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Abstract
The global socioeconomic and health impacts of microbial diseases cannot be overemphasized. The 
emergence of the coronavirus in 2019 and the ongoing threat of infectious diseases, such as HIV/AIDS, 
tuberculosis, and hepatitis, remind us of the impact these infections have on economic stability and global 
health. Gaps in the treatment of microbial infections and their contribution to increased mortality 
necessitate holistic and long-term solutions, as opposed to antibiotics, which were previously relied upon. 
Immunotherapy is becoming increasingly promising for the treatment of microbial infections. This study 
reviews recent advances in immunotherapeutic strategies, particularly cytokine-based therapies, adoptive 
cell therapy, monoclonal antibodies, and immune checkpoint inhibitors, for the control of antimicrobial 
resistance. New inventive approaches, such as chimeric antigen receptor T cell therapy and mucosal-
associated invariant T cells, have been discussed in the context of bacterial and viral infections, highlighting 
promising results from clinical trials and addressing the challenges of toxicity, immune evasion, and 
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therapy resistance that are inherent in these diseases. Future priorities include optimizing combination 
therapies and exploring new immunomodulatory targets to improve the effectiveness of these 
interventions in treating antimicrobial resistance and other infectious diseases.
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Introduction
Antimicrobial resistance (AMR) is one of the most significant public health challenges of the twenty-first 
century, driven by genetic mutations that diminish the efficacy of antimicrobial drugs [1]. Emerging almost 
immediately after the introduction of antimicrobials, AMR has accelerated in recent years, posing a serious 
threat to modern medicine [2]. In 2019, bacterial AMR was directly responsible for approximately 1.27 
million fatalities worldwide and contributed to over 5 million deaths [3, 4]. The number of deaths directly 
linked to AMR is expected to increase dramatically, with an estimated 39 million deaths between 2025 and 
2050, corresponding to almost three deaths per minute [5]. The emergence of drug-resistant pathogens has 
spurred unwavering scientific interest in the development of new antimicrobials, leaving a dwindling 
arsenal against bacterial and viral diseases [6]. However, the misuse and overuse of these drugs have 
expedited the emergence of new resistant strains, rendering once-treatable infections increasingly 
untreatable. Resistance compromises treatment efficacy, necessitating the urgent development and 
implementation of novel strategies to counteract this global dilemma [1]. Clinically significant viral DNA 
and RNA diseases, such as HIV, hepatitis C, and SARS-CoV-2, and bacterial infections, such as gram-positive 
pathogens (e.g., Staphylococcus and Streptococcus spp., Mycobacterium spp.) and gram-negative bacteria 
(e.g., Escherichia coli, Pseudomonas aeruginosa, and Actinobacter spp.), exemplify the grave concerns posed 
by AMR. Diverse resistance patterns exhibited by viruses and bacteria to currently available antimicrobial 
agents have become a critical public health issue, complicating the diagnosis and treatment of an expanding 
range of diseases that were once treated with conventional therapies [2]. This underscores the need for 
robust preventive surveillance and control measures.

Antimicrobial compounds have been employed since ancient times, and natural extracts have been 
used historically for their therapeutic properties [7]. Numerous antibacterial drugs have been produced 
since Fleming discovered penicillin in 1929, which had a significant impact on global human mortality and 
health [8]. In recent decades, microbial pathogens such as HIV-1 and HIV-2, the 1918 influenza virus, the 
Middle East respiratory disease coronavirus, and SARS-CoV-2 have repeatedly emerged in human 
populations from domestic and wild animal reservoirs [9]. These emerging and re-emerging infectious 
diseases have exposed vulnerabilities in healthcare systems, particularly in underdeveloped regions, and 
emphasize the urgent need to develop innovative therapeutic strategies against them. In pursuit of 
universal health coverage and improved life expectancy, a novel treatment modality is revolutionizing 
healthcare. Immunotherapy offers an innovative solution, particularly for immunocompromised patients, 
by enhancing host defense against opportunistic infections. Recent advancements in immunotherapeutic 
strategies have proven instrumental in managing infectious diseases that affect humans. These approaches 
are pivotal in the broader context of disease prevention and control in humans, with a wider approach to 
One Health.

Immunotherapy is becoming increasingly popular for treating various diseases by efficiently 
modulating the host’s innate and adaptive immune responses, thereby assisting in the management of 
several harmful microbial diseases [10]. These agents have diverse mechanisms of action, ranging from 
enhancing host immunity [cytokine therapy, immune checkpoint inhibitors (ICIs), and vaccines], targeting 
pathogenic determinants (monoclonal antibodies), and modifying immune cells [invariant killer T cells 
(iNKTs), mucosal-associated invariant T cells (MAITs), and adoptive T cell therapy], which shows a 
promising prospect in the fight against microbes. This review explores the recent advances, challenges, and 
future perspectives of immunotherapeutic strategies for clinically important bacterial and viral diseases. By 
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analyzing the current state of the field and identifying areas for further research, we hope to shed light on 
the role of immunotherapy in combating the growing threat of AMR and new infectious illnesses (Figure 1).

