucose-low, and hypoxic environments provoke the retention of T regulatory 
cells (Treg), reinforcing an immunosuppressed microenvironment. LDHA: lactate dehydrogenase A. Adapted from Schreier et al. 
[15]. © 2023 The Authors. CC BY 4.0

Other oncogenic drivers of metabolic programming are Myc proto-oncogene, nuclear factor erythroid 
2-related factor 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) [19, 
20]. Myc is a transcriptional regulator that reprograms tumor cell metabolism to meet the demands of rapid 
proliferation [19]. Myc enhances glycolysis by upregulating GLUTs and key aerobic glycolysis enzymes 
(HK2, LDHA, PKM2) while promoting glutaminolysis through glutaminase to sustain the tricarboxylic acid 
(TCA) cycle and nucleotide synthesis [20]. The effects of Myc suppress tumor immunity by promoting 
lactate production and upregulating immune checkpoints via programmed death ligand 1 (PD-L1) [19]. 
This transcriptional regulator also promotes mitochondrial biogenesis and lipid production, creating a 
hypermetabolic state [19]. The transcription factor Nrf2 serves as a critical defender against oxidative 
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stress in tumors by scavenging reactive oxygen species (ROS). Nrf2 protects cancer cells from apoptosis 
[21]. NF-ĸB activates via toll-like receptors (TLRs) [22]. The effects of NF-ĸB are the upregulation of HK2 
and GLUT1, but it also promotes TAM’s IL-10 and transforming growth factor β (TGF-β) secretion [22, 23]. 
NF-ĸB also boosts indoleamine 2,3-dioxygenase (IDO), which converts tryptophan into kynurenine. This 
activates aryl hydrocarbon receptor (AhR) on Tregs, increasing this population, but as a consequence 
diminishing the immune response against cancer cells [24].

Tumor microenvironment
Tumors are not just clones of malignant cells. Tumors are a mixture of different groups of cell types, such as 
neutrophils, macrophages, lymphocytes, natural killer (NK) cells, natural killer T (NKT) cells, fibroblasts, 
etc. [25]. Macrophages and dendritic cells (DCs) are some of the main populations of immune cells that 
infiltrate the tumor tissue [26]. Solid tumors contain tumor-associated myeloid cells (TAMC), which include 
(I) TAMs, (II) Ang2-expressing monocytes, (III) myeloid-derived suppressor cells (MDSCs), (IV) tumor-
associated neutrophils (TANs), and (V) tumor-associated dendritic cells (TADCs) [27]. Gene expression 
profiles in tumors influence the cellular composition of the tumor microenvironment (TME) [28].

Beyond the tumor’s metabolic adaptability, stromal cells exhibit what is known as “reverse Warburg 
effect” [29]. Cancer-associated fibroblasts (CAFs) metabolize glucose to lactate, which is important for 
tumor cells through MCTs for oxidative phosphorylation (OXPHOS) [29]. This metabolic symbiosis 
promotes metastasis and therapy resistance, while it simultaneously fills the TME with lactate, promoting 
M2 polarization [16, 17, 30].

Extracellular matrix (ECM) also exhibits tumor-associated changes, which promote the progression of 
cancer [25]. ECM remodeling is an important feature in tumorigenesis, and it is a vital point of cell extrinsic 
metabolic regulation [31]. The cellular distribution of tumors is not random; pathologists use the 
morphology and distribution of cancer cells as criteria to identify them [25]. The remodeling in the ECM is 
promoted by an alteration in the ECM deposition and degradation homeostasis as a consequence of tumor-
secreted factors like TGF-β, vascular endothelial growth factor (VEGF), and matrix metalloproteinases 
(MMPs) [7, 25]. The interstitium exhibits a change in composition depending on the nutrient consumption 
of the tumor and its metabolism [32].

TLRs are pattern recognition receptors expressed on a variety of immune cells—including 
macrophages, DCs, and lymphocytes—as well as on many tumor cell types [22]. While they primarily 
function as damage-associated molecular patterns/pathogen-associated molecular patterns 
(DAMPs/PAMPs) recognizers, TLRs also act as metabolic regulators [33]. TLR3 induces a metabolic switch 
from OXPHOS to glycolysis, leading to lactate accumulation [34]. The metabolic transition promoted by 
TLR3 involves the transcription factor HIF-1α, which allows tumors and some immune cells (like 
macrophages and DCs) to adapt to hypoxia [34].

