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Abstract
The complement system is a key component of the innate immune system that mediates the clearance of 
pathogens, apoptotic cells, and cellular debris. However, the complement system also has diverse roles in 
the central nervous system (CNS), where it regulates synaptic pruning, neural plasticity, and 
neuroinflammation. Dysregulation of the complement system has been implicated in various 
neurodegenerative disorders such as Alzheimer’s disease, multiple sclerosis, epilepsy, stroke, and traumatic 
brain injury. In these conditions, excessive or chronic activation of the complement system may lead to 
synaptic loss, neuronal damage, immune dysregulation, and inflammation, which leads to exacerbating the 
disease’s progression and severity. Moreover, the complement system may interact with infectious agents 
that invade the CNS, such as bacteria, viruses, fungi, and parasites, and modulate their pathogenicity and 
host response. Therefore, understanding the complex interplay between the complement system and the 
CNS is crucial for developing novel therapeutic strategies to prevent or treat neurodegenerative and 
neuroimmune disorders. Natural compounds, such as plant extracts, phytochemicals, and nutraceuticals, 
have emerged as promising candidates for modulating the complement system and its effects on the CNS. 
These compounds may exert anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory 
effects by regulating the expression of various complement components and pathways. In this review, we 
summarized the current knowledge on the roles of the complement system in human neurodegenerative 
disorders and the benefits of natural compounds for complement-targeted therapy.
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Introduction
The complement system is a part of the immune system that helps to fight against infections and remove 
damaged cells from the body. It comprises approximately 50 proteins that are found in the fluid phase of 
the blood or bound to cells where they function as receptors or regulators of complement activation [1]. 
These proteins can be activated by different triggers, such as bacteria, viruses, or antibodies, and start a 
chain reaction that leads to inflammation, phagocytosis, and cell lysis. The complement system has three 
main pathways: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP) [2, 3].

The CP is triggered when IgM or IgG antigen/antibody complexes bind to C1q, the first protein in the 
cascade. This binding activates C1r, which subsequently cleaves C1s. The activated C1s then cleaves C4 and 
C2, resulting in the formation of the C3 convertase, C4b2a. This convertase cleaves C3 into C3a and C3b [4]. 
C3a functions as an anaphylatoxin, recruiting inflammatory cells, while C3b binds to the C4b2a complex to 
form the C5 convertase, C4b2a3b. The C5 convertase initiates the assembly of the membrane attack 
complex (MAC), which creates pores in bacterial membranes, leading to cell lysis [5]. Additionally, the CP 
can be activated by other danger signals such as C-reactive protein, viral proteins, polyanions, apoptotic 
cells, and amyloid, indicating that it can be activated independently of antibodies [6].

The AP is activated by various molecules such as carbohydrates, lipids, and proteins present on foreign 
and non-self surfaces [7]. In this pathway, C3 undergoes continuous low-level hydrolysis, producing C3b, 
which attaches to targets like bacteria. This bound C3b then recruits factor B, which is subsequently cleaved 
by factor D to form the C3 convertase, C3bBb. This convertase is stabilized by plasma properdin [8]. 
Properdin, a protein released by activated neutrophils, as well as macrophages and T cells, binds to C3b, 
preventing its degradation by factors H and I. Recent research indicated that properdin can also directly 
bind to apoptotic and necrotic cells, initiating complement activation [8].

The LP is initiated when mannose-binding lectin (MBL) or ficolin binds to carbohydrate moieties on the 
surfaces of pathogens such as yeast, bacteria, parasites, and viruses. Both MBL and ficolin circulate in the 
bloodstream as complexes with MBL-associated serine proteases (MASPs) [9, 10]. There are four MASPs: 
MASP-1, MASP-2, MASP-3, and a truncated form of MASP-2 known as MAP19 [10]. Upon binding to 
pathogens, conformational changes occur, leading to the autoactivation of MASP-2, which then cleaves C4 
into C4a and C4b. C4b attaches to the pathogen surface, promoting the binding of C2, which is subsequently 
cleaved by MASP-2 into C2a and C2b. The complex of C4b and C2a forms the LP C3 convertase, C4bC2a. 
While the specific roles of the other MASPs are not fully understood, MASP-1 can cleave C2 but not C4, 
thereby aiding in the amplification of complement activation by the bound complexes [9].

The complement system plays a crucial role in maintaining health by enhancing the immune system’s 
ability to eliminate harmful microbes and foreign substances from the body. Additionally, it supports 
wound healing and prevents excessive bleeding. However, problems can arise from an overactive or 
underactive complement system. Research indicated that an overactive complement system can lead to 
cellular and tissue damage, potentially triggering autoimmune conditions like lupus or rheumatoid arthritis 
(RA). Conversely, an underactive complement system can increase susceptibility to infections such as 
meningitis or pneumonia [11]. The effects of complement components and activation products can have 
both positive and negative impacts on various neurodegenerative disorders, including Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) which have been reported [12].

The neuroimmune system is a network of immune cells and molecules that can sense and respond to 
harmful stimuli in the central nervous system (CNS). Classical complement proteins mediate many 
physiological and pathological processes both in the periphery and in the CNS. An established function of 
these proteins is in mediating microglial phagocytosis of synapses during CNS development and diseases. 
CNS injury resulting from both neurodegeneration and viral infections is associated with increased 
complement expression and activation. Activation of classical complement proteins alters microglial 
responses in a context-specific manner and synaptic elimination occurs via similar complement-mediated 
pathways in neurodegeneration versus viral infection. Various viruses are neutralized in the periphery via 
mechanisms involving classical complement proteins to limit viral spread. Some of these proteins are 
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upregulated in the CNS after neurotropic viral infection [13]. Therefore, it is important to maintain a 
balanced complement system for good health.

Natural compounds, such as plant extracts, phytochemicals, and nutraceuticals have emerged as 
promising candidates for modulating the complement system and its effects on the CNS. These compounds 
may exert anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory effects by inhibiting or 
activating the function of various complement components and pathways [14–16].

Therefore, understanding the complex interplay between the complement system and CNS is crucial 
for developing novel therapeutic strategies to prevent or treat neurodegenerative and neuroimmune 
disorders. We also provided: (a) an overview of the structure, function, and regulation of the complement 
system; and (b) the mechanisms of complement-mediated neurodegeneration and neuroprotection. Finally, 
we discussed the challenges and opportunities for the development of natural compounds as complement 
inhibitors or modulators for the treatment of CNS diseases.

