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Abstract
Complement is both evolutionary and scientifically old. It predates the adaptive immunity by some 600 
million years and was first described in 1905 by Jules Bordet and Paul Ehrlich. For the most of its, the 
existence complement system has been ignored by most scientists and clinicians due to the perception of it 
being complicated and its relevance for the pathogenesis of human disease being unclear. With the recent 
US Food and Drug Administration (FDA) approvals of pegcetacoplan for both paroxysmal nocturnal 
haemoglobinuria (PNH) and geographic atrophy (GA), avacincaptad pegol for GA and iptacopan and 
danicopan for PNH, we are at a crucial juncture for complement-targeting therapies. A number of 
companies and academic institutions are developing next-generation complement therapies, which is 
resulting in an increasingly competitive landscape. If one looks at the serum complement cascade, all 3 
pathways now have biotechnology or pharmaceutical industry players with 1 or multiple clinical-stage 
inhibitors that are expected to be FDA approved within the next few years. Furthermore, with the limited 
number of clinically validated targets in complement-mediated disease, the competition in this space is set 
to further intensify in the coming years. In this review, we will discuss the timeline of the academic 
discoveries that led to the development of the current crop of FDA-approved complement therapeutics. We 
follow with a discussion of an increasingly crowded complement therapy space and of the scientific 
advances that have emerged in recent two decades underpinning future innovation, including advances in 
our understanding of complement biology, such as local and intracellular complement, emerging 
complement targets, combinational approaches of complement and non-complement therapeutics to 
unlock new disease indications and new technologies such as gene therapy. We will also give a 
comprehensive overview of the gene therapy landscape and how it can be utilized to target complement 
dysregulation.
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Introduction
Several discoveries over the last century provided the knowledge backbone that led to successful clinical 
development of complement targeted inhibitors (Figure 1). The discovery and characterization of the 
proteins that formed our understanding of the complement system as 3 distinct serum complement 
pathways were significant [1]. The period between the initial identification of complement as a heat-labile 
serum system and the late 1990s was marked by the discovery and characterization of multiple new 
complement proteins and their functions by numerous scientists, including Professors Hans Muller-
Eberhard, Douglas Fearon, Mohamed Daha, KBM Reid, Teizo Fujita, Peter Gal, Peter Zipfel, Robert Sim, Jens 
Jensenius, Paul Morgan, Marina Botto, John Lambris, Sir Peter Lachman and many other distinguished 
complementologists. It is through the efforts of these researchers that a critical mass of knowledge of the 
way in which complement functions was accumulated, and this knowledge shaped both the way in which 
we view complement as a serum effector arm of innate immunity protecting the host from infections and 
current therapeutics that aim to block it.

Figure 1. Timeline of key discoveries in the field of complement research. CR1: complement receptor 1; CR2: complement 
receptor 2; SPRX2: sushi repeat-containing protein 2; CFB: complement factor B

Serum complement

Briefly, complement is comprised of more than 60 cell membrane-bound, intracellular, and plasma proteins 
[2, 3]. Most of these circulate as inactive precursors in the blood and interstitial fluid and function to 
activate one another following an initial trigger in a cascade-like manner similar to the coagulation system 
[4]. The activation of serum complement occurs via the following 3 pathways: the classical pathway (CP), 
lectin pathway (LP), and alternative pathway (AP) [3, 5]. Complement can be activated by numerous danger 
signals, such as immune complexes containing IgG or IgM antibodies (CP), pathogen-derived molecules 
such as lipopolysaccharide (AP), acetylated surfaces or mannan (LP), and apoptotic cells (CP). A low level of 
spontaneous activation of the third complement component, termed C3, occurs continuously in a process 
called “tickover” activation of AP. All 3 serum complement pathways converge first at the level of C3 and 
share a common terminal pathway, initiated with the cleavage of C5 [6]. With the activation of each 
pathway an enzymatic cleavage event occurs [i.e., C1s or mannan-binding protein-associated serine 
protease 2 (MASP-2) cleave C4 and C2 to form C4bC2b, C3 convertase of CP, or LP] [7], while factor D 
cleaves factor B to Bb and Ba, with Bb forming a complex with either C3(H2O) or existing C3b. The C3(H2O)
Bb complex is termed proconvertase, while the C3bBb complex is the C3 convertase of AP [6] (Figure 2). C3 
convertases and multiple proteases such as cathepsin L, thrombin, or factor Xa can cleave C3 to biologically 
active fragments C3b (large fragment) and C3a (small fragment) [8–10]. Additionally, C3b generated by any 
pathway can, in turn, lead to the activation of AP via the amplification loop. It has been estimated in vitro 
that up to 80% of complement activity of LP and CP comes from AP amplification [11–13].
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Figure 2. Schematic of serum complement activation cascades. The three activation pathways—alternative pathway (AP), 
classical pathway (CP), and lectin pathway (LP) are shown. Their activation leads to C3 activation and generation of C3 
activation products C3b, iC3b, and C3dg via the action of complement regulators such as complement factor H (CFH), cluster of 
differentiation 46 (CD46), and CR1 which act as cofactors for the protease complement factor I (CFI). These C3 fragments can 
be recognized by a number of receptors on immune and non-immune cells and lead to phagocytosis of opsonized particles via 
complement receptor 3 (CR3), complement receptor 4 (CR4) or adaptive immune activation via CR2, C3a receptor (C3aR) or 
C5a receptor 1 (C5aR1). Furthermore, C3a and C5a act as anaphylatoxins and recruit immune cells such as monocytes, 
neutrophils, or T cells to sites of complement activation. C3b association with C3 convertases of AP (C3bBb) or CP/LP 
(C4bC2b) leads to generation of C5 convertases that cleave C5 and activate the terminal pathway of complement leading to 
generation of C5b-9 or membrane attack complex (MAC). MAC can lyse erythrocytes or Gram-negative bacteria or in case of 
sublytic MAC activate some cells. Complement proteins which have been targeted in the clinical studies are highlighted in 
yellow. GPCR: G-protein coupled receptors; Clu: clusterin; PAR1/4: protease-activated receptor 1 or 4; MASP: mannan-binding 
lectin serine protease; C4BP: C4 binding protein; C1INH: C1 inhibitor; CR1: complement receptor 1; CR2: complement receptor 
2

C5 convertases are formed on surfaces covered with large amounts of deposited C3b and serve to 
cleave C5 to a large cleavage fragment termed C5b and a low-molecular-weight anaphylatoxin called C5a. 
These powerful effector molecules are generated during complement activation—C3a and C5a exert their 
function through cognate G protein-coupled receptors (GPCRs), C3aR, C5aR1, and C5a receptor 2 (C5aR2, 
formerly known as C5L2)—and drive a diverse set of processes such as inflammation, immune cell 
modulation and chemotaxis, cell survival, tissue repair and regeneration, vasodilation, and smooth muscle 
contraction [4–6, 14]. C5b generation gives rise to MAC, a 1,500 kDa complex that forms a pore in the 
membrane of target cell or a microorganism. It consists of C5b, C6, C7, C8, and multiple copies of C9 [15]. 
The MAC-induced lysis is important in the defence against invading Gram-negative bacteria, enveloped 
viruses, and parasites [15]. There are many excellent reviews that cover the intricacies of extra- and 
intracellular complement, so we will focus on the therapeutic implications in this review [1, 4, 6, 14, 16, 17].

Key contributions to our understanding of complement as a system

Since there are many important contributions that are beyond the scope of this review, we will focus on a 
few key points from its discovery until today (Figure 1) [1]. Some of the most important discoveries were 
made possible by an advancement in cloning technology that enabled the cloning of complement receptors 
such as complement receptor 1 (CR1), complement receptor 2 (CR2), and CR4, as well as the 
characterization of their specific patterns of cellular expression [18–20]. The discovery of the membrane 
complement regulators CD46, CD55, and CD59 happened in the mid to late 1980s [21–23]. The “liver 
dogma” that ruled the complement world, and stipulating that the liver is the primary organ of complement 
protein production, was also challenged in the 1980s [24, 25], thus establishing the prerequisite paradigm 



Explor Immunol. 2024;4:577–615 | https://doi.org/10.37349/ei.2024.00161 Page 580

shift in thinking for the discovery of local complement in late the 2000s [26, 27] and then of intracellular 
complement in early the 2010s [9].

The generation of the first complement deficient C3 and factor B mice allowed for a rapidly increased 
understanding of the physiological roles of complement in healthy and disease states [28]. This led to the 
generation of complement disease mouse models, such as membranoproliferative glomerulonephritis [29] 
and other rare AP-driven diseases that are a result of mutations in key complement activators and 
regulators [30]. Another key step in increasing our understanding of complement system dysregulation and 
contribution to disease came from human genetic studies, unveiling the gain or loss of function mutations in 
key complement genes and complement deficiencies [31], which was complemented by work done in 
mouse complement deficient models allowing for better understanding of molecular underpinnings of 
human disease [32]. Classic examples of this are the deficiencies in CP complement proteins C1, C2, and C4, 
which are often associated with an increased risk of developing systemic lupus erythematosus (SLE) [31]. 
MASP-2 deficiency is known to increase susceptibility to recurrent infections [33]. Deficiencies in 
complement regulators have also been described. For example, complement factor I deficiency leads to an 
increased risk of atypical haemolytic uremic syndrome (aHUS) and age-related macular degeneration 
(AMD) [34]. Co-factors for the enzyme factor I are key complement regulators such as CD46, CR1, and 
complement factor H (CFH) [6]. Mutations in factor H, a key complement regulator in the fluid phase, lead 
to complement activation and C3 consumption which can lead to aHUS [35]. Deficiencies in key 
complement proteins such as C3 and C5 have been associated with an increased risk of infections [36, 37]. 
Interestingly, this increased infection risk did not translate to the clinical use of C3 and C5 inhibitors, most 
likely due to the requirements for vaccination prior to treatment and most patients being adults with fully 
developed immune system [38, 39].