In most solid tumors, hypoxia is a key feature of the TME, which involves oxygen partial pressure (pO2) 
below 15 mmHg [32]. The ECM is remodeled by the influence of hypoxia, which contributes to the 
development of altered metabolism [35].

Cancer cells can adapt to their changing microenvironment. Specifically, cancer stem cells (CSCs) 
present a different transitioning phenotype between a quiescent mesenchymal-like (M) and a replicative 
epithelial-like (E), also called epithelial-mesenchymal transition (EMT) [18]. CSCs rely on glutamine and 
lactate metabolism imported from the stroma [9]. Moreover, CSCs produce TGF-β, which biases the 
macrophage polarization toward an M2 phenotype [36]. ROS play a pivotal role in regulating EMT in breast 
cancer stem cells (BCSCs), acting both as signaling molecules and inducers of oxidative stress [37]. 
Moderate ROS levels, often generated via mitochondrial activity or enzymes like NADPH oxidase (NOX) and 
MMP-3, can activate EMT-related pathways and transcription factors such as snail and NF-κB, promoting 
mesenchymal phenotypes and BCSC-like properties [37]. BCSCs typically maintain lower ROS levels than 
non-stem cancer cells through upregulated antioxidant defenses, preserving their quiescence, therapy 
resistance, and plasticity [37]. This redox balance allows BCSCs to transition between epithelial and 
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mesenchymal states during metastasis [37]. EMT is fundamental in the process of cellular invasion and 
metastasis. The interplay between EMT and metabolic plasticity suggests the capacity of tumor cells to 
adapt to nutrient-restricted environments due to metabolic reprogramming [38]. Cancer cells’ plasticity 
provides the cell with the capability of switching between distinct stages of differentiation in order to 
survive in the tumor’s harsh microenvironment [9]. The metabolic reprogramming of tumors and immune 
cells is driven by oncogenic pathways and immunosuppressive metabolites, as summarized in Table 1. 
These molecules establish a protumoral environment by polarizing macrophages and disrupting effector 
immune cells.

Table 1. Oncogene and metabolite effects in the tumor microenvironment

Category Molecule Effect Reference

HIF-1α Upregulates glycolysis

Promotes M2 polarization via lactate
Suppresses CD8+ T cells

[12–14]

Myc Enhances glutaminolysis and glycolysis
Drives immune evasion by lactate and PD-L1 upregulation

[19, 20]

NF-ĸB Induces IL-10 and TGF-β secretion, inducing M2 polarization [22, 34]

Oncogenes

Nrf2 Antioxidant response suppresses ROS
Sustains immunosuppression

[12, 13]

Lactate Activates GPR132 inducing M2 polarization
Inhibits NK and CD8+ T cells

[43, 53]

L-arginine Impairs T cell function (anergy) [46, 48]
Tryptophan (kynurenine) Expands T reg population through AhR activation [42, 55]

Metabolite

Glutamine Promotes T cell exhaustion [13, 42]
HIF-1α: hypoxia-inducible factor 1 alpha; PD-L1: programmed death ligand 1; NF-ĸB: nuclear factor kappa-light-chain-enhancer 
of activated B cells; IL-10: interleukin-10; TGF-β: transforming growth factor β; Nrf2: nuclear factor erythroid 2-related factor 2; 
ROS: reactive oxygen species; GPR132: G protein-coupled receptor 132; NK: natural killer; AhR: aryl hydrocarbon receptor