Physiological functions of complement system
Complementing the host’s defense machinery plays a vital role in maintaining barrier function and 
protecting against microbial invasion after an injury, along with the contact and coagulation systems. This 
complement system also modulates different branches of innate and adaptive immunity [17]. The purpose 
of complement is to identify, tag, and eliminate microbial intruders with immediate reactivity and sufficient 
specificity in order to avoid damage to host cells. This reactivity and specificity occur via a series of 
circulating pattern-recognition proteins (PRPs) that sense pathogen-associated molecular patterns 
(PAMPs) and initiate the complement cascade. A strong coordination network of interactions occurs 
through three canonical pathways, which include, the CP, AP, and LP. It is essential for the surveillance, 
immunomodulatory, and effector functions of the complement system. All activation pathways result in the 
formation of C3 and C5 convertase enzyme complexes that cleave C3 to anaphylatoxin C3a and opsonin 
C3b, and C5 to anaphylatoxin C5a and C5b respectively. The release of C5b into a target initiates MAC 
formation and targeting lysis. Opsonins and anaphylatoxins are also promoted by scavenger cells to 
promote phagocytic uptake of pathogens, as well as activation of monocytes, neutrophils, or mast cells [18].

Role of complement system on peripheral organs and CNS

The complement system plays a critical role in modulating immune responses and tissue homeostasis in 
peripheral organs which influences various physiological processes, including metabolism, inflammation, 
and tissue repair. Peripheral organs, such as the liver, adipose tissue, gastrointestinal tract, and kidney 
express complement components and receptors allowing for local complement activation and modulation 
of organ function [19]. Complement activation products, such as C3a and C5a, serve as an important 
mediator of inflammation and tissue injury in peripheral organs contributing to the pathogenesis of various 
diseases [20]. In the cardiovascular system, complement activation can contribute to the pathogenesis of 
cardiovascular diseases such as myocardial infarction, atherosclerosis, and heart failure. Complement 
activation products such as C3a and C5a can promote endothelial dysfunction, leukocyte recruitment, and 
vascular inflammation thereby exacerbating cardiovascular pathology [21].

Moreover, dysregulation of the complement system has been implicated in the pathogenesis of 
metabolic disorders including obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Complement 
components and regulators are dysregulated in these conditions, leading to chronic low-grade 
inflammation, insulin resistance, and tissue damage [22]. Additionally, complement activation has been 
implicated in the pathogenesis of gastrointestinal disorders, such as inflammatory bowel disease (IBD) and 
celiac disease, where it contributes to mucosal inflammation and tissue damage [23].

Similarly, in the lungs, complement system components are involved in the regulation of pulmonary 
inflammation and injury. Dysregulation of the complement system has been implicated in the pathogenesis 
of inflammatory lung diseases such as acute respiratory distress syndrome (ARDS) and chronic obstructive 
pulmonary disease (COPD). Complement activation products, particularly C5a, can mediate pulmonary 
inflammation, neutrophil recruitment, and tissue damage in these conditions [24].
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Beyond the peripheral organs, the complement system, plays a multifaceted role in CNS, influencing 
various physiological processes and contributing to both homeostasis and pathology. Complement proteins 
such as C1q, C3, and C4 are abundantly expressed in the CNS and are involved in synaptic refinement 
during development and synaptic plasticity in adulthood [25]. However, dysregulated complement 
activation in the CNS can lead to excessive neuroinflammation and neuronal damage, contributing to the 
pathogenesis of neurological disorders [26]. The CP has been implicated in synaptic pruning and 
neuroinflammation in the CNS [27]. The LP contributes to immune surveillance and inflammation in the 
CNS, particularly in response to microbial infections [28]. The AP amplifies complement activation and 
contributes to neuroinflammation and tissue damage in CNS disorders [29]. Excessive complement 
activation and the generation of complement fragments, including C3a, C4a, and C5a, can contribute to 
neuroinflammation, synaptic dysfunction, and neuronal damage in AD and PD [30]. Complement activation 
products, including C3a and C5a, exert neurotoxic effects and promote microglial activation and cytokine 
release. Moreover, the deposition of complement proteins, such as C3d and C5b-9, has been observed in the 
brains of patients with neurodegenerative diseases [25].

Figure 1. The role of the complement system in both the physiological and pathophysiological functioning of the 
central nervous system. Various pathogenic factors like β-amyloid, apoptotic and necrotic cells, and cellular debris can initiate 
an overactivation of the complement cascade, resulting in persistent inflammation, increased oxidative stress, and impaired 
autophagy. Consequently, this process worsens neuroinflammation and contributes to the neurodegeneration. MAC: membrane 
attack complex

Role of complement system pathways in the neuroimmune cells

The complement system interacts with neuroimmune cells to modulate immune responses, synaptic 
pruning, and neuronal function in the CNS. Neuroimmune cells, including microglia, astrocytes, and 
neurons, play essential roles in maintaining CNS homeostasis and responding to pathological insults 
(Figure 1). Microglia, the resident immune cells of the CNS, express complement receptors (CRs) and 
actively participate in complement-mediated immune responses. Complement activation products, such as 
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C3a and C5a, can modulate microglial activation and migration contributing to neuroinflammation and 
synaptic remodeling [31]. Dysregulated complement signaling in microglia has been implicated in the 
pathogenesis of neurodegenerative diseases, including AD and PD [29]. Astrocytes, the most abundant glial 
cells in the CNS, also express CRs and can respond to complement activation products. Complement-
mediated signaling in astrocytes regulates their activation, cytokine secretion, and neuroprotective 
functions [32]. Dysregulated complement signaling in astrocytes has been implicated in various CNS 
disorders, including multiple sclerosis (MS) and ALS [33]. Neurons, traditionally viewed as non-immune 
cells also express complement components and receptors and can respond to complement activation [34]. 
Complement-mediated signaling in neurons influences synaptic pruning, neuronal survival, and synaptic 
plasticity [30]. Dysregulated complement signaling in neurons has been linked to synaptic dysfunction and 
neuronal loss in neurodegenerative diseases [25]. The interactions between complement system pathways 
and neuroimmune cells are complex and bidirectional. Neuroimmune cells can regulate complement 
activation through the expression of complement regulators and inhibitors, such as CD46, CD55, and CD59 
[35]. Conversely, complement activation in neuroimmune cells can modulate their functions and influence 
CNS homeostasis and pathology.