Another key advancement in our understanding of complement was the crystallization of key 
complement proteins such as factor B in 2000 [40], C1s and C1q in 2003 [41, 42], and C3 in 2005 [43]. 
Important advances in our understanding of the molecular mechanisms of complement activation were also 
made shortly thereafter, particularly on key complement-activating enzymes such as the convertases of the 
AP [44–48]. C5 and the terminal pathway deserve their own mention. While structural information on C5a 
has been available since at least the late 1980s [49], it took until 2008 for the C5 crystal structure to be 
available [50]. Since 2016, the MAC structure has also been available [51]. The availability of crystal 
structures helps with developing better therapeutics targeting those proteins.

Along with those preclinical advances, an increased understanding of the aetiology of new, potentially 
complement-driven diseases has been achieved in recent decades. For example, Dr. Stevens and colleagues 
[52] led a mini revolution uncovering the role of complement in normal brain development and during 
neurodegeneration. In 2007, Stevens et al. [52] showed that mice deficient in complement protein C1q or 
C3 have defects in central nervous system synapse elimination. Furthermore, the authors show that this 
complement-mediated synapse elimination mechanism can become hijacked in neurodegenerative disease. 
C1q, C3, and CR3 expressed on microglia were implicated as key players in tagging and removing synapses 
during Alzheimer’s disease (AD), based on data from mouse AD models [53]. Thus, it is not surprising that a 
recent study by Veteleanu and colleagues [54] showed that C1q levels are significantly increased in the 
plasma of patients with AD. Furthermore, single nucleotide polymorphisms (SNP) in other complement 
genes such as CR1, C1S, and CFH were found to influence their plasma levels, which suggests a deeper 
involvement of complement in the pathogenesis of AD. The MAC inhibitor clusterin and CR1 were the first 
complement genes to be associated with AD in the initial large-scale, genome-wide association studies [55]. 
Currently, there are no complement inhibitors being tested in AD, but this is probably going to change in 
the future due to the large and growing body of preclinical evidence in this disease.

Genetic studies have also been very useful in deciphering the contribution of the complement system to 
disease. For example, SNPs in C3, complement factor B (CFB), and CFH genes were long known to be 
associated with an increased risk of developing AMD [56]. The genetic data along with animal model data 
[57] and the discovery of C3 and MAC deposits in the retinal tissue of patients with geographic atrophy 
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(GA) [58], have served as a platform for multiple clinical trials for drug candidates such as for 
pegcetacoplan (a C3/C3b inhibitor), GT005 [a recombinant adeno-associated virus 2 (rAAV2) based gene 
therapy delivering FI in the eye], iptacopan (a factor B inhibitor) and avacincaptad pegol (a C5 inhibitor) 
[59].

A great example of the successful clinical translation of mechanistic complement knowledge is that in 
paroxysmal nocturnal hemoglobinuria (PNH). The sensitivity of PNH patients’ erythrocytes to complement 
lysis has been postulated since the 1960s [60, 61]; however, it was not until the mid-1980s that researchers 
started to attribute this sensitivity to a lack of complement regulatory proteins on the erythrocyte surface 
[62, 63]. The mounting knowledge resulted in the recognition of PNH as a complement-mediated disease in 
late the 1980s [64]. The next decade marked further the understanding of the molecular causes of PNH as a 
somatic deficiency of the GPI-anchored proteins CD55 and CD59, which inhibit complement activity on the 
surface of red blood cells [65]. The add-back of CD59 to CD59-deficient erythrocytes resulted in protection 
from complement-mediated lysis [66, 67]. The accumulation of preclinical evidence eventually led to 
clinical trials testing the anti-C5 monoclonal antibody (mAb) eculizumab in PNH [68]. Eculizumab was 
shown to be both safe and efficacious in the treatment of PNH and was approved by the Food and Drug 
Administration (FDA) in 2007, marking the first approval of a complement inhibitor in the clinic [69]. Since 
then, anti-C5 therapeutics have established themselves as a dominant class of complement inhibitors in 
multiple diseases, with C3 inhibitors more recently emerging as a class of differentiated complement 
therapeutics [3].

The development and current state of complement-targeting therapy
Complement has long been suspected as a potential driver or contributor in a number of human diseases. 
While the exact number of diseases with complement involvement is not known, we speculated recently 
that it might be over 400 [3]. As discussed in the previous section, significant advances in our 
understanding of complement biology have been made over the last 35 years. The merit of the therapeutic 
targeting of the complement system has long been proposed; however, the approval of eculizumab was 
when complement therapeutics entered the clinical stage and established the complement system as a 
target in human disease [70].

C5 inhibitors

The development of anti-C5 antibodies started in the 1990s. The first publication from Alexion 
Pharmaceuticals (now part of AstraZeneca Rare Disease) was released in 1995 when Evans and colleagues 
[71] reported the reformat of an anti-C5 mAb into a single-chain variable fragment (scFv). This fragment 
was shown to bind to C5 and inhibit complement in vitro and ex vivo, similar to the parental clone. The scFv 
was based on the N19-8 clone, which was a murine anti-human C5 antibody first described by and Würzner 
and colleagues [72] in 1991 and later by Rinder and colleagues [73] in 1995. By the following year, Alexion 
reported the successful humanization of the antibody (now termed h5G1.1), while retaining the 
complement-inhibiting properties of the original clone and continuing to work on the scFv version 
(Figure 3A) [74]. The monoclonal version of the antibody (i.e., eculizumab) was targeted for multiple 
indications, such as membranous nephritis, lupus nephritis (LN), rheumatoid arthritis (RA), and 
dermatomyositis, while the scFV version (i.e., pexelizumab) was to be used for cardiovascular indications 
[75]. Indeed, Alexion started phase 1 clinical development in dermatomyositis and RA a few years later 
(Figure 3A) [75, 76]. It was until 2007, however, that Alexion had its first clinical approval in PNH after 
successful phase 2 and 3 clinical trials [68, 77]. Multiple clinical trials followed, and eculizumab was 
eventually FDA approved in aHUS in 2011 [78], generalized myasthenia gravis (gMG) in 2017 [79], and 
neuromyelitis optica spectrum disorder (NSMOD) in 2019 (Figure 3B) [80]. To date, there are 127 studies 
listed on ClinicalTrials.gov that have eculizumab as part of the intervention or treatment agent 
(ClinicalTrials.gov, accessed March 21, 2024). Apart from marketing authorized indications, eculizumab has 
been used off-label in several other diseases with varying success, including C3 glomerulopathy (C3G), 
antibody-mediated rejection (AMR) of kidney transplantation, and hematopoietic stem cell transplantation-

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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associated thrombotic microangiopathy (HSCT-TMA) [81]. This shows the immense success of the first 
FDA-approved complement treatment. Eculizumab, while very effective, requires a relatively high weekly 
dose of 600 mg for PNH and 900 mg for aHUS/gMG in the first month [81]. The weekly or bi-weekly 
administration is not very characteristic for most therapeutic monoclonal antibodies, so Alexion eventually 
addressed this by the introduction of a long-acting version of eculizumab (i.e., ALXN1201 or ravulizumab) 
[82]. Apart from mutations in the Fc domain (M428L, N434S) that enable more efficient neonatal Fc 
receptor (FcRn) recycling, ravulizumab also has histidine insertions to reduce binding to C5 at pH 6.0 and 
target mediated drug disposition, both of which result in improved half-life in mice [82] and humans [83]. 
Ravulizumab eventually gained FDA approvals in all diseases in which eculizumab was previously shown to 
be efficacious i.e., PNH, aHUS, gMG, and NSMOD (Figure 3B) and [84–86].

Figure 3. Timeline of key events in C5 antibody inhibitors development. A. Preclinical and early clinical milestones in 
eculizumab development; B. timeline of FDA approvals of eculizumab and ravulizumab

The clear clinical and commercial success of targeting C5 spurred a lot of interest in both preclinical 
and clinical development in the C5 inhibitor space. Currently, C5, C5a, and C5aR are the most clinically 
targeted complement proteins (Table 1). While detailed descriptions of each of these therapeutics are 
beyond the scope of this review, recent reviews are available [1, 70, 87]. Notable mentions in this category 
are avacopan, a C5a receptor antagonist that was approved in 2021 for the treatment of anti-neutrophile 
cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) [88] and avacincaptad pegol (also known as 
Zimura), which was approved in 2023 for the treatment of GA, an advanced form of AMD [89]. Vilobelimab 
(also known as IFX-1) is an anti-C5a mAb developed by InflaRx that was granted an Emergency Use 
Authorization by the FDA in 2023 for use in patients with severe coronavirus disease 2019 (COVID-19) 
[90]. This antibody is also in phase 3 clinical testing for pyoderma gangrenosum with data expected to be 
released in 2025.