Macrophages
Macrophages are part of the mononuclear phagocytic system and are heterogeneous cells that show very 
different functions and phenotypes depending on distinct microenvironment cytokines [39]. Under 
different stimuli, undifferentiated macrophages can be polarized into two forms, and they exhibit different 
functions (Table 2) [40]. Classically activated macrophages (M1) are involved in host defense and are 
activated by interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and have antitumoral activity. 
Alternatively activated macrophages (M2) are activated by IL-10, IL-4, and IL-13; they promote wound 
healing and regulate immune responses [40]. During diseases, macrophages polarize to a specific 
phenotype depending on epigenetic and genetic factors [40]. Epigenetic factors such as DNA methylation, 
mediated by enzymes like DNA methyltransferase 1 (DNMT1) and DNMT3b, affect the balance between M1 
and M2 macrophages, with DNMT1 promoting M1 polarization by silencing suppressor of cytokine 
signaling 1 (SOCS1) and DNMT3b modulating M1/M2 differentiation [40]. Conversely, ten-eleven 
translocation 2 enzyme (TET2) facilitates inflammatory responses through demethylation [41]. Histone 
modifications further refine macrophage polarization, where enzymes such as protein arginine 
methyltransferase 1 (PRMT1), SET domain-containing lysine methyltransferase 7 (SET7), and Jumonji 
domain-containing protein 3 (JMJD3) enhance M1 activation, while SET domain bifurcated 2 (SETDB2), 
enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1) promote M2 polarization 
[21]. In the TME, epigenetic changes in TAMs contribute to immunosuppression, with factors like BRD4, 
ERK-1/2 phosphorylation, and histone deacetylation reinforcing their tumor-supportive roles [21, 41]. 
However, inhibitors such as suberoylanilide hydroxamic acid (SAHA) have shown potential in reducing 
macrophage migration and immune suppression, highlighting the therapeutic potential of targeting these 
epigenetic mechanisms in cancer and chronic inflammatory diseases [21]. M2 macrophages can be divided 
into 4 subtypes: M2a, M2b, M2c, and M2d [40, 42]. M2 macrophages display pro-malignancy and anti-
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inflammatory activities (Figure 3) [16, 27, 36]. They promote the tumor progression by causing 
angiogenesis and a metastasis of the tumor [36]. Most TAMs are thought to resemble M2 macrophages [43, 
44]. These cells play an important role in connecting inflammation with cancer.

Table 2. Differences between M1 and M2 macrophages

Macrophages M1 M2

Activation TLR, TNF-α, IFN-γ, CSF2 IL-4, IL-10, IL-13, TGF-β, PGE2
Secretion IL-6, IL-8, IL-1β, IFN-γ, TNF-α IL-10, IL-4, EGF, TGF-β, IL-19
Markers HLA-DR, CD11c, CD86, iNOS, pSTAT1 CD136, CD204, CD206, VEGF, cMAF
Function Pro-inflammatory, microbicidal, anti-tumoral Anti-inflammatory, wound healing, pro-tumoral
TLR: toll-like receptor; TNF-α: tumor necrosis factor alpha; IFN-γ: interferon-gamma; CSF2: granulocyte-macrophage colony-
stimulating-factor 2; IL: interleukin; TGF-β: transforming growth factor β; PGE2: prostaglandin E2; EGF: epithelial growth factor; 
HLA-DR: human leukocyte antigen-DR isotype; CD: cluster of differentiation; iNOS: inducible nitric oxide synthase; pSTAT1: 
phosphorylated signal transducer and activator of transcription; VEGF: vascular endothelial growth factor; cMAF: cellular 
microenvironment-associated factor. References: [24, 58]

Figure 3. Role of tumor-associated macrophages. M2 macrophages contribute to tumor development by interacting with the 
tumor microenvironment (TME). Tumor-associated macrophages (TAMs), recruited by CSF-1 secretion, promote cell 
proliferation by secreting growth factors such as EGF and FGF. VEGF, PDGF, TGF-β, and MMPs produced by macrophages 
induce neoangiogenesis, lymphangiogenesis, and facilitate tumor metastasis and extracellular matrix (ECM) remodeling. TAMs 
also impair the function of immune cells, including dendritic cells, CD8+ T cells, and NK cells, thereby creating an 
immunosuppressive effect. CSF-1: colony-stimulating factor-1; EGF: epithelial growth factor; FGF: fibroblast growth factor; 
VEGF: vascular endothelial growth factor; PDGF: platelet-derived growth factor; TGF-β: transforming growth factor β; MMPs: 
matrix metalloproteinases; NK: natural killer; PD-L1: programmed death ligand 1. Adapted from Padzińska-Pruszyńska et al. 
[56]. © 2024 The Authors. CC BY 4.0