Important factors regulating the complement system
Role of aging factors on the complement system

Understanding the intricate relationship between the complement system, aging, and aging-related 
diseases is crucial for elucidating the underlying mechanisms of age-related pathologies and identifying 
potential therapeutic interventions. Aging is a multifaceted biological process characterized by a 
progressive decline in physiological functions and increased susceptibility to various age-related diseases 
[36]. As individuals age, they experience alterations in immune function, including dysregulation of the 
complement system [37, 38]. Age-related changes in the complement system include alterations in 
complement component expression, activation patterns, and regulation, which can lead to chronic low-
grade inflammation, tissue damage, and increased vulnerability to infections [38]. The dysregulation of the 
complement system in aging has been implicated in the pathogenesis of several aging-related diseases, 
including cardiovascular diseases, neurodegenerative disorders, and age-related macular degeneration 
(AMD) [38, 39]. Inflammation, oxidative stress, and complement dysregulation contribute to the 
development and progression of these age-related diseases [40, 41].

Brain aging is a multifaceted process characterized by structural and functional changes in the CNS, 
often leading to cognitive decline and increased susceptibility to neurodegenerative diseases. The 
complement system, a crucial component of innate immunity, has recently emerged as a key player in the 
pathogenesis of age-related neuroinflammation and neurodegeneration. In the aging brain, dysregulation of 
complement system components has been implicated in the pathogenesis of neurodegenerative diseases 
such as AD and PD. Complement proteins such as C1q, C3, and C4 are abundantly expressed in the CNS and 
play crucial roles in synaptic refinement, neurogenesis, and neuroinflammatory responses [26]. However, 
aberrant complement activation and the generation of complement fragments, including C3a, C4a, and C5a, 
can contribute to neuroinflammation, synaptic dysfunction, and neuronal damage in aging and 
neurodegenerative diseases [31]. The dysregulation of complement system components in brain aging can 
trigger neuroinflammatory responses through various mechanisms. Complement activation products such 
as C3a and C5a can promote microglial activation, induce the release of pro-inflammatory cytokines, and 
exacerbate synaptic loss and neuronal damage [31]. Additionally, complement-mediated neuro-
inflammation can lead to the recruitment of peripheral immune cells, further amplifying the inflammatory 
cascade, and contribute to neurodegeneration [25].

Role of NF-κB signaling pathway and complement regulation

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway and the 
complement system are two critical components of the innate immune response that play key roles in 
regulating immune responses and inflammation. Recent research has revealed intricate interactions 
between NF-κB signaling and the complement system, influencing immune regulation and disease 
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pathogenesis. NF-κB is a transcription factor that regulates the expression of genes involved in 
inflammation, immunity, cell survival, and proliferation. In response to various stimuli, such as pro-
inflammatory cytokines, pathogens, and cellular stress, NF-κB is activated and translocates to the nucleus, 
where it induces the expression of target genes [42]. Dysregulated NF-κB signaling has been implicated in 
the pathogenesis of inflammatory and autoimmune diseases, as well as cancer [43]. The complement 
system can activate NF-κB signaling through multiple pathways. Complement activation products, such as 
C5a and C3a, can stimulate NF-κB activation directly by binding to their respective receptors on immune 
cells [44]. Additionally, complement components, including C3 and C4, can induce NF-κB activation through 
the engagement of pattern recognition receptors (PRRs) and the formation of signaling complexes [45]. 
This crosstalk between the complement system and NF-κB signaling amplifies immune responses and 
promotes inflammation. Additionally, NF-κB can regulate the expression of complement regulatory 
proteins, such as CD46 and CD55, in order to finely control complement activation and prevent excessive 
tissue damage [46]. The interaction between NF-κB signaling and the complement system has significant 
implications for immune modulation and the development of various diseases. The dysregulation of NF-κB 
signaling and complement activation has been implicated in the pathogenesis of numerous diseases, 
including IBD, RA, and systemic lupus erythematosus (SLE) [42, 44]. The aberrant activation of NF-κB and 
the complement system can perpetuate chronic inflammation and contribute to tissue damage and organ 
dysfunction in these diseases.

Modulating NF-κB signaling and complement activation presents potential therapeutic strategies for 
immune-related diseases. Inhibitors of NF-κB signaling, such as small molecule inhibitors and biologics 
targeting NF-κB components, have been developed and tested in preclinical and clinical studies for various 
inflammatory conditions [43]. Similarly, targeting complement components or receptors has shown efficacy 
in preclinical models and clinical trials of inflammatory and autoimmune diseases [47]. Combined therapies 
that target both NF-κB signaling and the complement system may offer synergistic effects and improve 
therapeutic outcomes in immune-related disorders.

Role of microRNAs on complement regulation

MicroRNAs (miRNAs) are small, non-coding RNA, molecules that play a pivotal role in post-transcriptional 
gene regulation. They fine-tune gene expression by binding to the 3’ untranslated region (UTR) of target 
mRNAs, leading to mRNA degradation or translational repression. Recent research has discovered the 
intricate interactions between miRNAs and the complement system, a crucial component of the innate 
immune system. Several miRNAs have been identified as regulators of complement components, receptors, 
and regulators. miR-223 has been implicated in modulating the expression of the complement component 
C3, influencing the activation of the complement cascade [48]. Additionally, miR-146a has been shown to 
target complement factor H (CFH), a critical regulator of the alternative complement pathway [49]. These 
findings emphasized the role of miRNAs in finely tuning the expression of complement-related genes to 
maintain immune homeostasis. The crosstalk between miRNAs and the complement system holds 
significant implications in immune modulation. Dysregulation of miRNA-mediated complement regulation 
may contribute to chronic inflammation, autoimmunity, and other immune-related disorders.

In the CNS, where complement dysregulation is implicated in neuroinflammatory disorders, the 
interplay with miRNAs is of particular interest. miRNAs have been shown to modulate the expression of 
complement factors in microglia, astrocytes, and neurons, influencing neuroinflammation and synaptic 
plasticity [50]. Understanding the complex connections between miRNAs and the complement system in 
the CNS may offer new avenues for therapeutic interventions in neurodegenerative diseases. The 
dysregulation of miRNA-complement interactions has been implicated in various diseases. In SLE, aberrant 
miRNA expression profiles have been linked to complement activation and immune dysregulation [51]. 
Similarly, in AMD, alterations in miRNA-mediated complement regulations are associated with disease 
progression [52]. Harnessing the regulatory potential of miRNAs in the complement system opens avenues 
for therapeutic intervention. miRNA-based therapeutics, such as miRNA mimics or inhibitors, could be 
designed to modulate complement activity in a targeted manner, providing precision in immune 
modulation.
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Role of other important factors on complement regulation