Table 1. Non-exhaustive list of disclosed C5 therapeutics

Drug name Company Modality Highest 
clinical stage 
achieved

Target indications

Eculizumab Alexion/AZ Humanized mAb Marketed aHUS (market), gMG (market), PNH (market), 
NMOSD (market), gMG pediatric (filed), NMOSD 
pediatric: phase 3
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Drug name Company Modality Highest 
clinical stage 
achieved

Target indications

Ravulizumab Alexion/AZ Humanized long 
acting mAb

Marketed PNH (market), aHUS (market), PNH pediatrics 
(market), aHUS pediatrics (market), gMG 
(market), NMOSD (filed), HSCT-TMA (phase 3), 
CSA-AKI (phase 3), Renal Basket (phase 2), 
Dermatomyositis (phase 2)

Avacopan ChemoCentryx/Amgen C5aR antagonist 
small molecule

Marketed AAV: approved (United States, Japan, and 
European Union)

C3G: phase 2

HS: phase 2
Zimura 
(Avacincaptad 
pegol)

Iveric Bio Pegylated RNA 
aptamer

Marketed GA: marketed (in the United States)

Stargardt disease: phase 2

Zilucoplan UCB 15-amino acid 
macrocyclic peptide

Marketed gMG (market)

Vilobelimab InflaRx Anti-C5a mAb Marketed COVID-19: emergency authorization in the United 
States,  Pyoderma  Gangrenosum: phase 3

Pozelimab Regeneron mAb Approved 
(CHAPLE)

PNH: phase 3

gMG: phase 3

GA: phase 3 (planned)
Eculizumab 
biosimilars

Multiple mAb Multiple 
phases 
including 
marketed

PNH (marketed)

Nomacopan 
(Coversin, 
AK576)

Akari Small protein Phase 3 HSCT-TMA: phase 3
GA: preclinical

Cemdisiran Alnylam GalNAc conjugated 
siRNA

Phase 3 PNH: phase 3

gMG: Phase 3

GA: phase 3 (planned)
Crovalimab Chigai/Roche Humanized long 

acting mAb
Phase 3 PNH: filed (Japan, China, United States, and 

European Union)
aHUS: phase 3

LN: phase 1

GBS: phase 3
Scleroderma: phase 2

CAN106 CanBridge Humanized long 
acting mAb

Phase1/2 PNH: phase 1b/2 (China)

RLYB-114, 
RLYB, 116

Rallybio Antibody mimetic 
fusion protein + 
HSA binder, 
pegylated mAb

Phase 1 Rare disease, ophthalmology

KP-104 Kira Bio Bi-functional mAb 
(include FH1-5 tail)

Phase 1 IgAN, C3G, SLE-TMA, PNH: all indications phase 
2

CB-301, CB-401 Cascade Biotech Not disclosed Preclinical Not disclosed
PBP1603 Prestige Eculizumab 

biosimilar
Preclinical Not disclosed

HMI-104 Homology Medicine rAAV gene therapy Preclinical Not disclosed
STP145G Sirnaomics siRNA Preclinical Not disclosed
IAB-101 ImmunAbs mAb Preclinical Not disclosed
GalNAc: N-acetylgalactosamine; aHUS: atypical haemolytic uremic syndrome; AAV: antineutrophilic cytoplasmic antibody-
associated vasculitis; C3G: C3 glomerulopathy; CSA-AKI: cardiac surgery-associated acute kidney injury; COVID-19: 
coronavirus disease 2019; FH: factor H; gMG: generalized myasthenia gravis; GA: geographic atrophy; GBS: Guillain-Barre 
syndrome; HSCT-TMA: hematopoietic stem cell transplantation-associated thrombotic microangiopathy; HS: hidradenitis 
suppurativa; HAS: human serum albumin; IgAN: IgA nephropathy; mAb: monoclonal antibody; NMO: Neuromyelitis Optica; 
PNH: paroxysmal nocturnal haemoglobinuria; rAAV: recombinant adeno-associated virus; siRNA: silencing ribonucleic acid; 
SLE-TMA: systemic lupus erythematosus-associated thrombotic microangiopathy; LN: lupus nephritis
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C3 inhibitors

The recent FDA approvals of pegcetacoplan for PNH and GA further galvanized interest in the field of C3 
complement therapeutics. Pegcetacoplan contains 2 C3-, C3b-, and C3c-inhibiting cyclic peptides that 
belong to the compstatin family. Those peptides are linked by a 40 kDa polyethylene gycol (PEG) for 
improved serum half-life [3]. The first compstatin, a 13-mer synthetic C3 inhibitor, was first published in 
mid-1990s by Sahu and colleagues [91]. It was discovered after screening a phage display library for C3 
binders [91]. Since 1996, the compstatin family of C3 inhibitors has grown with at least 7 new members 
[92]. The newer members of the family are characterized by better stability in serum, increased half-life, 
and higher potency in inhibiting complement activation [93]. The development of the compstatin family of 
inhibitors split in 2007 when Potentia Pharmaceuticals licensed the rights to compstatin derivative under 
the name POT-4. POT-4 was tested in a phase 1 study in patients with AMD [94]. From that initial trial in 
AMD, it took until 2015 for the next clinical study in PNH to be initiated (NCT02264639) [95]. Like 
eculizumab, pegcetacoplan was shown to be safe and efficacious in patients with PNH, which led to its first 
FDA approval in 2021 (Figure 4) [96]. In 2023, pegcetacoplan intravitreal injection was also approved as 
the first ever treatment for patients with GA secondary to AMD based on positive data from 2 phase 3 
studies [97, 98]. It was joined a few months later by avacincaptad pegol, a pegylated RNA aptamer targeting 
complement at the level of C5 as the second approved treatment for GA [89]. Its proposed mechanism of 
action and comparison with C5 inhibition has been covered extensively elsewhere [3].

Figure 4. Timeline of key events in development of C3 inhibitors from compstatin family. Top: preclinical and clinical milestones 
in pegcetacoplan development; bottom: timeline of milestones of AMY-101 development. AMD: age-related macular 
degeneration; PNH: paroxysmal nocturnal haemoglobinuria; GA: geographic atrophy; AA: amino acid; ARDS: acute respiratory 
distress syndrome; COVID-19: coronavirus disease 2019

Amyndas Pharmaceuticals took a different approach and instead started clinical development of their 
lead asset AMY-101, a cp40-based, fifth generation compstatin, in periodontitis (Figure 4) [99] and 
NCT03694444 after completing a successful phase 1 safety study in healthy volunteers (NCT03316521). 
AMY-101 was also tested in patients with acute respiratory distress syndrome (ARDS) due to COVID-19 
infection in 2021 (NCT04395456). The preliminary results published in 2022 showed a trend towards a 
reduction in the use of supplemental oxygen at day 14 and a reduction of C-reactive protein (CRP), ferritin, 
and sustained C3 inhibition [100]. Phases 3 and 2 studies on AMY-101 are planned in periodontitis and in 
C3G, PNH, and kidney transplantation, respectively (Table 2), www.amyndas.com.

http://www.amyndas.com/
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Table 2. Non-exhaustive list of disclosed C3 targeting therapeutics

Drug name Company Modality Highest 
clinical stage 
achieved

Target indications

Pegcetacoplan 
(APL-2, POT-4)

Apellis PEGylated 
cyclic peptide

Marketed GA: marketed, PNH: marketed, C3G: phase 
3

AMY-101 Amyndas Cyclic peptide Phase 2 Periodontitis: phase 2, COVID-19: phase 2 
ongoing, C3G: phase 2 planned, PNH: 
phase 2 planned, kidney transplantation: 
phase 2 planned

ARO-C3 Arrowhead siRNA Phase 1 G3G: phase 1/2, IgAN: phase 1/2, 
development stopped?

ALXN2030 Alexion/AstraZeneca/Novo 
Nordisk

siRNA Phase 1 Chronic active AMR: phase 1

APL-3007 Apellis GalNAc 
conjugated 
siRNA

Phase 1 Healthy volunteers: phase 1

CB2782 Catalyst Biosciences PEGylated C3-
protease

Preclinical GA: planned, development stopped?

ALN-CC3 Alnylam GalNAc 
conjugated 
siRNA

Preclinical Development stopped?

SLN-501 Silence/Mallinckrodt GalNAc 
conjugated 
siRNA

Preclinical Not disclosed

CB-
101/501/601/801

Cascade Biotech Not disclosed Preclinical Not disclosed

STP146G Sirnaomics GalNAc 
conjugated 
siRNA

Preclinical Not disclosed

KNP-301 Kanaph/Samsung Biologics Bi-specific C3b 
and VEGF mAb

Preclinical Retinal disease

KNP-302 Kanaph Bi-specific C3b 
and CD59 mAb

Preclinical Not disclosed

GalNAc: N-acetylgalactosamine; aHUS: atypical haemolytic uremic syndrome; AMR: antibody-mediated rejection; C3G: C3  
glomerulopathy; COVID-19: coronavirus disease 2019; IgAN: IgA nephropathy; mAb: monoclonal antibody; PNH: paroxysmal 
nocturnal haemoglobinuria; siRNA: silencing ribonucleic acid; GA: geographic atrophy; VEGF: vascular endothelial growth factor

The clinical and regulatory success of pegcetacoplan and, the wealth of preclinical data highlighting the 
importance of C3 as a complement target have sparked an increased interest in C3 by a number of 
companies (Table 2). The publicly disclosed C3-targeting pipeline seems to be dominated by silencing 
ribonucleic acid (siRNA) as a modality compared with C5 pipeline (Table 1). This could be reflective of the 
specific mechanisms related to the target since C5 knockdown alone might not be sufficient to reduce AP to 
therapeutically meaningful levels. An example of this is the inability of cemdisiran (C5 targeting with 
GalNAc-siRNA) alone to control lactate dehydrogenase (LDH) levels in patients with PNH [101]. An 
alternative explanation could be that this is due to the fact that therapeutic pipelines that target C3 are 
newer compared with C5 for the historic reasons outlined above.