In certain circumstances, TAMs produce IL-10 and TGF-β. This fact, in turn, induces monocytes to 
express the molecule PD-L1, which leads to the suppression of cytotoxic T cell responses against the tumor 
[24, 45]. TGF-β secreted by M2-like macrophages prevents cytolytic activities of NK, and it inhibits the 
maturation and functioning of DCs [46]. IL-10 suppresses the T-cell differentiation and inhibits the function 
of cytotoxic T-cells and NK [47]. M2-like macrophages are rich in arginase-1 (Arg1), which promotes 
dysregulation in the T-cell receptor (TCR), causing CD8+ T-cell anergy [48]. As a consequence of tumor 
metabolism, additional effects arise from the mechanisms involved in HIF-1α expression, including the 
inhibition of CD8⁺ T cells—mediated by mTOR-driven accelerated glycolysis—and the recruitment of Tregs 
through the chemokine (C-C motif) ligand 20 (CCL20)/C-C chemokine receptor type 6 (CCR6) axis [14, 43].
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The role of TAMs in the TME is hard to define due to their heterogeneity in the TME; however, TAMs 
can display remarkable plasticity and switch from one phenotype to another depending on the TME signals 
[49, 50]. Macrophage anti-tumoral or pro-tumoral activity of macrophages is TME-influenced [49]. 
Macrophages are highly sensitive to variations in concentrations of metabolites, oxygen tension, 
acidification, and other molecular components associated with alterations in the TME [42, 51].

In homeostatic conditions, macrophages exhibit base line metabolism (OXPHOS) [51]. In contrast, there 
is a metabolic adjustment featured in macrophages in TAMs (aerobic glycolysis and amino acid 
metabolism) [42, 52]. Macrophages are highly adaptable, with M1 types showing increased glycolysis, 
glutathione, ferritin, cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) activity, but low 
COX-1 and Arg-1 [42]. In contrast, M2 macrophages rely on fatty acid oxidation, with lower glutathione, 
ferritin, and COX-2, but higher COX-1 and Arg-1 activity, and reduced iNOS function [46].

M2 macrophages deplete L-arginine through Arg-1 activity, starving T cells of this nutrient, impairing 
TCR signaling [48].

M2 polarization
TAMs are the largest population of stromal cells that suppress antitumoral activity and stimulate tumor 
progression [16]. In humans, macrophage polarization is a continuum that comprises two extremes, from 
the classically M1 macrophages to the alternatively activated macrophages [39]. Due to the insufficient 
blood perfusion, consequent hypoxia, and glycolytic cell metabolism, there is an excessive amount of lactic 
acid in the TME [14, 18]. Altered cancer cell metabolism enhances the production of lactate, this metabolite 
is considered the canonical tumor waste product, and it is also considered one of the regulators of 
intracellular communication within the TME [32, 43]. In lactate-producing tumors, TAMS originate through 
the action of G protein-coupled receptor 132 (GPR132) [11, 16]. GPR132 is highly expressed in 
macrophages, and it functions as an acidic signal-sensing receptor [16, 30]. Tumor-produced lactate makes 
the extracellular tumor pH around 6.5–7 in comparison to normal extracellular pH values being 7.4 [16, 32]. 
It has also been reported that the bias in macrophage polarization is due to IL-4, IL-10, and IL-13 
synthesized by LTCD4+ cells and growth factors secreted by tumor cells, such as colony-stimulating factor-1 
(CSF-1) and GM-CSF [16, 36].

Lactate has also been found to repolarize M1-like macrophages towards the M2-like phenotype [43]. 
TAM densities have been found to be higher in areas of the tumor that are hypoxic, avascular, and necrotic 
[53]. TAMs tend to exhibit a M2-like phenotype bias; this macrophage phenotype secretes cytokines such as 
VEGF, TGF-β, and IL-8 [40]. Alternatively activated macrophages’ cytokines are proangiogenic factors and 
matrix remodeling promotors; they also have an effect on adaptative immunity and immune escape, 
contributing to cancer cell proliferation, survival, and metastasis [11, 16, 23]. Proangiogenic factors such as 
VEGF promote tumor vascularization, and they stimulate the capacity of the tumor to metastasize [23]. 
However, M2 macrophages are also believed to foster cancer metastasis through cytokines including 
CCL17, CCL18, CCL22, IL-10, VEGF, and TGF-β [16]. The major pathogenic activity of TAMs is their 
suppressive effect on anticancer immune response [23]. TGF-β and IL-2 secreted by M2 macrophages 
weaken the anticancer ability of NK cells and cytotoxic lymphocytes [43]. A positive feedback loop to 
promote metastasis has been described, lactate produced by cancer cells and GPR132 on macrophages form 
a ligand-receptor pair, which induces metastasis and paracrine invasion [16].