Genetic variations in complement genes have been linked to neurodegenerative disorders, as mutations in 
the CFH gene are associated with an increased risk of AMD and AD [53]. Chronic inflammation plays a 
significant role in dysregulation of the complement system in neurodegenerative disorders. In conditions 
like AD, chronic neuroinflammation perpetuates complement activation, exacerbating neuronal damage 
[25]. Oxidative stress-induced activation of the complement system contributes to neuroinflammation and 
neurodegeneration. Studies have shown that oxidative stress markers are elevated in neurodegenerative 
disorders such as PD and AD, correlating with complement dysregulation [54, 55]. Dysfunctional microglia 
can aberrantly activate the complement system, leading to synaptic loss and neuronal injury. Recent 
research highlighted the role of microglial complement signaling in neuroinflammation and neuro-
degeneration, implicating it in diseases like AD and PD [56, 57]. Impairment of the blood-brain barrier 
(BBB) allows peripheral immune cells and complement proteins to infiltrate into the CNS, exacerbating 
neuroinflammation. Studies have demonstrated BBB dysfunction in neurodegenerative disorders such as 
AD and MS, contributing to complement dysregulation [58, 59]. Environmental factors like air pollution and 
heavy metal exposure can trigger neuroinflammation and complement activation, contributing to 
neurodegenerative diseases. Recent studies have highlighted the impact of environmental toxins on 
complement dysregulation in disorders such as PD and ALS [60, 61]. Metabolic dysregulation, including 
obesity and insulin resistance, can promote complement activation and neuroinflammation. Studies have 
shown a link between metabolic syndrome and increased risk of neurodegenerative disorders, partly 
mediated by complement dysregulation [62, 63]. Emerging evidence suggested a bidirectional 
communication between the gut microbiota and the brain, influencing neuroinflammation and complement 
activation. Dysbiosis of gut microbiota has been implicated in neurodegenerative disorders, potentially 
affecting complement regulation [64, 65]. Epigenetic changes can modulate complement gene expression 
and contribute to neuroinflammation in neurodegenerative diseases. Studies have identified epigenetic 
alterations in complement-related genes in AD and PD, highlighting their role in disease pathogenesis [66, 
67].

Complement system-related pathophysiology
Dysregulation of the complement system can lead to various pathophysiological conditions, including 
autoimmune diseases, inflammatory disorders, and complement-mediated tissue damage. Understanding 
the molecular mechanisms underlying complement system-related pathophysiology is essential for the 
development of targeted therapeutic interventions.

Role of complement receptors in disease pathogenesis

CRs, including CR1 (CD35), CR2 (CD21), and CR3 (CD11b/CD18), are integral to immune cell function and 
antigen presentation. Dysregulated CR signaling has been implicated in autoimmune diseases such as SLE 
and RA [68]. Activation of CRs can initiate inflammatory responses, perpetuating tissue damage in 
autoimmune pathologies. Targeting CRs presents a promising avenue for therapeutic development [69].

Regulation of complement activation by regulatory proteins

Various regulatory proteins play a crucial role in maintaining a delicate equilibrium between complement 
activation and regulation. Among these proteins, CD55 (decay-accelerating factor) and CD59 (protectin) act 
as inhibitors of MAC formation, effectively protecting host cells from complement-mediated lysis [70]. 
However, deficiencies in these regulatory proteins, as seen in conditions like atypical hemolytic uremic 
syndrome (aHUS) and paroxysmal nocturnal hemoglobinuria (PNH), increase the susceptibility of 
individuals to complement-mediated disorders [71]. Therefore, exploring strategies to enhance the function 
of regulatory proteins holds promising therapeutic potential in mitigating complement-driven pathology.

Genetic determinants of complement-mediated diseases

Genetic polymorphisms in complement components and regulatory proteins influence disease 
susceptibility and phenotype manifestation. Genome-wide association studies (GWAS) have identified 
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variants in genes encoding CFH and CR3 associated with autoimmune disorders [72]. Unraveling the genetic 
architecture of complement dysregulation aids in personalized risk assessment and therapeutic targeting in 
affected individuals.

Advancements in deciphering the molecular intricacies of complement system-related pathophysiology 
offer promising avenues for therapeutic intervention. Understanding the crosstalk between complement 
and inflammatory pathways, the role of CRs, the regulation of complement activation by regulatory 
proteins, and genetic determinants of disease susceptibility provide a comprehensive framework for 
targeted therapeutic strategies. Harnessing this knowledge may pave the way for precision medicine 
approaches in managing complement-mediated disorders.

Complement system on the neurodegenerative disorders
Neurodegenerative and neuroimmune disorders pose significant challenges to human health. It is 
characterized by progressive neuronal loss, cognitive decline, and motor dysfunction. Dysregulated 
complement system activation contributes to neurodegenerative disorders including Guillain-Barré 
syndrome variants, chronic inflammatory demyelinating polyneuropathy (CIDP), genetic demyelinating 
neuropathy, IgM neuropathy, neuropathic pain, myasthenia gravis, Lambert-Eaton myasthenic syndrome, 
dermatomyositis, necrotizing autoimmune myositis, MS, neuromyelitis optica spectrum disorders, 
autoimmune encephalopathies, Alzheimer disease, traumatic brain injury, ALS, Huntington disease, and 
schizophrenia are among others [73–76].

Alzheimer’s disease

AD is the most common cause of dementia, characterized by progressive cognitive decline and memory 
impairment. The pathological hallmarks of AD include the accumulation of amyloid-beta (Aβ) plaques and 
neurofibrillary tangles (NFTs), synaptic dysfunction, and neuronal loss. While the exact etiology of AD 
remains elusive, growing evidence suggests the role of neuroinflammation in disease progression. The 
complement system, a crucial component of innate immunity, has emerged as a key regulator in AD 
pathogenesis, contributing to neuroinflammation and neurodegeneration [75]. The complement system 
comprises a complex network of proteins involved in immune surveillance, host defense, and tissue 
homeostasis. In the context of AD, dysregulated complement activation leads to the increased deposition of 
complement proteins and activation products in the brain parenchyma and around Aβ plaques. Studies 
have shown elevated levels of complement components, including C1q, C3, and C4, in post-mortem AD 
patient’s brains [77]. Complement activation products, such as C3b and C5b-9, are also detected in AD brain 
tissues, suggesting ongoing complement-mediated inflammation [78]. Synaptic dysfunction is an early 
pathological feature of AD, preceding neuronal loss and cognitive decline. The complement system plays a 
critical role in synaptic pruning and elimination during development and synaptic plasticity in the adult 
brain [79]. However, dysregulated complement activation in AD leads to excessive synaptic loss and 
dysfunction. Complement proteins, including C1q and C3, localize to synapses in AD patient’s brains and 
mediate synapse elimination through microglial phagocytosis [80]. Targeting complement activation has 
emerged as a potential therapeutic strategy for AD [76]. Preclinical studies using complement inhibitors or 
genetic deletion of complement components have demonstrated neuroprotective effects in AD mouse 
models [81]. A recent study showed that genetic deletion of C3 or treatment with complement inhibitors 
reduces Aβ deposition, neuroinflammation, and synaptic loss in transgenic AD mice [82].