Other complement inhibitors

C3 and C5 have emerged as the most clinically attractive complement targets over the past 2 decades; 
however, many other complement-targeting therapeutics are being tested in clinical studies or have 
recently gained regulatory approval. A recent example is the December 2023 FDA approval of the small 
molecule factor B inhibitor iptacopan (also known as LNP023) for the treatment of PNH in adult patients. 
This compound, which was developed by Novartis Pharmaceuticals, is the first small molecule therapeutic 
targeting the complement system to be approved. Currently, there are 13 active clinical studies with 
iptacopan on ClinicalTrials.gov in multiple complement mediated diseases such as PNH, C3G, aHUS, immune 
complex membranoproliferative glomerulonephritis (IC-MPGN), IgA nephropathy (IgAN), GA, and LN. 
Another small molecule, factor D inhibitor, danicopan (also known as ALXN2040) developed by 
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AstraZeneca was recommended for marketing authorization in Europe for the treatment of patients with 
PNH who were previously treated with C5 inhibitors but still present with significant extravascular 
hemolysis. It was FDA-approved on the basis of positive phase 3 clinical trial data [102]. In addition to PNH, 
danicopan is currently being tested in a phase 2 study in patients with GA. Sutimlimab (also known as 
SAR445088 and developed by Sanofi, is a mAb inhibiting C1s and thus the CP [103]. It was approved in 
2022 for the treatment of cold agglutinin disease (CAD), making it the first FDA-approved CP inhibitor 
[104]. Sanofi is also testing sutimlimab in other disease indications, such as AMR and chronic inflammatory 
demyelinating polyneuropathy (CIDP). Sanofi is also developing an anti-factor Bb mAb for the treatment of 
rare renal disease. For further information on the discussed complement therapies, readers are referred to 
a recent review by Bortolotti et al. [105].

Challenges facing the use of complement-targeting therapies
The extracellular complement system is comprised of more than 60 soluble and membrane-bound proteins 
[3, 6]. It has been growing steadily in numbers in recent decades as additional new complement proteins 
such as the neuronal complement inhibitor SPRX2 are discovered [106, 107]. Despite this, there is a limited 
number of non-function redundant complement targets. The 3 complement activation pathways converge 
first on C3 and then on C5 (Figure 2), thus targeting those initially provided good control of complement 
activity no matter which pathway was initially activated. Recently, companies have been moving upstream 
in the complement cascade targeting the enzymatic complexes or upstream activators of a specific pathway. 
Examples of this are the recently approved or prospective treatments such as factor B (iptacopan, LNP023), 
factor D (danicopan), C1q (ANX005, Annexon Biosciences), C1s (sutimlimab, SAR443809), C2 (ARGX-117, 
empasiprubart, Argenx) [108], and MASP-2 (OMS721, narsoplimab, Omeros Corporation) (Figure 2) [109]. 
Another growing area is the utilization of soluble complement inhibitors such as factor I, factor H (see Gene 
therapy section for more details), and C1 inhibitors (for acute attacks of hereditary angioedema) to control 
complement dysregulation.

With these new complement inhibitors being developed, the “obvious” targets in the complement 
system have already, more or less been covered, including both pathway-specific and broad-range 
inhibitors. This presents a challenge for future development in the complement therapeutics space since 
the remaining complement proteins have not been validated clinically and their function and contribution 
to human disease in many cases are much less clear.

The complement system, as discussed above, is an ancient and flexible part of innate immunity. As 
such, it has been postulated to play a role in the pathogenesis of a significant number of human diseases 
(Figure 5A) [3, 13, 14, 70, 87]. However, the list of diseases with clinically proven complement involvement 
is much shorter (Figure 5B). This presents another challenge for the commercial development of future 
therapies due to the increased competition in those limited number mostly very rare diseases. Thus, in the 
future, there might be a lack of patients available for a clinical trial since they are well served by approved 
therapies. Furthermore, the current set of complement-validated diseases is unlikely to be able to support a 
full commercial launch for new therapies. PNH is a good example of this. With approximately 500 new 
patients being diagnosed with PNH in the United States and approximately 220 in the United Kingdom each 
year [110], it is classified as a rare disease. There are at least 5 marketed therapeutic treatments (not 
counting the Soliris biosimilars) with multiple therapeutics in phases 2 and 3 trials (Figure 6). While the 
case of PNH is special due to it having a very clear complement-driven pathogenesis [3] and, consequently, 
being a “model” disease for which many companies are testing the efficacy of their inhibitors, the situation 
in other diseases with the clinical validation of complement inhibition is fast becoming more and more 
competitive.

Furthermore, the number of companies that have developed or are developing complement targeting 
therapies has been growing steadily over the past 2 decades. Both larger pharmaceutical companies such as 
AstraZeneca, Sanofi, and Novartis and smaller biotechnology companies such as Annexon, Kira, Q32Bio, and 
Omeros have publicly disclosed therapeutics. It seems feasible to expect that the interest from the industry 



Explor Immunol. 2024;4:577–615 | https://doi.org/10.37349/ei.2024.00161 Page 587

Figure 5. Diseases with suspected and clinically validated complement involvement. A. Schematic representation of disease for 
which there is pre-clinical evidence to be complement-mediated; B. schematic representation of disease for which there is 
marketing authorization of complement-targeting therapeutic. * Vilobelimab was granted emergency authorization by the FDA 
but has not been approved. AAV: antineutrophilic cytoplasmic antibody-associated vasculitis; AD: Alzheimer’s disease; aHUS: 
atypical hemolytic uremic syndrome; AMD: age-related macular degeneration; C3G: C3 glomerulopathy; CAD: cold agglutinin 
disease; COPD: chronic obstructive pulmonary disease; GBM: glioblastoma multiforme; gMG: generalized myasthenia gravis; 
GT: gene therapy; IBD: inflammatory bowel disease; IgAN: IgA nephropathy; I/R: ischemia/reperfusion; IPF: idiopathic 
pulmonary fibrosis; LN: lupus nephritis; MN: membranous nephropathy; MS: multiple sclerosis: NMO: neuromyelitis optica; PD: 
Parkinson’s disease; PNH: paroxysmal nocturnal hemoglobinuria; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; 
TBI: traumatic brain injury; TMA: thrombotic microangiopathy. Figure 5A is created in BioRender. Kolev, M. (2023) BioRender.
com/u59k787; Figure 5B is created in BioRender. Kolev, M. (2023) BioRender.com/v03r343

Figure 6. List of therapeutics in development for the treatment of PNH. 1: Approved in the US, EU approval was expected in 1H 
2023. 2: Filed in combination with C5 inhibitors. 3: Current development in specified regions only. 4: First phase II will be in 
periodontal inflammation and gingivitis. Phase II in PNH planned since 2019. 5: Lead indication IgAN. 6: Phase II to start in 1H 
2024. 7: Filed in US. 8: Filed in US. * Preclinical list not exhaustive. Alexion has preclinical complement assets: peptide 
therapies with Zealand Pharma, GalXC RNAi with Dicerna. Alnylam and Silence/Mallinckrodt have C3 siRNAs in development. 
IgAN: IgA nephropathy; PNH: paroxysmal nocturnal haemoglobinuria; siRNA: silencing ribonucleic acid

will continue to grow; however, the biggest obstacles that might limit the potential future growth is the 
limited set of clinically validated targets in mostly rare diseases.

Future innovation in the complement therapeutics space
As discussed in the previous section, the current trajectory of the development of complement therapeutics 
suggests that, in near future, competition in this space might significantly increase, which will benefit 
patients but might also delay investments from pharmaceutical or biotechnology companies due to very 

https://app.biorender.com/citation/66f56175a0bb1cac50419e38
https://app.biorender.com/citation/66f56175a0bb1cac50419e38
https://app.biorender.com/citation/66f560e7a0b09f6626ea3458
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competitive markets and unclear paths for new players. In this section, we will share our thoughts on 
where the future innovation in the complement therapeutics might come. In our opinion, there are a few 
key factors that will drive innovation in the coming decades, including, validation of complement inhibition 
in new diseases, which can be achieved by using combinational therapies with other non-complement 
therapeutics or leveraging new discoveries in the complement field to design novel complement 
therapeutics. Finally, the emerging new therapeutic modalities such as CRISPR/CRISPR-associated protein 
9 (Cas9) editing, base editing, and messenger ribonucleic acid (mRNA) editing, might allow for more 
targeted and specific complement inhibitors with new therapeutic properties.

Validation of complement inhibition in non-clinically validated indications

One obvious answer to increasing competition is the validation of existing complement therapeutics in 
diseases for which there are no established complement therapies. This presents a challenge, as 
complement involvement in the pathogenesis of most of those diseases is not always clear. Some of the 
diseases where there is preclinical and anecdotal clinical information are listed in Table 3 and Figure 5. We 
will not discuss those in detail, however, we will use kidney disease and transplantation as an example 
since there has been a significant accumulation of preclinical and clinical data. There is active clinical 
development in these diseases suggesting that the FDA approval of complement therapy is just a matter of 
time. Kidney diseases with suspected complement involvement include aHUS, IgAN, C3G, and IC-MPGN. 
Atypical HUS is classified as thrombotic microangiopathy (TMA) that is predominantly renal in nature, 
unlike thrombotic thrombocytopenic purpura (TTP) and is not caused by Shiga-like toxin-producing 
Escherichia coli HUS (STEC-HUS) [111]. Atypical HUS can arise due to mutations in complement regulatory 
genes such as factor H [112], CD46 [113], factor I [112], and others. Autoantibodies targeting factor H have 
also been reported [114]. Mechanistically, the mutations in complement regulatory proteins and anti-factor 
H antibodies reduce complement regulation and lead to uncontrolled systemic complement activation.