Figure 1. Conceptual pathway of immunotherapy. IFN-α: interferon-α. Created in BioRender. Ahmed, M. (2025) https://
BioRender.com/5vsqipu

Cytokine-based therapies
Cytokines are small proteins that are essential for cell signaling within the immune system. These proteins 
play critical roles in the regulation of immune responses, inflammation, and hematopoiesis [11]. The 
primary cytokines used in these therapies include interleukins (ILs), interferons (IFNs), tumor necrosis 
factors (TNFs), and colony-stimulating factors (CSFs). Cytokine-based therapies are powerful tools for 
treating bacterial and viral diseases. Despite challenges such as toxicity and delivery issues, recent 
advances and combination strategies offer promising solutions. Granulocyte-macrophage colony-
stimulating factor (GM-CSF) has been shown to be effective in stimulating the activation and proliferation of 
granulocytes and macrophages, thus boosting the immune response against bacterial pathogens. Currently, 
it is undergoing clinical trials for sepsis and bacterial pneumonia with promising initial outcomes [12]. For 
instance, an in vivo study revealed that a newly developed albumin-fused GM-CSF exhibited improved 
biostability and increased dendritic cell populations, which are key to initiating a strong immune response 
against Mycobacterium tuberculosis (MTB) [13]. Moreover, recombinant human interleukin-2 (rhIL-2) has 
been tested as adjunctive immunotherapy in patients with multidrug-resistant tuberculosis (MDR-TB) to 
improve treatment efficacy and shorten treatment duration [14]. Additionally, the cytokine IL-7, which 
supports immune hematopoiesis, has been evaluated in several clinical trials for treating lymphopenia in 
patients with sepsis suffering from excessive inflammation, known as cytokine storms [15].

IFN-based therapies have shown significant promise in the treatment of viral diseases. IFN-α has been 
extensively used to treat chronic viral infections such as hepatitis B and C [16]. Recent clinical studies have 
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demonstrated its effectiveness in significantly reducing viral load and improving liver function, thereby 
offering substantial therapeutic benefits. IFN-β, traditionally used in the management of multiple sclerosis, 
is currently being investigated for its potential use in treating COVID-19 [17]. Early clinical trials have 
indicated that IFN-β may reduce viral replication and modulate inflammatory responses, providing a 
promising therapeutic avenue for SARS-CoV-2 infections. Similarly, IL-7 has emerged as a potent 
therapeutic agent for viral infections, primarily because of its ability to enhance T cell recovery and 
function. Current clinical trials are evaluating its efficacy in treating HIV and post-viral fatigue syndromes, 
suggesting broader applications in viral immunotherapy [18].

The efficacy of cytokine therapies can be significantly enhanced by combining them with other 
therapeutic strategies. For example, the combination of IFN-α with ribavirin has substantially improved the 
treatment of hepatitis C, demonstrating the synergistic effects of cytokines and antiviral combinations [19]. 
Similarly, IFN-β combined with remdesivir has been investigated for its synergistic potential against SARS-
CoV-2, presenting a promising therapeutic strategy for COVID-19 [20–22]. Furthermore, cytokines are 
paired with monoclonal antibodies or ICIs to amplify antitumor and anti-infective responses. These 
combinations are being examined in various clinical settings to optimize immunotherapy effectiveness. IL-6 
inhibitors, such as tocilizumab, have also shown potential in managing severe bacterial infections by 
regulating inflammatory responses [23]. This highlights the therapeutic versatility of cytokine inhibitors in 
the treatment of complex bacterial diseases.

However, cytokine therapies present several challenges. High doses of cytokines can result in severe 
side effects, including systemic inflammation, cytokine release syndrome, and organ damage. Efficient 
delivery of cytokines to target tissues is challenging because of their rapid degradation and off-target 
effects. Additionally, prolonged cytokine use can lead to immune tolerance or resistance, diminishing their 
efficacy over time [24]. Possible solutions to these challenges include the development of nanoparticle-
based delivery systems to protect cytokines from degradation and enhance their targeted delivery. These 
advanced delivery systems have the potential to significantly improve the efficacy of cytokine therapy. 
Efforts are also being made to design modified cytokines with enhanced stability and reduced toxicity. 
These engineered cytokines offer promising solutions to the challenges associated with cytokine therapies 
[25]. Ongoing research is aimed at determining the optimal dosing and timing of cytokine administration to 
maximize efficacy while minimizing the side effects. Optimizing these regimens is crucial for improving 
therapeutic outcomes. Additionally, combining cytokines with other immunomodulatory agents or 
therapies can enhance their efficacy and reduce the required dose, thereby mitigating side effects. This 
combination approach offers a promising strategy to overcome the limitations of current cytokine therapies 
[26]. Continued research and clinical trials are essential to fully harness the potential of cytokines for the 
treatment of infectious diseases.