Parkinson’s disease

PD is the second most common neurodegenerative disorder, characterized by motor symptoms such as 
bradykinesia, rigidity, and tremor as well as non-motor symptoms including cognitive impairment and 
autonomic dysfunction. The complement system, a crucial part of innate immunity, has emerged as a key 
player in PD pathogenesis, contributing to neuroinflammation and neurodegeneration. Dysregulated 
complement activation occurs in PD, leading to increased deposition of complement proteins and their 
activation products in the brain parenchyma and around Lewy bodies [83]. Studies have shown elevated 
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levels of complement components, including C1q, C3, and C5b-9 in post-mortem PD patient’s brains [54]. 
Complement activation products, such as C3b and C5b-9 are also detected in PD brain tissues, suggesting 
ongoing complement-mediated inflammation [54]. Activated complement proteins contribute to 
neuroinflammation in PD through various mechanisms. Complement activation promotes microglial 
activation and recruitment of peripheral immune cells, leading to the release of pro-inflammatory cytokines 
and chemokines, such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and IL-6 [84]. 
Additionally, complement-mediated synaptic dysfunction and neuronal damage exacerbate neuro-
inflammatory responses, further contributing to disease progression [13].

Targeting the astrocyte-neuron C3/C3ar (C3a receptor) pathway could be a promising therapeutic 
strategy for PD [85]. Preclinical studies using complement inhibitors or genetic deletion of complement 
components have demonstrated neuroprotective effects in PD animal models [86–88]. For instance, genetic 
deletion of C3 or treatment with complement inhibitors reduces neuroinflammation, synaptic loss, and 
motor deficits in PD mice [89]. Translating complement-targeted therapies to clinical applications holds 
promise for slowing disease progression and preserving motor function in PD patients.

Huntington’s disease

Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by motor 
dysfunction, cognitive impairment, and psychiatric symptoms. Emerging evidence suggests that 
dysregulated complement system activation contributes to the pathogenesis of HD [90]. Complement 
proteins and their activation products are found in HD patients’ brain tissues, where they promote 
neuroinflammation, synaptic dysfunction, and neuronal damage [90]. Histopathological studies have 
revealed the presence of complement proteins and activation products in the brains of HD patients [91]. 
Complement components such as C1q, C3, and C5b-9 are detected in HD brain tissues, where they 
colocalize with areas of neuronal loss and gliosis [92]. Complement activation products, including C3b and 
C5b-9, contribute to neuroinflammatory responses and exacerbate neuronal damage in HD. Activated 
complement proteins promote neuroinflammation in HD by activating microglia and astrocytes, leading to 
the release of pro-inflammatory cytokines and chemokines [90]. Complement-mediated inflammation 
further exacerbates neuronal damage and synaptic dysfunction, contributing to disease progression [90]. 
Additionally, dysregulated complement activation disrupts the BBB, allowing peripheral immune cells to 
infiltrate the CNS and exacerbate neuroinflammatory responses [91]. Targeting complement system has 
emerged as a potential therapeutic strategy for HD [29, 93]. Preclinical studies using complement inhibitors 
or genetic deletion of complement components have demonstrated neuroprotective effects in HD animal 
models, showing that genetic deletion of C3 or treatment with complement inhibitors reduces 
neuroinflammation, synaptic dysfunction, and motor deficits in HD mice [94].

Complement system on the neuroimmune disorders
Autoimmune encephalitis

Autoimmune encephalitis (AE) is a group of disorders characterized by inflammation of the brain mediated 
by autoantibodies against neuronal surfaces or synaptic proteins. Emerging evidence suggests that 
dysregulated complement system activation contributes to the pathogenesis of AE [95]. Histopathological 
studies have revealed the presence of complement proteins and activation products in AE brain tissues 
[96]. Complement components such as C1q, C3, and C5b-9 are detected in AE brain lesions, particularly in 
areas of neuroinflammation and neuronal injury [97]. Complement activation products, including C3b and 
C5b-9, contribute to neuroinflammatory responses and exacerbate neuronal damage in AE. Synaptic 
dysfunction is a prominent feature of AE, associated with cognitive deficits and psychiatric symptoms [75, 
98]. Dysregulated complement activation contributes to synaptic dysfunction by promoting the elimination 
of synapses through microglial phagocytosis. Complement-mediated synaptic pruning disrupts neural 
circuits and impairs neuronal communication, further exacerbating cognitive impairments in AE [99]. 
Targeting complement activation has emerged as a potential therapeutic strategy for AE [100]. Preclinical 
studies using complement inhibitors or genetic deletion of complement components have demonstrated 
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neuroprotective effects in AE animal models [101]. Treatment with complement inhibitors reduces 
neuroinflammation, synaptic dysfunction, and behavioral abnormalities in AE-like rodents [102].

Multiple sclerosis

MS is an autoimmune disorder characterized by demyelination, neuroinflammation, and axonal damage in 
the CNS. Emerging evidence implicates dysregulated complement system activation in the pathogenesis of 
MS [103]. Complement proteins and activation products are found in MS lesions and cerebrospinal fluid, 
contributing to myelin destruction and oligodendrocyte injury [104–107]. Recent research has implicated 
dysregulated complement system activation in the pathogenesis of MS, suggesting a key role for innate 
immunity in driving disease progression [108]. Evidence from histopathological studies demonstrated the 
presence of complement proteins and activation products in MS lesions, particularly in active demye-
linating lesions [109, 110]. Complement components such as C1q, C3, and C5b-9 are detected in MS plaques, 
where they colocalize with areas of myelin destruction and axonal injury [111]. The deposition of 
complement proteins in MS lesions contributes to the recruitment of immune cells, activation of microglia 
and astrocytes, and promotion of pro-inflammatory cytokine production, exacerbating neuroinflammation 
and tissue damage [112, 113]. Oligodendrocytes, the myelin-producing cells of the CNS, are targets of 
complement-mediated injury in MS [114]. Complement activation products, such as C3b and C5b-9, directly 
damage oligodendrocytes and disrupt myelin integrity [115]. Additionally, complement-mediated 
inflammation leads to the recruitment of immune cells, including macrophages and microglia, which further 
contribute to oligodendrocyte death and demyelination [116]. Dysregulated complement activation in MS 
contributes to BBB dysfunction, facilitating the entry of immune cells and inflammatory mediators into the 
CNS [117]. Complement components, particularly C5a and C5b-9, disrupt tight junction proteins and 
endothelial cell integrity, leading to increased BBB permeability and leukocyte infiltration into the CNS 
[118]. Given the central role of complement dysregulation in MS pathogenesis, targeting complement 
components or inhibiting complement activation has emerged as a promising therapeutic strategy for 
disease intervention [119]. Several complement inhibitors and modulators are currently under 
investigation in preclinical and clinical studies for their efficacy in attenuating neuroinflammation, 
preserving myelin integrity, and slowing disease progression in MS patients [70].