Complement has been long implicated in IgAN as part of the pathology since most patients with IgAN 
have C3 deposition in the kidney [115] and potential systemic complement activation exemplified by the 
presence of circulating C3 opsonized IgA-containing immune complexes [116]. Both the LP and the AP have 
been implicated [117]. Despite the anecdotal mixed efficacy data for eculizumab in case reports [118–120] 
today, there are multiple clinical trials testing complement inhibition in patients with IgAN and it seems 
that we are on the verge of FDA approval in near future [121].

Organ transplantation is another area where there is ample evidence for complement involvement in 
the rejection. In transplantation, complement activation can occur in both the donor and the recipient 
[122]. On the donor side, shock and inflammation after death can cause complement activation in multiple 
organs including the kidney [8, 13]. For example, during reperfusion in human transplanted kidneys, C5b-9 
serum levels were shown to be noticeably higher in deceased-donor kidney transplantation compared with 
living ones [123]. Ischemia has been shown to result in complement activation mostly via the AP, although 
the LP and the CP were also implicated [13, 124]. The data on ischemia comes predominantly from mouse 
models of ischemia reperfusion injury (IRI) whereby C3, C3aR, or CFB knock-out mice were shown to be 
protected from injury [125, 126]. Consistent with those data, factor B-blocking antibody was shown to 
prevent C3b deposition in mouse kidneys [127]. Probably not surprisingly, complement inhibition pre-
transplantation results in the reduction of delayed graft function. A recent study by Danobeitia et al. [128] 
showed that the complement recombinant C1 inhibitor (blocks CP at C1 complex level) pre-treatment of 
donor kidney resulted in a reduction of complement CP activation, a reduction in proinflammatory 
cytokines [i.e., TNF-α and monocyte chemoattractant protein-1 (MCP-1)], and improvement in delayed graft 
function in a primate transplantation model. The authors found that complement inhibition was associated 
with superior renal function and a reduction in urinary neutrophil gelatinase-lipocalin (NGAL) [128]. In a 
pig model of autotransplantation, pre-reperfusion treatment with recombinant C1 inhibitor therapy 
resulted in a faster recovery of glomerular function and was associated with improved long-term kidney 
function and reduced fibrosis [129]. On the recipient side, it is known that recipients can develop donor-
specific antibodies such as anti-ABO or anti-HLA. These antibodies bind to epithelial and other cells in the 
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Table 3. Selected diseases with suspected complement involvement for which no complement therapeutics have been FDA 
approved

Disease or 
condition

Preclinical complement involvement Clinical complement 
involvement

Other treatment options

AD Shown in multiple mouse models [132].
Genome wide associations of complement 
proteins (clusterin, CR1) with AD [133]. 
Complement proteins present in plaques [134] 
and are upregulated in CSF [133].

No clinical data Lecanemab [135] aducanumab 
[136]

MS Complement C3d fragments deposited in lesions 
and contribute to myelin destruction [137, 138].

C3, C1q, and CR1 are associated with visual 
acuity loss in patients with MS [139].

Reducing complement activation is protective in 
multiple EAE models [140].

No clinical data Anti-CD20 antibodies (rituximab, 
ocrelizumab, ofatumumab, and 
ublituximab) [141], IFN-1α, IFN-
1β, glatiramer acetate, 
natalizumab, fingolimod, and 
dimethyl fumarate [142].

Select 
secondary 
TMAs

Some drug-induced TMAs are suggested to be 
complement related [143].
In TMAs associated with autoimmune conditions 
(SLE, catastrophic APS, 
scleroderma)—complement activation is present 
in some patients. The CP and the AP are 
triggered by anti-phospholipid antibodies in 
vascular and obstetric APS [144]. There is strong 
evidence for complement activation in TMAs after 
organ transplant (see text).

Eculizumab showed 
promising data in patients 
with SLE/APS in the 
treatment of TMA and 
improved kidney function 
[145].

In catastrophic APS and 
scleroderma, eculizumab 
treatment showed promising 
results [146, 147]. A more 
recent study showed the 
efficacy of eculizumab in 
patients with scleroderma 
renal crisis [148].

Eculizumab is frequently 
used off label in TMA 
secondary to transplantation 
[149].

Narsoplimab (OMS721) 
administration resulted in 
improvement of organ 
function in phase 2 trial in 
patients with HSCT-TMA 
[109].

Multiple depending on disease, 
most often steroids and primary 
disease specific treatments.

NAFLD 
including 
MASH

Complement is postulated to be activated in 
NAFLD (C3 fragments, C4d, and MBL/C1q) [150].

An increase in complement components C3, C5, 
CFB, and C3a was associated with an increased 
risk and severity of NAFLD [151]. The role of AP 
activation in MASH has been reported [152].

No clinical data but 
complement has been 
proposed as a therapeutic 
target [150].

NR1A2 agonist—resmetirom 
[153].

Insulin 
resistance 
and obesity

The level of C3 is increased proportionately to the 
total amount of adipose tissue and blood glucose 
levels [154]. 

C3adesArg might trigger a cytokine response and 
induce inflammation leading to insulin resistance 
[155]. C5aR1 signaling in obesity has also been 
linked to insulin resistance in muscle cells [156].
Complement activation might be occurring in T1D, 
and Genetic variants of C2, CFB, C4A, and C4B 
appear to play a role in T1D risk [157].

No clinical data Anti-GLP-1 antibodies are the 
leading drug class for the 
treatment of obesity and also 
improves blood glucose levels 
[158].

AMY-101 tested in patients 
with acute COVID-19 showed 
some efficacy [100].

Ravulizumab and zilucoplan 
were also tested in patients 
with acute COVID-19 with 
limited efficacy [164].
Vilobelimab showed a 
reduction in mortality at 
28 days in patients on 

Acute and 
long 
COVID-19

Patients with long COVID-19 were shown to have 
increased MAC [159], iC3b, and Ba generation, 
suggesting AP activation [160].

Complement system activation plays a major role 
in acute COVID-19 [70, 161–163].

Corticosteroids (particularly 
dexamethasone), interleukin-6 
receptor antagonists (e.g., 
tocilizumab), and Janus kinase 
inhibitors (e.g., baricitinib), 
molnupiravir, 
nirmatrelvir/ritonavir, and 
remdesivir.
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Disease or 
condition

Preclinical complement involvement Clinical complement 
involvement

Other treatment options

mechanical ventilation and 
has emergency authorization 
[90].

LN Complement protein deficiencies can lead to SLE 
(C1q, C1r, C1s, C4, C2).

Multiple animal models suggest that complement 
drives the pathogenesis of SLE [165].
The LP might be activated in LN [166].

C3d/creatinine levels can discriminate between 
active and inactive LN, while C3d alone correlates 
with SLE disease activity index [167].

Iptacopan (NCT05268289)
Narsoplimab (NCT02682407)

Ravulizumab 
(NCT04564339)

Glucocorticoids, MMF, 
cyclophosphamide, cyclosporin 
A, rituximab [168], belimumab, 
and voclosporin [169].

RA Antibodies against citrullinated proteins activate 
both the CP and the AP in vitro [170, 171].

Multiple animal models using knockout mice 
suggest a pathogenic role of complement [172–
174].

TT32 (CR1/CR2 fusion protein) and inhibitor of 
AP, CP, and LP showed efficacy in 2 animal 
models of arthritis reducing disease activity [175].

Blocking C5aR1 using 
PMX53 did not decrease 
synovial inflammation and did 
not change biomarkers 
associated with clinical 
efficacy in patients with RA 
[176].

TNF-α inhibitors, rituximab, 
tocilizumab, and nintedanib [177].

AD: Alzheimer’s disease; APS: antiphospholipid syndrome; GLP-1: glucagon-like peptide-1; LN: lupus nephritis; MASH: 
metabolic dysfunction-associated steatohepatitis; MMF: mycophenolate mofetil; MS: multiple sclerosis; NAFLD: non-alcoholic 
fatty liver disease; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; TMA: thrombotic microangiopathy; AP: 
alternative pathway; CFB: complement factor B; COVID-19: coronavirus disease 2019; CP: classical pathway; CR1: 
complement receptor 1; CR2: complement receptor 2; HSCT-TMA: hematopoietic stem cell transplantation-associated 
thrombotic microangiopathy; IFN-1α: interferon 1α; LP: lectin pathway; MAC: membrane attack complex; MBL: mannan-binding 
lectin; TNF-α: tumour necrosis alpha

transplanted organ and trigger complement activation via the CP in some patients, again pointing to the 
role of complement in rejection [130]. While the preclinical data are positive so far, the clinical use of 
eculizumab and C1 inhibitors has been more or less disappointing in that it failed to prevent chronic AMR 
[131].

While there is mounting evidence for the role of the complement system in cancer and cancer 
immunotherapy this is beyond the scope of this review, and readers are directed to our recent review on 
the topic [2].