ICIs
Over the years, ICIs have shown remarkable efficacy in treating hematological malignancies and solid 
tumors. Checkpoint inhibition therapy utilizes monoclonal antibodies to disrupt the interactions between 
immunosuppressive receptors and their ligands. They primarily target proteins such as cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), mucin domain-containing protein 3 (TIM3), and programmed 
cell death 1 ligand 1 (PD-L1) [27], thereby improving effector T cell activation. However, their use in the 
treatment of microbial diseases, including HIV, hepatitis B virus (HBV), and HCV, is poorly understood [28].

One of the unique features through which several chronic viral infections, such as HIV, hepatitis, and 
SARS-CoV-2, bypass immune responses is T cell exhaustion, resulting from the loss of T-cell effector 
function [29]. In addition, infectious agents possess pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) [30]. Understanding the function of immune checkpoint 
molecules is crucial for reversing T cell exhaustion and mounting strong immune responses. Blockade of 
PD-1 has prompted T cell exhaustion to be redeemable via restoration of CD8+ T cell function by reducing 
the viral load in a murine model of induced chronic lymphocytic choriomeningitis viral infection [31]. Cao 
et al. [32] demonstrated that the activity of HBV-specific CD8+ T cells in the peripheral and intrahepatic 
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niches could be boosted by inhibiting the CTLA-4 checkpoint molecule in patients with chronic hepatitis B. 
Nonetheless, PD-1 inhibition can improve host immune alertness by promoting the production of IFN-γ in 
HIV- and HBV-specific cytotoxic T cells [33]. However, in preclinical studies, blocking PD-1 activity in vitro 
or ex vivo has been shown to potentiate latent HIV reversal [34, 35]. Another murine study indicated a 
potential adjuvant role for anti-CTLA-4, as CTLA-4 blockade during HIV immunization in mice led to 
increased CD4+ T cell activation, expansion of HIV-specific follicular helper T cells (Tfh), altered HIV-
specific B-cell responses, and significantly increased anti-HIV antibodies with higher avidity and antibody-
dependent cellular cytotoxicity [36]. In addition, only three published studies on checkpoint inhibitors have 
focused on people living with HIV in the absence of malignancy and antiretroviral therapy. Of these, two 
were abruptly dismissed owing to toxicities and complications in the study population [27]. These immune-
related adverse effects pose a major setback to the clinical use of immune checkpoint blockade therapy. In 
the case of COVID-19, several studies have suggested the benefits of ICI therapy [37]. Clinical trials on the 
safety and efficacy of ICIs in COVID-19 patients are still being explored [38], with no published results 
validating ICIs’ antiviral properties.

MTB remains a public health concern among all clinically important bacterial infections. ICIs have not 
been effective against tuberculosis (TB) in recent years. A group of researchers using a 3D microsphere 
model of human TB indicated that PD-1 inhibition promotes MTB growth and survival by enhancing 
cytokine production and TNF-α levels [39]. In a recent case report on a child, active TB development was 
correlated with an inherited PD-1 deficiency [40]. The emergence of TB has also been reported in patients 
with cancer who receive anti-PD-1/PD-L1 therapy [41]. To resolve this, combining ICIs with other 
treatment regimens could potentially curb TB pathogenesis and improve patient outcomes [29]. In a 
previous study, the combination of antibodies against LAG-3, CTLA-4, and TIGIT exhibited an additive effect 
on stimulating cytokine production by HIV-specific T cells. However, combinations with anti-PD-1 therapy 
did not yield the same outcomes [42]. In the treatment of Epstein-Barr virus (EBV)-associated tumors, 
different clinical trials have emphasized the clinical importance of PD-1/PD-L1 inhibitors. First, a phase Ib 
clinical trial (NCT02054806) of pembrolizumab documented a partial remission (PR) in seven of 27 
patients and stable disease in 14 patients with recurrent or metastatic NPC after a 20-month follow-up, 
with an overall response rate (ORR) of 25.9% [43]. In another clinical trial, camrelizumab (NCT02721589 
and NCT03121716) was used both as a mono and combination therapy with chemotherapeutic agents 
(gemcitabine + cisplatin) in similar patients, yielding an ORR of 34% in the monotherapy group and an 
impressive 91% in the combination therapy group [44]. Recent findings also indicate the significant impact 
of avelumab, an anti-PD-L1 agent, on EBV-positive cases (NCT02335411) [45].

Several limitations affect the clinical use of ICIs, including safety due to immune-related adverse events 
(irAEs) and immune checkpoint expression on other immune cell types, such as gamma delta T cells, Tregs, 
NK cells, and monocytes [27, 46]. Other immune checkpoint molecules, such as A2AR, B7-H4, BTLA, KIR, 
NOX2, HO-1, and SIGLEC7 [47], could be extensively explored for the treatment of acute and chronic 
microbial infections, in addition to the commonly explored immune checkpoints. Given the impact of 
microbial diseases on global health, exploring the interactions between gut microbiota and microbial 
infections is of utmost importance. Reports have shown that the gut microbiota also has specific 
characteristics that improve the therapeutic efficacy of immunotherapeutic drugs in various cancers [48]. 
Optimizing the usefulness of fecal microbiota transplantation can help enhance several immune-related 
limitations of ICI clinical use [49]. Therefore, exploring the beneficial role of gut microbiota in 
immunotherapy for bacterial and viral infections is crucial for achieving complete patient remission 
outcomes, especially as an adjunctive therapy to enhance the efficacy of ICIs [49]. Ongoing research is 
focused on the development of ICIs with higher immunity profiling using gut microbiota-assisted 
technology.
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Vaccines (adjuvants)
Relevance of adjuvants in vaccine delivery for generating a long-lasting immunity