Chronic inflammatory demyelinating polyneuropathy

CIDP is an autoimmune disorder characterized by chronic inflammation and progressive demyelination of 
peripheral nerves, leading to motor and sensory dysfunction [120]. Despite extensive research, the 
underlying mechanisms driving CIDP pathogenesis remain elusive. However, growing evidence suggests a 
role for the complement system in mediating immune-mediated nerve damage in CIDP [121].

The complement system, a crucial component of the innate immune response, has been implicated in 
driving inflammation and tissue injury in CIDP [122]. Dysregulated complement activation leads to the 
generation of complement components and activation products, which contribute to immune cell 
recruitment, demyelination and axonal damage in peripheral nerves [123]. Genetic studies have identified 
associations between complement gene polymorphisms and susceptibility to CIDP, highlighting the genetic 
predisposition to complement dysregulation in CIDP [124].

Complement dysregulation contributes to the diverse clinical manifestations of CIDP, including 
weakness, sensory deficits, and gait disturbances [124]. Deposition of complement components and 
complement activation products at sites of nerve injury exacerbates inflammation and amplifies tissue 
damage in CIDP patients [75, 125]. Moreover, complement-mediated mechanisms may underlie treatment-
resistant forms of CIDP, suggesting a potential role for complement-targeted therapies in disease 
management [126].

The complement system interacts with other immune mediators implicated in CIDP pathogenesis, 
including autoantibodies and pro-inflammatory cytokines [127]. Dysregulated complement activation may 
amplify autoimmune responses and promote tissue inflammation, contributing to nerve damage and 
clinical symptoms in CIDP [124].
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Targeting the complement system represents a promising therapeutic strategy for CIDP management 
[126]. Several complement inhibitors, including monoclonal antibodies and small molecule inhibitors, are 
under investigation as potential treatments for CIDP [122]. These novel therapies aim to attenuate 
complement-mediated nerve damage and inflammation, offering potential benefits for CIDP patients 
refractory to conventional immunosuppressive agents.

Complement-targeted therapies for neurodegenerative and neuroimmune 
disorders
Neurodegenerative and neuroimmune disorders represent a significant burden on global healthcare 
systems, characterized by progressive neuronal dysfunction and immune dysregulation. The complement 
system, a critical component of the innate immune response, has emerged as a key player in the 
pathogenesis of these disorders, offering potential targets for therapeutic intervention [128]. Complement-
targeted therapies hold promise for modulating neuroinflammation, preserving neuronal integrity, and 
improving clinical outcomes in affected patients [129].

Complement-targeted therapies encompass a diverse array of interventions aimed at inhibiting specific 
complement components or pathways implicated in neurodegeneration and neuroinflammation [128]. 
Monoclonal antibodies targeting complement proteins or receptors block complement activation or 
promote complement clearance, thereby reducing neuroinflammatory responses and neuronal damage 
[130]. Small molecule inhibitors disrupt key enzymatic steps in the complement cascade, offering potent 
inhibitory effects on complement-mediated neurotoxicity [131].

Complement-targeted therapies have demonstrated efficacy across a spectrum of neurodegenerative 
and neuroimmune disorders including AD, PD, MS, and neuromyelitis optica spectrum disorder [132]. 
These therapies offer targeted approaches to suppress neuroinflammation, reduce neuronal damage, and 
preserve cognitive and motor function in affected patients [128]. Furthermore, complement-targeted 
therapies hold promise for combination therapies with existing neuroprotective agents, offering synergistic 
effects and enhanced treatment outcomes [133]. Complement-targeted therapies represent a paradigm 
shift in the treatment of neurodegenerative and neuroimmune disorders, offering personalized and 
precision medicine approaches tailored to individual disease phenotypes and patient characteristics [134]. 
Aim to precisely modulate specific components of the complement system, reducing unwanted side effects 
and improving therapeutic outcomes [135]. By targeting different parts of the complement cascade, these 
therapies can potentially treat a wide range of diseases, from autoimmune disorders to age-related 
conditions [135]. The development of complement-targeted therapies is grounded in extensive research 
and clinical trials, replacing long-held assumptions with evidence-based practices [135]. These therapies 
work by either inhibiting or modulating specific proteins within the complement system, which plays a key 
role in immune surveillance and tissue homeostasis. This targeted approach can prevent the cascade of 
inflammatory responses that contribute to disease progression [135]. Overall, complement-targeted 
therapies exemplify a shift towards more precise, effective, and personalized medical treatments, marking a 
significant advancement in the field of immunology and therapeutic development.

Despite existing challenges, the field of complement-targeted therapies in neurology continues to 
evolve rapidly, with ongoing efforts to develop novel therapeutic agents, refine treatment strategies, and 
explore combinatorial approaches [134]. Advances in biomarker discovery, patient stratification, and CNS 
drug delivery technologies hold promise for enhancing treatment efficacy and improving patient outcomes 
in neurodegenerative and neuroimmune disorders [131].

Limitations and challenges of current complement-targeted therapies

Complement-targeted therapies have emerged as promising treatment modalities for neurodegenerative 
and neuroimmune disorders, offering targeted approaches to modulate dysregulated immune responses 
and preserve neuronal integrity. However, the clinical translation of complement-targeted therapies faces 
several challenges, including issues related to drug specificity, treatment efficacy, safety profiles, and 
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translational barriers. Understanding the limitations of current complement-targeted therapies is crucial 
for overcoming these challenges and improving treatment outcomes in neurologic disorders.

Lack of target specificity: Many current complement-targeted therapies lack specificity for the 
desired complement component or pathway, leading to off-target effects and potential adverse 
events [136].