Combination therapy

Another way to improve the efficacy of complement targeted therapy in diseases with more complex 
aetiologies is to use combination therapy with a complement inhibitor plus standard-of-care medicine. This 
has long been an established strategy in oncology. For example, combinational therapy with both anti-PD-
L1 and anti-vascular endothelial growth factor (VEGF) antibodies, has shown improved efficacy in patients 
with hepatocellular carcinoma [178]. In addition, the combination of danicopan plus eculizumab or 
ravulizumab is a complement-specific example of improved control of extravascular hemolysis in patients 
with PNH who do not respond well to anti-C5 therapy alone [102]. Based on the reduction of C5 in serum 
after treatment with Cemdisiran, (C5 targeting GalNAc siRNA) one can infer that this will allow for lower 
doses of eculizumab or ravulizumab to be used for the treatment of PNH or other indications where there is 
clinical validation of C5 inhibition. A clinical stage example marrying both complement inhibition and 
oncology is the ongoing phase 2 clinical trial of pegcetacoplan in combination with either pembrolizumab 
[anti-programmed cell death protein 1 (PD-1) antibody] or pembrolizumab and bevacizumab (anti-VEGF 
antibody) (NCT04919629). It is expected that complement inhibition at the level of C3 in these patients will 
reduce C5a generation in the tumor microenvironment and thus aid the efficacy of pembrolizumab. This 
notion is based on data published by Markiewski et al. [179] showing that C5a can enhance tumor growth 
via the recruitment of myeloid-derived suppressor cells (MDSC) into tumors and block the function of 
antitumor CD8+ T cells thus complement inhibition is expected to reverse these processes. In our opinion, 
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combinational approaches that include complement inhibitors plus a non-complement medication might be 
the best way to approach oncology [180] and autoimmune indications where complement activation is 
probably just one of the facets of a complex disease network.

Emerging complement biology

Another potential opportunity in expanding the scope of complement therapies is targeting the more 
recently discovered roles of local and intracellular complement [3, 87]. Currently, the external facing drug 
pipelines of pharmaceutical and biotechnology companies are, for the most part, focused on targeting 
systemic complement activation. This is starting to change with the advent of ocular-delivered therapeutics 
such as pegcetacoplan and avacincaptad pegol as well as the emergence in the clinic of C3 tissue targeting 
bi-specific molecules such as Kanaph Therapeutics’ KNP-301, a fusion protein of C3b inhibitor and anti-
VEGF antibody [181] or Q32’s ADX-097 (C3d targeted FH domains 1–5). These approaches, which have 
been first established by multiple academic labs [182–184] have the potential to reduce not only the 
amount of drug required while also reducing systemic complement inhibition and thus improving safety. 
This also results in improved efficacy via targeting local complement interaction with immune and non-
immune cells. Locally produced and activated complement proteins can interact with complement 
receptors via both paracrine and autocrine signaling pathways which modulates the functions of several 
immune cell types [185]. For example, Strainic et al. [27] have shown that the endogenous production of 
C3a and C5a by antigen presenting cells and CD4+ T cells boost T cell proliferation and survival through 
signaling via C3a and C5a receptors. Another study by the same group revealed a role for the C5a-C5aR1 
signaling axis in T cell survival and expansion [26]. Intracellular complement is another recent discovery 
that is yet to be explored in the clinic. Briefly, Liszewski et al. [9] first identified the presence of intracellular 
C3 in the endosomal and lysosomal compartments of CD4+ T cells. In resting T cells, C3 is constantly 
intracellularly activated by the cysteine protease cathepsin L, akin to the tickover mechanism described for 
serum C3. The generated C3a then engages C3aR on lysosomes to sustain the mammalian target of 
rapamycin (mTOR) activation required for cell survival [9]. During T-cell activation, T-cell receptor 
signaling drives activated C3a and C3b fragments to translocate to the cell surface and signal via surface 
located C3aR and CD46, which, in turn, drives a differentiation into T helper 1 (TH1) phenotype response 
[186]. Importantly, dysregulated C3 activation and CD46 signaling leads to hyperactive TH1 responses in 
some autoimmune disease such as RA [9, 187]. In addition to C3, intracellular C5 signaling induces the 
expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and IL-1β, further 
driving TH1 differentiation of CD4+ T cells [188]. The autocrine activation of CD46 is required to induce 
metabolic rearrangements and mount a TH1 response and allow the production of interferon γ (IFN-γ) 
[186]. CD46 was also shown to be an important costimulatory molecule for CD8+ T-cell function [189]. The 
field of intracellular complement has been rapidly expanding with more evidence accumulating in recent 
years [17, 190–196]. While it has not even been proven that it has relevance in vivo yet, the potential for 
controlling both innate and adaptive immunity with a single complement therapeutic seems like an enticing 
proposition.

Finally, emerging therapeutic modalities such as CRISPR-Cas9 editing, base editing, prime editing, 
mRNA editing, and rAAV-based gene therapy might provide differentiation from existing marketed 
products which are mostly protein or small molecules in nature. These technologies, along with specific 
challenges, and opportunities associated with using gene therapy approaches for targeting the complement 
system, will be discussed at length in the next section.

Gene therapy
Gene therapy is an innovative breakthrough in medical science that marks a new section in the treatment of 
genetic disorders and diseases [197]. It represents a significant shift by targeting the fundamental causes of 
some diseases, which are defective genes, providing hope where traditional treatments often fail [198]. This 
section will provide a basic understanding of gene therapy by exploring its key principles, applications, and 
transformative potential for targeting diseases mediated by complement dysregulation.
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Unlike traditional drugs that usually act on proteins or cells, genetic drugs modify gene expression to 
produce medicinal effects [199]. The treatment involves introducing external nucleic acid sequences into 
cells to counteract faulty genes, offering highly specific, long-lasting, and potentially curative results in both 
inherited and acquired disorders [200]. For example, a gene therapy approach is being applied to 
monogenic diseases such as cystic fibrosis, hemophilia, and muscular dystrophy [201, 202]. However, as 
our understanding of the genetic foundations of diseases deepens, the range of conditions amenable to gene 
therapy is expected to expand to more complex polygenic diseases such as cancer, cardiovascular disorders, 
neurological diseases, and metabolic syndromes [203].

Gene therapy for targeting complement activation represents a novel and still largely untapped 
approach to treating complement-mediated disease [204]. Various gene therapy approaches exist today 
including gene augmentation, interference, and deoxyribonucleic acid (DNA)/RNA editing [205]. Each 
technology can be tailored to the specific mechanisms of the disease of interest, highlighting the versatility 
and adaptability of gene therapy as a therapeutic option.

Gene augmentation therapy

Gene augmentation involves the delivery of genetic constructs encoding a healthy gene to replace a 
dysfunctional one [206]. In the context of complement dysregulation, complement regulators that can be 
overexpressed to restore complement homeostasis and reduce inflammation associated with complement 
activation are most often targeted. Gene augmentation typically uses a virus as a carrier to enable the 
delivery of the gene of interest to the appropriate cells. Different types of viruses, such as adenovirus, 
adeno-associated virus, herpes simplex virus, and lentivirus, can be used to deliver gene therapies [174, 
207]. Among these, rAAV vectors are currently the most common, and they constitute approximately 70% 
of ongoing clinical trials for one-time gene therapies [197]. Recombinant AAV vectors are preferred because 
they can transduce dividing and non-dividing cells, ensuring sustained transgene expression through 
circular concatemers that persist in the nucleus [208]. Recent breakthroughs have enabled the engineering 
of proprietary rAAVs with improved transduction efficiency and tissue specificity, further strengthening 
their utility as gene therapy vectors [209, 210]. Despite the advantages of rAAV-based gene therapies, some 
challenges remain. The major challenges are innate and adaptive immune responses against rAAV, 
determining the optimal dosage to balance therapeutic efficacy and minimize toxicity, and limited cargo 
capacity [208, 211]. Thus, a lot of companies and researchers have focused on utilizing this technology for 
specific tissues such as the eyes to minimize systemic exposure and limit side effects [211].

Gene editing

Gene editing is a groundbreaking technology that enables precise modifications to the genome, including 
insertions, deletions, and base substitutions [212]. It holds the potential for controlling genetic diseases by 
addressing mutations in single genes that lead to changes in gene expression in vivo. Over the years, gene-
editing technology has evolved through 3 primary generations of development.

First-generation CRISPR

The first generation featured zinc-finger nucleases (ZFNs), followed by transcription activator-like effector 
nucleases (TALENs) in the second generation [212, 213]. However, third generation technology [i.e., 
clustered regularly interspaced short palindromic repeats (CRISPR)] and Cas are the most widely adopted 
[214]. This is because it utilizes a Cas9 nuclease and guide RNA (gRNA), the latter of which can be 
specifically designed for target gene. Thus, this technology enables the very precise editing of any sequence 
of eukaryotic cells [215]. Using the control of a sequence-specific gRNA, the Cas9 nuclease cuts, replaces, or 
inserts DNA sequences to precisely achieve the intended purpose of genome editing [216]. The emergence 
of CRISPR significantly enhanced the efficiency of gene editing and broadened the scope of gene-editing 
applications because CRISPR offers a crucial advantage over previous techniques: it is much simpler, faster, 
and cheaper to use [217]. Previous technologies often required the creation of a gene-editing protein from 
scratch for each specific DNA modification [218]. However, with CRISPR, the same Cas9 molecule can be 
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directed to any sequence by designing a complimentary gRNA molecule, which is considerably simpler to 
design and easier to synthesize [219]. The gRNA guides Cas9 to the desired site, where it induces a double-
stranded break (DSB) repairable via non-homologous end joining (NHEJ) or homology-directed repair 
(HDR) [216, 220]. NHEJ repair often results in insertions or deletions (indels) of DNA sequences at the 
Cas9/gRNA cleavage sites, enabling genetic disruption and functional protein knockout [221]. This 
approach shows promise in treating certain monogenic disorders, as demonstrated in the first human in 
vivo gene therapy, where liver-specific transcription ablation reduced pathogenic protein accumulation in 
patients with hereditary transthyretin amyloidosis (ATTR) [222]. There is an FDA-approved therapy using 
first generation CRISPR technology developed by CRISPR Therapeutics in collaboration with Vertex 
Pharmaceuticals for the treatment of sickle-cell disease and β-thalassemia [223]. Challenges with first 
generation CRISPR inlcude, unintended off-target mutations may occur due to editing in additional DNA 
sequences with blunt ends potentially interfering with repair, leading to various deleterious effects such as 
genomic rearrangements, duplications, truncations, micronuclei formation, chromosome bridges, and 
chromothripsis [224].