The effectiveness and efficacy of vaccines against viral and bacterial infections can be enhanced by adding 
adjuvants. Therefore, adjuvants are important in vaccine production. They are usually added to bolster 
immune responses and improve protection against disease. To achieve this, it is necessary to understand 
the different types of adjuvants and their mechanisms of action. Adjuvants are proteins or polysaccharides, 
such as tiny substances in vaccines, that facilitate the elicitation of robust immune responses in inactivated 
vaccines and may have lower immunogenicity than live-attenuated or whole-killed vaccines [50]. Adjuvants 
are classified into several classes based on their mode of action and composition. The most widely used 
adjuvant is aluminum salt, which has been used for more than seven decades. It functions by eliciting local 
immune responses that enhance antigen presentation [51]. Other classes of bacterial adjuvants, such as 
lipopolysaccharides and toxins, effectively stimulate immune responses. Bacterial toxins have been studied 
as effective adjuvants that can improve mucosal immune responses [52, 53]. Unlike traditional vaccines 
that rely on external adjuvants, mRNA vaccines function as self-adjuvants by stimulating innate immune 
receptors. The single-stranded RNA in these vaccines is recognized by pattern recognition receptors 
(PRRs), such as Toll-like receptor 7 (TLR7) and retinoic acid-inducible gene I (RIG-I), triggering a strong 
immune response [54]. This inherent adjuvant-like property enhances antigen presentation and cytokine 
production, leading to potent and durable immune responses. The success of mRNA vaccines, particularly 
in combating the COVID-19 pandemic, underscores their transformative role in vaccinology [55]. Moreover, 
advancements in lipid nanoparticle (LNP) formulations not only aid in mRNA delivery but also contribute to 
immunostimulatory effects, further optimizing the efficacy of vaccines.

Recent adjuvants, such as CpG motifs, precisely target immune cells to enhance the immune response 
by mimicking bacterial DNA. Matrix-M is included in the Novavax COVID-19 vaccine, which boosts the 
immune system by combining lipids and saponins [51]. Another special adjuvant, MF59, used in the 
influenza vaccine, boosts the immunological response using a distinctive formulation that enhances antigen 
delivery and immune cell absorption [56]. Adjuvants work by provoking immunological responses at the 
innate level, which then influence or steer the adaptive immune system. Antigen-presenting cells (APCs) are 
activated, and cytokines are produced by targeting PRRs on immune cells. This mechanism enhances 
vaccine antigen recognition and boosts a powerful, targeted, and focused immune response [52, 53]. The 
incorporation of adjuvants is vital in vaccine production, especially for certain diseases for which 
conventional vaccines do not offer effective and sufficient immunity. Adjuvants offer several benefits in 
vaccine production but must be used with caution to reduce potential side effects.

Current developments in adjuvants have substantially improved the prevention of infectious diseases 
and led to the production of efficient vaccines that offer robust and long-lasting immune responses. For 
example, TLR agonists, such as monophosphoryl lipid A (MPL), are a potential class of adjuvants that 
activate innate immunity, thereby enhancing the immune response against viral antigens [57]. They have 
been used in hepatitis B and SARS-CoV-2 vaccines, substantially improving both antibody and T cell 
responses [57]. Similarly, TLR7/8 agonists, such as imiquimod, are promising adjuvants in HIV and 
influenza vaccines that evoke a strong cellular immune response, thereby making them efficient in 
producing a powerful and long-lasting immune response [57].

Recent developments in vaccine design for bacterial/viral infections

Vaccines against infections such as diphtheria, whooping cough, TB, meningitis, tetanus, and other 
microbial infections are already in clinical use; however, their effectiveness does not cover all age groups 
and disease stages (Table 1). The promising nature of mRNA vaccines in cancer treatment has prompted 
research into the design of mRNA vaccines against bacterial and viral infections (Figure 2). Nonetheless, the 
biology of microbes and their interactions with host immunity require further investigation [58]. Unlike 
live-attenuated or inactivated vaccines, mRNA vaccines offer the flexibility of selecting antigen types that 
can achieve a well-balanced interaction between humoral and cellular immunity [58]. In addition to classic 
adjuvants, genetic adjuvants have shown effectiveness in disease prevention and treatment [59], alongside 
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multi-epitope vaccines that encode only individual epitopes of target antigens, thereby minimizing 
potential adverse effects [60].