•

Limited treatment efficacy: Despite their potential benefits, some complement-targeted therapies 
have shown limited efficacy in clinical trials, failing to achieve significant improvements in disease 
outcomes [25].

•

Risk of immunogenicity: Certain complement-targeted therapies may elicit immune responses, 
leading to the development of anti-drug antibodies and reduced treatment efficacy over time [130].

•

BBB penetration: Many complement-targeted therapies face challenges in crossing the BBB, limiting 
their access to the CNS and efficacy in treating neurologic disorders [102].

•

Complexity of complement regulation: The complement system is tightly regulated. Disrupting its 
balance with therapeutic interventions may lead to unintended consequences, exacerbating 
inflammation and tissue damage [137].

•

High treatment costs: Some complement-targeted therapies are associated with high treatment costs, 
limiting their accessibility to patients and healthcare systems [130].

•

Risk of thrombotic events: Certain complement inhibitors, particularly those targeting the terminal 
complement pathway, may increase the risk of thrombotic events, posing safety concerns in patients 
with underlying cardiovascular or thrombotic conditions [138].

•

Complex disease pathophysiology: Neurodegenerative and neuroimmune disorders are 
multifactorial diseases with complex pathophysiology, making it challenging to develop targeted 
therapies that effectively modulate complement-mediated mechanisms [139].

•

Heterogeneity of patient populations: Variability in disease presentation, progression, and treatment 
response among patient populations complicates the evaluation and optimization of complement-
targeted therapies in clinical practice [134].

•

Future research should focus on developing more specific and efficacious complement inhibitors, 
optimizing treatment regimens, and identifying novel drug delivery strategies to enhance BBB penetration. 
Furthermore, the discovery of reliable biomarkers for patient stratification and treatment response 
monitoring will facilitate the personalized implementation of complement-targeted therapies in neurologic 
disorders.

Exploring herbal bioactives as potential complement-targeted therapies
Herbal bioactives have gained increasing attention as potential therapeutic agents for complement-targeted 
therapies, offering novel approaches to modulate dysregulated immune responses and mitigate 
inflammatory processes. This section provided a comprehensive review of herbal bioactives with 
complement-modulating properties, elucidating their mechanisms of action, therapeutic potentials, and 
clinical applications. We discussed the recent advancements in understanding the molecular interactions 
between herbal bioactives and the complement system, highlighting their efficacy in preclinical models of 
various diseases. Furthermore, we analyzed the challenges and opportunities associated with the 
development of herbal bioactives as complement-targeted therapies, underscoring their potential to 
complement existing treatment modalities and improve patient outcomes.

Herbal bioactives, derived from medicinal plants, have emerged as promising candidates for 
complement-targeted therapies due to their diverse pharmacological activities and favorable safety profiles 
[139]. Several herbal bioactives have been identified for their ability to modulate complement activation 
and regulation. Curcumin, a polyphenolic compound derived from turmeric, exhibits potent inhibitory 
effects on the complement cascade by targeting multiple complement components and pathways [140]. 
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Similarly, resveratrol, a natural stilbene found in grapes and red wine, has been shown to attenuate 
complement-mediated inflammation and tissue injury in various disease models [141].

Herbal bioactives exert their complement-modulating effects through various mechanisms, including 
inhibition of complement activation pathways, modulation of CR expression, and enhancement of 
complement regulatory protein activity [139, 142]. By targeting different points of the complement 
cascade, herbal bioactives can effectively suppress excessive inflammation, tissue damage, and autoimmune 
responses associated with complement dysregulation [139, 142]. Furthermore, herbal bioactives exhibit 
pleiotropic effects on various cellular signaling pathways involved in immune regulation, oxidative stress, 
and inflammatory responses contributing to their therapeutic potential in diverse disease conditions [143].

Despite of existing challenges, herbal bioactives hold great promise as complement-targeted therapies 
for various diseases, offering potential benefits for patients as adjunctive or alternative treatment options. 
Future research endeavors should focus on elucidating the molecular mechanisms underlying the 
complement-modulating effects of herbal bioactives, optimizing their pharmacological properties, and 
conducting well-designed clinical trials to evaluate their safety and efficacy in human subjects.

Plant-derived bioactives for complement-targeted therapies in neurodegenerative and 
neuroimmune disorders

Recent progress in the field of neurodegenerative and neuroimmune disorders has led to a growing interest 
in the potential therapeutic benefits of plant-derived bioactives. These natural compounds have shown 
promise as complement-targeted therapies, with their molecular interactions with the complement system 
being a key focus of research [130, 139, 144]. In particular, their effectiveness in preclinical models of 
neurodegenerative diseases like AD, PD, and MS has been highlighted [132]. The plant-derived bioactives 
that are enriched with a variety of phytochemicals have been found to possess complement-modulating 
properties, making them attractive candidates for the development of novel therapies for neurological 
conditions [75].

Numerous plant-derived bioactives have been identified for their ability to modulate complement 
activation and regulation (Table 1). Flavonoids such as quercetin, kaempferol rosmarinic acid, and apigenin 
exhibit potent inhibitory effects on the complement cascade by targeting key components of the CP and AP 
[145]. Targeting complement-mediated neuroinflammation and neuronal damage through plant-derived 
bioactives offers promising avenues for disease modification and symptom management in affected 
patients. Furthermore, standardization of herbal extracts, quality control measures, and regulatory 
considerations pose additional challenges to their clinical development and commercialization as 
complement-targeted therapies.

Table 1. Complement inhibitory active ingredients from medicinal plants

Sl No Medicinal plants Active ingredients Actions on 
complement system

Reference(s)

1 Wedelia chinensis Wedelosin Inhibits CP and AP [146]
2 Persicaria lapathifolia Kaempferol glycoside and 

acylated quercetin glycosides
Inhibits CP [147]

3 Rosemarinus officinalis Rosmarinic acid Inhibits CP and AP; 
binds C3; inhibits C5 
convertase

[142, 148, 
149]

4 Petasites hybridus Sesquiterpin ester petasin Inhibits C5a-induced 
calcium concentration

[150]

5 Jatropha multifida Proanthocyanidin Inhibits CP [151]
6 Aloe vera Polysaccharide Inhibits AP [152, 153]
7 Jatropha curcas Curacycline A Moderately inhibits CP [154]
8 Centaurium spicatum Quercetin Complement inhibition [155]
9 Piper kadsura Piperlactam Inhibits C5a-induced 

migration
[156]
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Sl No Medicinal plants Active ingredients Actions on 
complement system

Reference(s)

10 Lithospermum euchromum Polysaccharide Inhibits CP and AP [157]
11 Olea europaea Apigenin and other

flavonoids
Inhibits CP [158]