Ji et al. [54] recently explored the role of the YTH N6-methyladenosine RNA binding protein 2 
(YTHDF2) gene in macrophage polarization. In their study, knockdown of YTHDF2 in gastric cancer cells 
resulted in a reduced proportion of CD206+ (M2) macrophages, while the proportion of CD80+ (M1) 
macrophages increased [54]. Nonetheless, additional studies are needed, as YTHDF2 displays a complex 
dual role in cancer, functioning both as an oncogene in some contexts and as a tumor suppressor in others 
[54]. This intricate behavior could be key to understanding its potential as a therapeutic target. Another 
current study established that extracellular cell-free mitochondrial DNA induced by kinase inhibitors in 
hepatocellular carcinoma (HCC) polarized macrophages to an M2 phenotype through the TLR9 pathway 
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[55]. Overall, macrophage polarization is not induced by a single mechanism; it is a TME-influenced 
phenomenon [43, 49, 54, 55].

On the other hand, TLR agonists push the TAMs to a M1-like phenotype bias [50]. TLR7 and TLR3 
promote a switch to M1-like phenotype macrophages [50]. However, not all TLRs are associated with tumor 
inhibition, and their effect/pathway changes according to the type of cancer [22].

Discussion
Cancer is a highly heterogeneous disease driven by genetic instability and dynamic interactions within the 
TME [17, 32]. A hallmark of this disease is metabolic reprogramming—particularly the Warburg effect—
which enables cancer cells to sustain high proliferation rates and survive in nutrient- and oxygen-deprived 
environments. This metabolic shift results in the excessive production of lactate, a metabolite increasingly 
recognized as more than just a waste product [14, 17, 18]. Emerging evidence highlights lactate’s role as a 
signaling molecule, particularly in the modulation of immune cells such as TAMs [32, 40, 43, 53]. Malignant 
metabolism orchestrates cancer cell properties through the production of oncometabolites such as lactate, 
the canonical tumor waste product [5, 12]. Tumor-produced lactate induces the polarization of TAMs 
towards an M2 phenotype through the GPR132 acidic-signal sensing [11, 16]. M2 macrophages play an 
important role in tumor progression, angiogenesis, immune escape, and metastasis [23, 43, 56].

M2 TAMs are associated with more aggressive features of the tumor, augmenting tumor invasiveness, 
progression, and further dissemination [44, 57]. The most common markers for M2 TAMs are CD206, 
CD204, and CD163 [58]. Remarkably, CD136+ is a highly specific marker for M2 macrophages [59]. In HCCs 
study, CD206+ macrophages are significantly associated with more aggressive tumor properties such as 
multiple tumor numbers and advanced tumor, node, metastasis (TNM) stage, as CD206+ macrophages are 
linked to poor overall survival [44]. Comparably, a study on non-functional pituitary adenomas (NFPAs) 
cells cultured with M2 TAMs exhibited significant invasion and proliferation compared to NFPAs cultures 
with M1 TAMs [57]. M2 TAM polarization was significantly associated with a bigger tumor size and an 
advanced TNM stage in breast cancer [60]. Similarly, triple-negative breast cancer with high Ki67 was 
associated with M2 polarization [56].

These findings allow us to propose M2 polarization in the TME as a prognostic factor in different types 
of cancer [56, 57, 60]. Understanding the dynamics of the tumor and its microenvironment can provide a 
new perspective in cancer diagnosis, prognosis, and treatment.

For future research, this pivotal aspect in tumor physiology can be targeted to improve treatment 
outcomes. Despite these advances, key challenges remain. TME is incredibly complex and variable, making 
it difficult to generalize TAM behavior across tumor types. Moreover, the ability of TAMs to shift between 
phenotypes complicates efforts to selectively target the M2 subset. Nonetheless, understanding how tumor 
metabolism shapes immune cell function presents an exciting frontier in cancer therapy.

Conclusions
The interplay between cancer metabolism and the immune landscape of the TME is central to tumor 
progression. M2 macrophages play a crucial role in tumor progression by promoting immune suppression, 
angiogenesis, and metastasis. Their polarization is driven by metabolic changes like the Warburg effect, 
which enhances lactate production and an immunosuppressive TME. Due to their association with poor 
clinical outcomes in various cancers, M2 macrophages serve as potential prognostic biomarkers and 
therapeutic targets. Further research should aim to elucidate the molecular mechanisms underpinning M2 
polarization and identify specific inhibitors that can selectively modulate this process.
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