Base editing

As a result of these shortcoming of first generation CRISPR technology, researchers have adapted CRISPR-
Cas9 to enable the direct generation of precise point mutations in genomic DNA or cellular RNA, bypassing 
the need for creating DSB, utilizing a DNA donor template, or relying on cellular HDR [225]. DNA base-
editors (BEs) consist of hybrids between a catalytically impaired Cas nuclease and a base-modification 
enzyme that functions on single-stranded DNA (ssDNA) rather than double-stranded DNA (dsDNA). When 
bound to its target site in DNA, the gRNA forms base pairs with the target DNA strand, causing 
displacement of a small section of ssDNA in an “R-loop”. Within this single-stranded DNA bubble, the 
deaminase enzyme modifies DNA bases [226]. Two classes of DNA BEs have been described thus far: 
cytosine BEs (CBEs) and adenine BEs (ABEs) [226]. Together, these editors enable the installation of all 4 
transition mutations (C→T, T→C, A→G, and G→A) using the CRISPR-Cas technology [227]. The challenges 
associated with base editing are concerns regarding off-target editing and the imperative to uphold high 
precision [228]. An example of clinical stage base editing aiming to correct a genetic defect is the BEAM-101 
clinical trial which aims to ex vivo activate fetal hemoglobin expression in hematopoietic stem cells in 
patients with sickle cell disease (NCT05456880). The Verve Therapeutics clinical trial represents a different 
approach in the clinical translation of the technology (NCT05398029). Targeting the proprotein convertase 
subtilisin/kexin type 9 (PCSK9) gene, a key regulator of low-density lipoprotein (LDL) cholesterol levels 
implicated in cardiovascular risk, this trial employs precise base editing techniques to reduce the gene 
expression within liver hepatocytes. By reducing PCSK9 levels in the blood, LDL cholesterol levels will also 
be reduced, thus the approach holds promise for mitigating the risk of cardiovascular events in individuals 
suffering from heterozygous familial hypercholesterolemia using once-and-done approach. This trial's 
significance extends beyond cardiovascular disease, signalling the growing application of base editing in 
tackling complex genetic disorders.

Prime editing

Prime editing represents another recent advancement in genome editing technology, offering precise and 
versatile editing capabilities without the need for DSB or donor DNA templates [229]. It enables all 12 
possible base-to-base conversions, as well as insertions and deletions, significantly expanding the scope of 
editable genetic mutations [230]. With its broad editing spectrum, prime editing holds the potential to 
correct up to 89% of human genetic diseases, making it a promising tool for therapeutic interventions. The 
prime editing approach functions as a “search-and-replace” mechanism, facilitated by an engineered Cas9 
protein fused to a reverse transcriptase, along with a prime editing gRNA (pegRNA) [231]. This editing 
complex binds to the target DNA sequence recognized by the pegRNA, where it nicks the DNA strand and 
releases a 3’ DNA end. This end then undergoes reverse transcription, guided by the pegRNA, leading to the 
incorporation of the desired edit into the genome [231]. Since its discovery in 2019, prime editing has 



Explor Immunol. 2024;4:577–615 | https://doi.org/10.37349/ei.2024.00161 Page 594

shown promise across various cell types, including postmitotic neurons, mice, organoids, and plants [232]. 
Despite these preclinical advancements, prime editing technology is still considered in its early stages, 
facing obstacles that need to be addressed to realize its full potential as an effective and broadly applicable 
gene editing tool. These challenges are mostly the same as those for base editing and are related to delivery 
methods due to large size, off-target effects, and efficiency variability [232].

Other gene therapies

The DNA editing technologies have many advantages, with a key advantage being highly specific and 
permanent DNA changes that can enable the use of one-and-done therapies in multiple diseases [229]. As 
discussed above, there are also challenges associated with off-target editing and the delivery to target cells. 
Recognizing the potential risks of a permanent alteration of DNA sequences, researchers have turned to 
epigenetic and RNA editing as alternative approaches.

Epigenetic editing

Epigenetic editing does not change the DNA sequence itself but rather modifies the way genes are read and 
expressed within the cell. This modification, known as epigenetic regulation, involves adding or removing 
chemical tags to the DNA strand, such as methylation, which can silence or activate genes [233]. Epigenetic 
editing can be quite unspecific, but recent developments regarding coupling it with CRISPR-based systems 
can overcome this limitation [234]. It also offers several advantages over traditional DNA editing methods. 
First, it allows for the fine-tuned control of gene expression, unlike DNA editing, which is more akin to a 
simple on/off switch. An important advantage of epigenetic editing is its potential for reversibility. Unlike 
irreversible changes to the DNA sequence, epigenetic modifications can be introduced and erased, offering 
a level of control and flexibility in gene regulation [235]. This reversibility reduces the risk associated with 
off-target effects, as any unintended modifications can be corrected.

RNA editing

RNA editing has emerged as a promising alternative to DNA editing for treating genetic diseases, offering 
several advantages and unique capabilities. Unlike DNA editing, which permanently alters the genetic code, 
messenger RNA editing allows for temporary modifications to the molecules responsible for protein 
production, which reduces the risk of off-target effects and provides a safer option for genetic intervention 
[236]. While DNA editing requires the delivery of complex molecular machinery [e.g., Cas9 and gRNA 
encapsulated in lipid nanoparticles (LNP) for delivery [230]], RNA editing drugs require just a template, an 
RNA, and rely on cell intrinsic enzymes termed adenosine deaminase acting on RNA (ADAR), which can 
convert A→I with cells reading it as G [237]. There are multiple ADARs [238], and researchers and 
companies alike have been working on exploring their therapeutic potential [239, 240]. Another advantage 
of RNA editing is that it may be delivered more easily without the need for LNP or viral vectors, unlike DNA 
editors [237]. However, RNA editing also has its limitations, such as RNA editing targets multiple RNA 
molecules and long persistence of RNA editors in the cell, both of which raise concerns about lasting off-
target effects and immunogenicity [241].

Delivery challenges and opportunities associated with gene therapies

The clinical translation of CRISPR-based gene therapy presents a significant hurdle in the safe and efficient 
delivery of CRISPR components to target cells or organs [242]. While rAAVs are the primary vectors for in 
vivo gene therapy due to their high transduction efficiency and relatively low immunogenicity, their small 
packaging size poses a challenge in delivering large genome-editing tools such as base editors and prime 
editors [243]. This limitation has led to the development of dual rAAV vector approaches, where the gene of 
interest is divided into 2 parts and is packaged into separate rAAV vectors. However, these dual rAAV 
systems face several challenges, including low reconstitution efficiency, the production of unnatural 
proteins, and safety concerns related to immune responses and adverse effects [243, 244].



Explor Immunol. 2024;4:577–615 | https://doi.org/10.37349/ei.2024.00161 Page 595

Due to the limitations of viral vectors, significant attention is being directed toward the development of 
non-viral delivery technologies [222]. Non-viral vectors such as LNP offer promising advantages such as a 
larger packaging capacity, simplified manufacturing processes, and the potential for re-dosing due to lower 
immunogenicity compared with rAAV [245]. LNPs have gained popularity for in vivo CRISPR gene editing 
due to their ability to deliver Cas9 mRNA and gRNA to the liver, enabling the transient expression of gene 
editing proteins and minimizing off-target effects [246]. Moreover, LNPs degrade within a couple of weeks, 
supporting long-term safety considerations [247]. LNPs also offer the potential for split-dosing, allowing for 
repeat administration due to their lower immunogenicity compared with rAAV [245]. An example of a 
successful clinical use of LNPs is patisiran, an FDA-approved LNP-encapsulated siRNA for the treatment of 
hereditary transthyretin (TTR)-mediated amyloidosis, which demonstrates the feasibility of chronic 
administration without safety and efficacy concerns [248]. Another example of a successful clinical use of 
LNPs include the Pfizer/BioNTech COVID-19 vaccine (alternative name, BNT162b2) which has been widely 
used across the world [249]. While less immunogenic than rAAVs, LNPs still activate the innate immune 
system and even complement, and this can lead to complications in some patients, such as low transduction 
efficiency and difficulty with extrahepatic delivery [250, 251]. Safety concerns related to transient liver 
injury have underscored the need for thorough evaluation and optimization. In conclusion, LNPs have 
emerged as a clinically mature non-viral platform for the safe and effective delivery of genetic medicines. 
LNPs played a pivotal role in enabling the FDA approval of groundbreaking therapies such as BNT162b2 
and patisiran [252, 253]. However, intravenously administered LNPs predominantly accumulate in the liver 
and are internalized by hepatocytes, constraining their therapeutic utility in other organs [246, 254]. 
Targeted delivery is a critical area of current LNP research, aiming to improve delivery outside of the liver, 
mitigate toxicity and off-target effects, and enhance efficacy in challenging-to-transfect targets.