12 Crataegus sinaica Whole extract Inhibits CP and AP [159]
13 Angelica acutiloba Fucans Inhibits CP and AP [160]
14 Ascophyllum nodosum Aqueous leaf extract Complement inhibition [161]
15 Trichilia glabra Sesquiterpenes, quinines, 

coumarins, and flavonoids
Inhibits of CP than AP [162]

16 Arnebia euchroma Crude polysaccharides Modulation of the 
complement system

[163]

17 Bupleurum chinense Crude and acidic 
polysaccharides

Inhibits of the 
excessive activation of 
complement

[164]

18 Houttuynia cordata Thunb Crude polysaccharides Inhibits inappropriate 
activation of the 
complement system

[165]

19 Juniperus pingiivar Polysaccharides Inhibits the activation 
of complement

[166]

20 Scutellaria baicalensis Flavonoids-enriched extract Reduce complement 
deposition and 
decrease complement 
activation

[167]

21 Areca catechu Areca nut extract Inhibits the production 
of complement 
receptors (CR1, CR3, 
and CR4)

[168]

22 Curcuma longa Curcumin Upregulates the 
expression of factor H 
and complement 
regulatory proteins

[169, 170]

23 Boswellia serrata β-Boswellic acid Inhibits CP and AP 
and upregulation of 
conversion factor B

[171]

24 Essential oils from Myristica fragrans, 
Melaleuca quinquenervia, Syzygium 
aromaticum, Artemisia dracunculus; 
Coriandrum sativum, Juniperus communis, 
Melaleuca alternifolia, Zingiber officinale; 
Rosmarinus officinalis, Laurus nobilis, 
Cymbopogon martini, Melaleuca cajuputil, 
and Citrus limon; Thymus zygis, 
Coridothymus capitatus, and Thymbra 
capitata

(α/β)-Pinene, α-thujene, 
camphene, δ-3-carene, 
myrcene, 1,8-cineole, γ-
terpinene, p-cymene, 
camphor, linalool, bornyl 
acetate, β-caryophyllene, 
terpinen-4-ol, α-humulene, α-
terpineol, and borneol

Inhibits CP [172]

Sl No: serial number; CP: classical pathway; AP: alternative pathway; CR: complement receptor

Mechanisms of action of plant-derived compounds on complement system modulation

This section provided an in-depth review of the mechanisms of action by which plant-derived compounds 
modulate the complement system. We discussed how these compounds influence complement activation, 
regulation, and effector functions through diverse molecular pathways. Furthermore, we highlighted recent 
advancements in understanding the therapeutic implications of plant-derived compounds in complement-
related disorders, offering insights into the development of novel therapeutic strategies.

Inhibition of complement activation pathways: Many plant-derived compounds inhibit the activation 
of complement pathways, including the CP, LP, and AP [173]. Recent studies showed that kaempferol, 
quercetin, rosmarinic acid, and piperlactam can directly inhibit complementary pathways thereby 
preventing the activation of downstream complement components [142, 147, 156].

•

Modulation of CR expression: Plant-derived compounds can modulate the expression and function of 
CRs on immune cells, influencing their responsiveness to complement activation products. For 

•
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instance, Areca catechu has been reported to downregulate the expression of CRs such as CR1, CR3, 
and CR4 on neutrophil responses and tissue damage [168].

Enhancement of complement regulatory proteins’ activity: Some plant-derived compounds can 
enhance the activity of complement regulatory proteins, such as factor H and factor I, which play 
crucial roles in controlling complement activation and preventing excessive tissue damage. Curcumin 
has been shown to upregulate the expression of factor H, leading to enhanced complement 
regulation and reduced inflammatory responses [169].

•

Induction of complement-inhibitory proteins: Certain plant-derived compounds can stimulate the 
production or secretion of complement-inhibitory proteins by immune and tissue cells, providing 
additional mechanisms for complement modulation. For instance, curcumin has been demonstrated 
to induce the expression of membrane-bound complement regulatory proteins like CD59, and B cell 
non-Hodgkin’s lymphoma cells, thereby protecting them from complement-mediated inflammation 
[171].

•

Antioxidant and anti-inflammatory effects: Plant-derived compounds have been found to possess 
both antioxidant and anti-inflammatory effects. These effects indirectly regulate complement 
activation and downstream effector functions. The C3 promoter has many oxidative stress and 
inflammation-related factors such as activator protein-1, IL-1β, p38, and CCAAT/enhancer-binding 
protein delta (C/EBPδ) [174–176]. Oxidative stress is closely associated with C3 activation. Mice 
with lower ROS levels showed a better neurological outcome with lower C3 levels [177]. As a result, 
antioxidant and anti-inflammatory potential phytochemicals can help reduce complement-mediated 
neuroinflammation and tissue damage.

•

Overall, plant-derived compounds exert their effects on the complement system through multifaceted 
mechanisms, offering potential therapeutic benefits for neurodegenerative and neuroimmune disorders 
(Figure 2). Further elucidation of these mechanisms will facilitate the development of novel complement-
targeted therapies from natural sources.

Figure 2. The complement system and herbal compounds therapeutic targets. MBL: mannose-binding lectin; MASPs: 
mannose-binding lectin-associated serine proteases; MAC: membrane attack complex; APCs: antigen-presenting cells
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Understanding the mechanisms of action of plant-derived compounds on the complement system has 
important therapeutic implications for various diseases, including autoimmune disorders, inflammatory 
conditions, and neurodegenerative diseases. By targeting complement-mediated inflammation, tissue 
damage, and immune dysregulation, these compounds offer potential benefits for disease management and 
symptom relief.

Conclusions
In conclusion, the utilization of plant-derived compounds for targeting the complement system associated 
with neurodegenerative and neuroimmune disorders holds immense potential. The diverse array of 
bioactive molecules found in plants offers a rich source of therapeutic agents with multifaceted 
pharmacological properties, including anti-inflammatory, antioxidant, and neuroprotective effects. Through 
their ability to modulate complement activity, these plant-derived compounds offer a novel approach to 
addressing the underlying pathophysiological mechanisms of neurodegenerative diseases such as AD, PD, 
and MS. However, despite the considerable therapeutic potential of plant-derived compounds, several 
challenges and considerations must be addressed. These include issues related to bioavailability, 
pharmacokinetics, formulation optimization, and standardization of plant extracts. Furthermore, the 
translation of preclinical findings to clinical applications requires rigorous evaluation through well-
designed clinical trials to establish safety, efficacy, and dosage regimens.
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