Table 1. Summary of mRNA vaccines for the prevention and therapy of bacterial and viral infections

mRNA vaccine Infection type References

M72/AS01 Tuberculosis [61]
BNT162b2 (Comirnaty) COVID-19 [62]
mRNA-1215 Nipah virus [63]
ID91* Tuberculosis [64]
19ISP Lyme disease [65]
mRNA-1273 (Spikevax) COVID-19 [66–68]
VAL-506440 Influenza [69]
* Tested in animal models

Figure 2. Mechanism of non-replicating versus self-amplifying mRNA vaccines. Created in BioRender. Ahmed, M. (2025) 
https://BioRender.com/89asvgv

In the development of bacterial vaccines, the WHO has listed virulent multidrug-resistant (MDR) 
pathogens as top-priority threats, collectively known as ESKAPE pathogens (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter species). MTB remains a major public health concern that requires novel therapeutic 
approaches [58]. Before 2023, research on mRNA vaccines for MTB was conducted without the use of 
delivery systems, administering the vaccine in an unmodified form [58]. However, vaccination with ID91 
saRNA encapsulated in a nanostructured lipid carrier elicited both cellular and humoral immune responses 
[64]. The vaccine also provided prophylactic protection by reducing the bacterial load in the lungs of 
immunized mice infected with a low dose of MTB H37Rv. Moreover, using an mRNA vaccine in a prime-
protein boost format significantly reduced bacterial load in the lungs [64].

https://BioRender.com/89asvgv
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Another study by Wang et al. [70] investigated mRNA vaccine variants against Pseudomonas 
aeruginosa: (i) PcrV antigen, a component of the type III secretion system (TSS3), and (ii) a fusion protein 
OprF-I, composed of outer membrane proteins OprF and OprI. Their findings showed that the PcrV antigen 
vaccine stimulated adaptive immune responses more effectively than OprF-I. Furthermore, immunization 
with both mRNA vaccine types generated a more pronounced immune response, exhibited fewer side 
effects, and increased survival rates [70]. The efficacy of PcrV as an antigen in mRNA vaccines has been 
further validated in subsequent studies [71]. Other studies have focused on mRNA vaccines against 
bacterial infections of public health significance. One study formulated mRNA into cationic LNPs combined 
with the glycolipid α-GC as an adjuvant. This mRNA delivery system, tested in animal models, improved 
both innate and adaptive immune responses against Listeria monocytogenes [72].

The COVID-19 pandemic accelerated mRNA vaccine development, demonstrating their potential for 
infectious disease control. A study on mRNA-1273 revealed a robust type 1 helper T cell (Th1)-biased CD4 
T cell response but weak Th2 and CD8 T cell responses. The efficient neutralizing antibodies produced 
indicate strong protection against SARS-CoV-2 [67, 73]. mRNA vaccines are typically administered 
intramuscularly, intradermally, or subcutaneously, facilitating antigen presentation to immune cells. This 
process induces CD8+ T cell responses, polyfunctional Th1 cells, and antibodies that inhibit viral replication 
[74]. Similarly, an mRNA vaccine against chikungunya virus (CHIKV) encoded a potent neutralizing human 
monoclonal antibody, proving effective for CHIKV treatment [75].

In the treatment of EBV infection, a vaccine amalgamating the glycoprotein 350 and a multi-epitope 
vaccine antigen (EBVpoly) with an amphiphilic (AMP)-modified CpG DNA adjuvant (AMP-CpG) 
augmentation was developed to promote a continuing antibody and cell-mediated immunity, assessed in 
different human leukocyte antigen-typed multiple sclerosis mouse models [76]. This approach was vital in 
eliciting lasting EBV-specific neutralizing antibodies and multifunctional CD4+ and CD8+ T cell responses in 
the models [77]. In addition, an mRNA-1189 vaccine that encodes four EBV proteins: gp350, gH/gL, gB, and 
gp42, is currently undergoing phase I clinical trials at Moderna in an attempt to avert EBV infection. At the 
West China Hospital of Sichuan University, a similar study is being performed by improving an mRNA 
vaccine that encodes EBV-LMP2 integrated with the MHC-I molecule’s intracellular sequence to optimize 
immune presentation and processing (NCT05714748) [78]. Furthermore, a novel multimeric EBV gp350-
ferritin nanoparticle vaccine with a saponin-based Matrix-M adjuvant (NCT04645147) has been evaluated 
by the National Institute of Health, demonstrating an attempt to utilize mRNA vaccine technology to combat 
infections and illnesses linked to EBV [79].

Immunoinformatic has also revolutionized mRNA vaccine design [80]. Advances in artificial 
intelligence and bioinformatics have facilitated the development of machine learning tools and neural 
network platforms for antigen prediction and analysis [81, 82]. These in silico approaches enable the 
selection of epitopes that elicit optimal cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B-
cell responses [80, 83]. However, designing mRNA vaccines for viral infections remains more challenging 
than for bacterial infections because of the complexity of selecting appropriate target antigens.