Gene therapy approach to target the complement system dysregulation

In terms of using gene therapies to target complement dysregulation, the gene augmentation therapies 
utilizing rAAV in AMD are the most clinically advanced and the only disclosed approach so far. The basic 
idea is to block complement activation by using rAAV to increase complement regulator expression for the 
treatment of AMD. This is perhaps unsurprising since rAAV-based gene therapy is currently the most 
widely clinically tested form and is particularly well suited for local rather than systemic delivery, and the 
recent FDA approvals of pegcetacoplan and avacincaptad pegol provided the clinical validation of 
complement as target. Table 4 summarizes some of the known gene therapies targeting complement 
dysregulation.

Table 4. Recombinant AAV-based complement therapies in GA

Therapeutic Payload Company Target 
disease

Mechanism of action Stage

4D-175 Optimized 
CFH

Aevitas Therapeutics/Molecular 
Therapeutics

GA Express CFH to restore 
complement regulation

Phase 1 expected Q2 
2024

GT005 CFI Gyroscope 
Therapeutics/Novartis

GA Express CFI to restore 
complement regulation

Phase 2 completed 
Development stopped

HMR59/JNK-
1887

Soluble 
CD59

Hemera Biosciences/Johnson & 
Johnson

GA, wet 
AMD

Express CD59 to restore 
complement regulation

Phase 1 completed [255]

AMD: age-related macular degeneration; CFH: complement factor H; CFI: complement factor I; GA: geographic atrophy

Apart from those examples, there is not a lot of publicly available information on targeting the 
complement system using advanced forms of gene therapy. Here, we want to share our thoughts on how 
utilizing base, prime, or RNA editing might have specific advantages and disadvantages compared with 
peptides, antibodies, and small-molecule-based therapies which are currently the clinically established 
modalities for complement inhibition.

One key benefit of gene therapy such as base or prime editing is dosing convenience. Unlike 
conventional therapies that often require frequent and long-term intravenous or subcutaneous 
administration, gene therapy typically involves a single dose [256]. This eliminates the need for frequent 
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clinic visits and reduces the burden of treatment on patients and caregivers. Most complement therapies, 
such as pegcetacoplan, eculizumab, and iptacopan require either twice daily or weekly administration to 
achieve complement inhibition due to an abundance of the targets in serum [81, 257, 258]. A notable 
exception of this is ravulizumab, which has been specifically engineered to have a longer half-life [82]. Thus, 
a gene therapy involving complement inhibition might have an advantage over current standard of care 
complement inhibitors by requiring a single dose for the long-lasting control of the complement system.

A second potential benefit is with regard to improving safety. The frequent dosing of traditional 
therapies can increase the risk of adverse effects, including infusion reactions and complications associated 
with long-term drug exposure [259]. By contrast, a single dose of gene therapy minimizes the cumulative 
exposure to potentially harmful agents, reducing the risk of adverse events. Furthermore, one-and-done 
gene therapy has the potential to improve efficacy by providing sustained therapeutic benefits over an 
extended period. This has been shown by Musunuru et al. [260], who successfully used base editing to 
reduce PCSK9 and LDL in the blood of non-human primates for at least 8 months after a single treatment. 
This was an improvement over ALN-PCSsc, an RNA interference agent that reduced PCSK9 for up to 
6 months after 2 administrations [261]. This continuous efficacy after a single dose, can slow disease 
progression, as it eliminates the disruptions in treatment adherence that ca be associated with conventional 
therapies [262]. The lessons learned from PCSK9 and ATTR inhibition can be applied in the future to 
complement inhibition.

Base and prime editing both present a highly promising avenue for tackling complement-mediated 
diseases, offering diverse strategies such as correcting point mutations that lead to protein dysfunction, 
silencing genes through splice disruption, creating stop codons, or directly disrupting proteins [263]. Diving 
deeper into the first point, multiple complement activators and regulators are known to have pathogenic 
variants associated with the disease of complement dysregulation, particularly of the AP [264]. Since AP 
lacks the specificity of activation and amplification, polymorphisms in complement regulators (CFH, CD46, 
CFI) or activators [C3, CFB, complement factor D (CFD)] can lead to an overactive AP [264]. In diseases such 
as AMD, where approximately 50% of the total genetic risk comes from a point mutation in CFH [265, 266], 
one can imagine that, by using gene therapy to correct the Y402H (rs1061170) variant, for example, long-
lasting complement homeostasis can be achieved. Other examples include C3 polymorphisms such as 
C3102G, which is suspected to lead to an overactivation of the AP [266] and is associated with diseases such 
as AMD, IgAN, transplant dysfunction, and systemic vasculitis [267–269]. Editing C3102G (also known as C3 
fast or C3F) to C3102R (also known as C3 slow or C3S) can improve regulation by factor H and reduce the 
overall activity of AP [266] thus reducing the risk of developing disease. Another advantage of this potential 
approach is that C3S is a naturally occurring variant and thus presents a low risk.

An alternative approach would be the inhibition of key components of the complement cascade that are 
responsible for its initiation and amplification, similar to the use of siRNAs to target C3 or C5 today but with 
the benefit of a single administration. This approach could be particularly beneficial in chronic systemic 
conditions where the complement system is constantly overactivated, such as in PNH or C3G. The main 
advantage here is that a single dose of gene therapy can achieve long-lasting control of the complement 
system. While infection risk with permanent complement inhibition will be one of the key issues to monitor 
for, to date, therapies such as C3 inhibitors have been well tolerated [38]. This emphasizes how important it 
is to choose the right target to avoid those safety concerns. The first probable application of gene therapy 
targeting complement inhibition could be as a maintenance therapy whereby 50% to 70% inhibition is 
sufficient to control disease progression in most patients, while minimizing bacterial infection concerns. 
Limitations such as the permanent nature of the DNA editing, off-target editing, and unknown long-term 
safety means that it will only be applicable to certain targets and mutations in a limited set of life-long and 
life-threatening disease until the wider clinical adoption of the technology.

The permanent nature of the base and prime editing might not be suited for all diseases and for the 
needs of all patients. This is where epigenetic and RNA editing might take center stage due to their unique 
advantages. Epigenetic editing technologies offer precise control over gene expression by altering 



Explor Immunol. 2024;4:577–615 | https://doi.org/10.37349/ei.2024.00161 Page 597

epigenetic marks such as DNA methylation, histone modifications, and chromatin structure [235]. One 
strategy involves targeting specific epigenetic regulators or chromatin-modifying enzymes to increase the 
expression levels of complement regulators, similar to the rAAV approach discussed previously, with the 
view of restoring homeostasis. Since epigenetic editing is, in theory, reversible and could allow for the fine-
tuning of protein expression rather than acting as an on/off switch it is expected to be safer than DNA 
editing [234, 235, 270]. One can imagine that reversible complement activator knock-down will be possible 
in the future using this technology. Chroma Medicine has already demonstrated the efficiency of epigenetic 
editing of its platform in reducing and restoring PCSK9 levels [271].

Silencing RNA targets specific mRNA molecules for degradation, reducing the expression levels of 
targeted proteins, and has been used to target C3, C5 and CFB protein expression in the clinic (Tables 1 and 
2). RNA editing offers unique advantages, as it allows for precise modifications to be made to RNA 
molecules [241], thereby directly altering the protein-coding sequences without affecting the underlying 
genomic DNA [240]. This approach enables transient and reversible changes to gene expression, offering 
flexibility in modulating the cellular pathways involved in serum and intracellular complement activation 
and regulation for example. Furthermore, RNA editing can be used to modulate alternative splicing events 
or RNA stability, thereby influencing the expression levels of specific complement isoforms or regulatory 
factors similar to the strategy outlined above for DNA and epigenetic editing. The advantage of RNA editing 
over the other discussed gene therapy strategies is that it is easier to deploy since it does not require 
additional enzymes [223, 237].

Conclusions
While competition in the complement therapeutics space is set to increase in coming years, advancements 
in technology, such a gene therapies, can provide differentiation by unlocking new disease indications, and 
providing more convenient, longer lasting, and potentially safer treatments for patients. Today, the gene 
therapy toolbox has never been more diverse, with multiple options such as base editing, prime editing, 
epigenetic editing, and RNA editing. This variety both enriches and underpins the foundation of future 
precision medicine, providing scientists and clinicians with a multitude of potential strategies for 
combating complement-mediated diseases. There are still many challenges associated with gene therapy 
due to its relative novelty, such as unresolved delivery to target organs or cells outside of the liver, long-
term safety that is not well understood, unclear regulatory path, and extremely high costs for patients. 
However, since 2013, when the initial use of CRISPR for genome editing was described, its use has been 
exponentially growing, and CRISPR-based first medicine was recently FDA approved [223, 272]. We believe 
that gene therapies have the potential to become one of the most dominant therapeutic classes alongside 
antibodies and small molecules. Despite their current shortcomings, gene therapies offer unique 
advantages of personalized treatments for complement-mediated disease, and this might be what drives 
future innovation in the complement therapeutics space.
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