Monoclonal antibodies
Antibodies are naturally present in human blood and cells. Another type of immunity is invasive immunity, 
which is imposed using synthetically manufactured antibodies that mimic the body system, known as 
monoclonal antibodies (Figure 3). Some monoclonal antibodies are used as immunotherapeutic agents that 
function synchronously with cells to attack foreign bodies and treat diseases (Table 2). They can equally 
target and block signals that cause abnormal multiplication or division of cells, as observed in cancer [84]. 
Several monoclonal antibodies effective against viral or bacterial infections have been developed, although 
only a few have been approved for clinical practice [85], while others are progressing through clinical trials 
with great prospects, particularly those with altered structures to provide optimal advantages [86]. This 
approach can help overcome the limitations of serum-derived immunoglobulin G (IgG) preparations [85]. 
Monoclonal antibodies are more effective than polyclonal antibodies because of their consistent 
characteristics and immunity profile, which relates to the ease of production in large quantities in most 
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immunotherapeutic remedies [87]. This result was attributed to their affinity for specific antigens. Based on 
the structure (composition), monoclonal antibodies are classified as murine (fully mouse-derived), 
chimeric (mouse variable regions fused to human constant regions), humanized [only the mouse 
monoclonal antibody complementarity-determining regions (CDRs) are grafted onto a human framework], 
and human (entirely human-derived antibody) [88]. Although antibodies have been used to treat a wide 
variety of diseases, only a few can be used to treat viral and bacterial infections [89]. The repeated use of 
mouse monoclonal antibodies as therapeutics in humans leads to the generation of anti-mouse antibodies, 
thereby reducing the therapeutic window of these immunotherapeutic agents. To address this issue, a 
chimeric antibody was developed to suppress the immunogenicity of monoclonal antibodies in humans 
[90].

Figure 3. Workflow for fully human monoclonal antibodies. Created in BioRender. Ahmed, M. (2025) https://BioRender.
com/f6460ol

Table 2. Summary of monoclonal antibodies for the prevention and treatment of bacterial and viral infections

mAbs Infection type References

Palivizumab Respiratory syncytial virus [91]
Anti-PhtD Streptococcus pneumoniae [92]
MEDI3902 (Gremubamab) Pseudomonas aeruginosa [93]
AR-301 (Salvecin) Bacterial infection [94]
514G3 Staphylococcus aureus [95]
Nirsevimab Respiratory syncytial virus [96]
Clesrovimab Respiratory syncytial virus [97]
Bebtelovimab COVID-19 Omicron variant [98]
Raxibacumab Anthrax [99]
Bezlotoxumab Clostridium difficile [100]
Oblitoxaximab Anthrax [101]
Twinrab™ Rabies [102]
Rabishield Rabies [103]
Ibalizumab HIV [104, 105]
mAbs: monoclonal antibodies

https://BioRender.com/f6460ol
https://BioRender.com/f6460ol
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The curbing of SARS-CoV-2 entry was remedied through an immunotherapeutic mechanism to identify 
the interaction between angiotensin-converting enzyme (ACE) and viral spike glycoprotein, which could be 
blocked by antibodies targeting the spike viral domain, thereby inhibiting viral infection [89]. Monoclonal 
antibody-based immunotherapy effectively targets tumor cells and promotes long-lasting antitumor 
immune responses, thereby improving cancer treatment strategies [106]. These protective effects can be 
employed against bacterial and viral pathogens, as observed in tumor cells. A previous study demonstrated 
that evaluating antibody-coated bacteria (ACB) in endotracheal aspirate samples significantly improves the 
specificity of ventilator-associated pneumonia (VAP) diagnosis by ensuring a clear distinction between viral 
colonization and non-infectious conditions, thereby reducing overtreatment and resulting in antibody 
resistance [107].

Monoclonal antibodies offer several advantages over traditional serum-derived immunoglobulin 
treatments, including greater specificity and potency by targeting specific epitopes, reduced risk of 
pathogen transmission, more consistent antibody content between batches, and the ability to engineer an 
extended half-life. Human antibodies with unprecedented activities could become the principal tools for 
managing future viral and bacterial epidemics, with potential applications in preventing and treating severe 
human infections [108].

Adoptive cell therapies
Adoptive cell therapy involves boosting the number of immune cells or modifying their function to treat 
disease conditions. This is achieved by expanding autologous or allogeneic immune cell numbers and 
infusing genetically engineered immune cells to enhance their function [109]. Adoptive cell therapy, 
particularly chimeric antigen receptor (CAR) T cell therapy, has gained popularity in the treatment of 
hematological malignancies. To date, six CAR T cell therapies have been approved by the US FDA [39]. The 
relative success of adoptive cell therapy in hematological malignancies has prompted the feasibility of 
adopting this strategy for chronic infectious diseases, infections due to a dysfunctional or suppressed 
immune system, and MDR infections [110]. Hematopoietic stem cell transplantation is used as a treatment 
option for various disorders, but it comes at the cost of an immune-deficient phase in which the patient is 
susceptible to opportunistic viral infections, such as cytomegalovirus, EBV, and adenovirus infections [111]. 
Transfusion of virus-specific T cells (VSTs) is effective in treating these infections, as evidenced by 
approximately 20 completed phase I/II clinical trials and over 30 ongoing clinical trials [111, 112]. VSTs are 
currently in clinical use against post-transplantation viral infections on a compassionate use basis; 
posoleucel was expected to receive FDA approval; however, it failed to satisfy the primary endpoints of a 
phase III clinical trial [113]. Tabelecleucel for patients with EBV-associated post-transplant 
lymphoproliferative disease is another VST in phase III clinical trials (NCT03394365), and its enthusiasts 
hope to obtain FDA approval [114]. Genetic engineering of VSTs with CAR to increase their lifespan and 
efficacy is already underway in studies targeting the HIV, HBV, HCV, and coronaviruses [115]. CAR T cell 
strategies have gained more prominence in HIV studies than in studies of other viruses, considering the 
formidable challenge of developing a cure for HIV [116]. Preclinical and clinical trials (NCT04648046 and 
NCT03240328) targeting viral proteins, mainly gp-120, employing CD4 and/or CD8 CAR T cells showed 
significant suppression of HIV replication and destruction of HIV-infected cells; however, total elimination 
of HIV-infected cells has not yet been achieved with this approach because of low surface HIV antigen 
expression on the infected cell membrane and poor CAR T cell infiltration [117, 118]. Intermittent co-
administration with vaccine peptides or APCs has been shown to sustain CAR T cell expansion and boost 
immune responses, considering their poor persistence in tissues [119]. Schreiber et al. [120] reported the 
efficacy of CAR T cells transduced with HBV-specific antibody fragments in murine studies, demonstrating 
the potential of CAR T cell therapy for treating infectious diseases. Kalinina et al. [121] transduced naïve T 
cells with a TCR targeting S. typhimurium antigen; the T cells demonstrated a higher capacity for bacterial 
elimination after transfer into infected mice when compared to normal T cells. Similar outcomes were 
observed when monocyte-derived macrophages were used to treat MDR bacterial infections in murine 
models [122] and when macrophages were loaded with photosensitizers to treat MDR Staphylococcus 
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aureus and Acinetobacter baumannii in mice [123]. CAR T cell therapy for MTB infections is currently being 
evaluated, considering the increased number of cases of drug resistance and chronic proclivities [110]. 
Adoptive T cell therapy has been widely explored, and scientists have begun to pay more attention to the 
adoptive transfer of other immune cell types as a treatment option in the past few years. Chung et al. [124] 
showed an increase in the antibody population and a decrease in viral load when virus-specific B cells 
targeting lymphocytic choriomeningitis virus were infused into mice. The variety of microbial antigens and 
their potential for mutation, which dampens CAR efficacy, the cost of CAR T cell production, and safety 
concerns, are some drawbacks of this strategy that are being addressed with better sequencing tools and 
gene editing technologies [119]. The increase in superbugs, chronic infections, and therapy-induced 
immunosuppression makes adoptive cell therapy a viable alternative to other less effective therapeutic 
strategies [39].

iNKT
Immune system cells are conventionally cells of innate or adaptive immunity [125], although some cells are 
better prepared to switch between the two functions of innate and adaptive immunity, and one of the best-
equipped cells is the iNKT [126]. iNKTs, also known as cytotoxic innate lymphoid cells (ILCs), are a subset 
of cells endowed with molecular memory of surface markers [127]. An invariant αβ TCR associated with the 
class I major histocompatibility complex, class I-related protein CD1d, reacts with glycolipid antigens on the 
surface of APCs [128]. They are activated in many infectious diseases and inflammatory conditions and 
rapidly produce large amounts of cytokines that influence other immune cells [129].

iNKTs recognize lipid-derived determinants on the cell surface, supporting their weaponization for 
antitumor, viral, and bacterial therapies [130]. They are also explicitly equipped with compact exosomes 
that package and express eomesodermin (Eomes) [131]. These Eomes-containing exosomes exhibit 
antitumor properties comparable to those of NK cells and respond to various intracellular pathogens such 
as bacteria and viruses [132, 133]. Exosomes found in iNKTs are also rich in cytotoxic proteins, such as 
perforin and granzymes, as well as death receptor ligands, such as FasL and TRAIL [134], which enable 
exosomes to induce apoptosis in cancer cells and cells infected by viral or bacterial pathogens, such as MTB 
[135] and SARS-CoV-2 [136], effectively mimicking the cytotoxic and cell-dissolving effects of NK cells, but 
without requiring direct cell-to-cell contact [137]. Advantageously, the use of NK cell-derived exosomes in 
immunotherapy helps generate a broader network of immune responses that can penetrate tissues and 
dissipate deep tumor cells or tissue-invading pathogens with systemic effects [138, 139]. Therefore, more 
giant cells cannot reach this area without the risk of an autoimmune reaction [140]. This property is a 
revolutionary point for the use of iNKT cells in immunotherapy and allows pre-administration, re-
administration, and re-dosing of cellular components in clinical trials until therapeutic interventions are 
achieved [141].

Previously, the effector cells that mediated antitumor, viral, and bacterial therapy immunity were αβ T 
cells and iNKTs [142]. Recently, it has been shown that γδ T cells are the complementary element by which 
tumor cells are rejected and adapted to defend against the invasion of highly pathogenic organisms into 
cells and tissue systems [143]. The limitations of iNKTs are due to their inability to enhance the ability of γδ 
T cells in antigen presentation, regulatory functions, and induction of antitumor responses to excessively 
malignant tumors, as well as in the treatment of inflammatory conditions caused mainly by pathogen 
invasion [144]. The weaponization of iNKTs by molecular mechanisms allows them to express the functions 
of γδ T cells by switching intracellularly and producing compact cytokines that enable them to express the 
functions of both iNKTs and γδ T cells, demonstrating their potential use in immunotherapy, molecular 
immunology, and vaccinology [145].

MAITs
MAITs represent a significant subset of unconventional T lymphocytes, forming the largest cadre of innate-
like T cells in humans [146]. They are uniquely positioned at the nexus of innate and adaptive immunity, 
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largely due to their semi-invariant TCR, primarily Vα7.2-Jα33 in humans, which enables them to recognize 
vitamin B metabolites, such as 5-OP-RU, produced via the riboflavin (vitamin B2) biosynthetic pathway in 
bacteria, viruses, and fungi [147, 148]. Unlike conventional T cells, which rely on the presentation of 
peptide antigens by highly polymorphic MHC molecules, MAITs interact with antigens via the evolutionarily 
conserved MHC class I-related protein, MR1, found on diverse APC [146]. While early investigations 
suggested that the conserved nature of both MR1 and semi-invariant TCR might limit the scope of antigen 
recognition, emerging research has revealed a surprising degree of TCR diversity within the MAIT 
population [148]. This broader repertoire enables the detection of a wider array of microbial metabolites 
and the mounting of clonotype-dependent responses against various pathogens [146]. Upon activation, 
MAITs rapidly unleash robust effector functions, marked by the secretion of pro-inflammatory cytokines, 
such as IFN-γ, TNF-α, and IL-17, and the deployment of potent cytotoxic mediators, such as granzyme B and 
granulysin [149, 150]. Their abundant distribution across mucosal tissues, including the skin, 
gastrointestinal tract, and respiratory tract, underscores their essential role as vigilant sentinels, 
orchestrating localized immune responses against drug-resistant bacteria, fungi, and emerging viral threats 
[151].

As immunotherapeutic strategies continue to evolve in response to AMR and complex infectious 
challenges, the potential of MAITs as therapeutic targets is increasingly recognized [152]. Their rapid 
responsiveness to microbial antigens, coupled with their extraordinary capacity to mobilize both innate and 
adaptive immune mechanisms, renders them particularly attractive for novel treatment strategies [146]. A 
pivotal advance in MAIT research was the development of MR1 tetramers, which allow for the precise 
identification and characterization of these cells across diverse tissues and disease states [153]. Promising 
approaches, such as ex vivo expansion, antibody opsonization, IL-7 treatment, and the use of artificial APCs 
(aAPCs), have demonstrated the feasibility of enhancing MAIT responses, while synthetic MR1 ligands and 
engineered MAIT populations offer innovative avenues to enhance antimicrobial efficacy [154–157]. These 
strategies are particularly compelling given the cells’ ability to recognize conserved microbial metabolic 
signatures, an attribute that may circumvent the limitations of conventional antibiotic therapies against 
resistant strains, such as MTB and antibiotic-resistant Escherichia coli [152].

In parallel, the emerging field of immuno-antibiotics, which integrates direct antimicrobial actions with 
the targeted modulation of MAIT responses, represents a promising avenue for overcoming the limitations 
of traditional antibiotics, particularly against drug-resistant bacteria [152]. However, translating these 
findings into clinical practice requires overcoming challenges, such as MAIT exhaustion observed in chronic 
infections, managing potential off-target effects, and unraveling the complex interplay between MAITs and 
other immune components [146, 158]. Future research is poised to optimize combination therapies by 
integrating MAIT modulation with monoclonal antibodies, cytokine-based interventions, and even CAR T 
cell approaches to enhance overall immune responsiveness [159]. Ultimately, a deeper understanding of 
MAIT biology, their interactions within the tissue microenvironment, and the sophisticated strategies some 
microbes employ to evade immune detection will be pivotal in realizing their full therapeutic potential, 
offering a transformative strategy against the escalating threat of infectious diseases and AMR.

Conclusions
Immunotherapeutic strategies offer promising alternatives to address the growing threat of AMR and other 
infectious diseases in humans. Advances in cytokine-based therapies, adoptive cell therapy, monoclonal 
antibodies, and ICIs have shown significant potential for modulating immune responses and improving 
patient outcomes. However, challenges such as toxicity, delivery mechanisms, and immune resistance 
remain. Leveraging novel technologies, such as nanoparticle-based delivery systems and genetic 
modifications, can enhance the therapeutic efficacy of these approaches. Future research should focus on 
optimizing combination therapies and exploring novel immunomodulatory targets to develop more 
effective and durable treatments for AMR and emerging infectious diseases.
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