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Abstract
The emergence and re-emergence of pathogens is a public-health concern, which has become more evident 
after the coronavirus disease 2019 (COVID-19) pandemic and the monkeypox outbreaks in early 2022. 
Given that vaccines are the more effective and affordable tools to control infectious diseases, the authors 
reviewed two heterologous effects of vaccines: the trained immunity and the cross-reactivity. Trained 
immunity, provided by attenuated vaccines, was exemplified in this article by the decreased the burden of 
COVID-19 in populations with high Bacille Calmette-Guerin (BCG) coverage. Cross-reactive responses were 
exemplified here by the studies which suggested that vaccinia could help controlling the monkeypox 
outbreak, because of common epitopes shared by orthopoxviruses. Although modern vaccination is likely to 
use subunit vaccines, the authors discussed how adjuvants might be the key to induce trained immunity 
and improve cross-reactive responses, ensuring that heterologous effects would improve the vaccine’s 
response.

Keywords
Coronavirus disease 2019, monkeypox, trained-immunity, cross-immunity, adjuvants

Introduction
The emergence and re-emergence of pathogens is an important problem for public health. The current list 
of the World Health Organization points the recent coronavirus disease (COVID) pandemic and the 
outbreaks of Ebola and monkeypox as public health emergencies [1]. Several factors explain the emergence 
and re-emergence of pathogens; however, some of them are unlikely to change—as the globalization and 
the environmental changes already promoted by men, suggesting that the health systems should adapt and 
respond to such problems [2–4].
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Another issue that plays an important role in the re-emergence of pathogens is the low vaccine 
coverage. Recently, polio cases have emerged after years of elimination of the disease in the United 
States [5], Israel, and Ukraine [6]; thus, there is a serious risk of re-emergence of poliomyelitis in other 
countries, such as Brazil and Venezuela [7, 8]. Other examples of immune-preventable diseases which 
reemerged after the decline of vaccinations are measles, mumps [9], and the yellow fever [10].

During the COVID pandemic, different authors described how the prevalence of the disease was 
reduced in populations with high coverage rates of the Bacille Calmette-Guerin (BCG) vaccine [11]; and the 
same was observed for influenza, lower respiratory infections, and overall children mortality [12]. The 
most accepted explanation is the trained immunity, which would improve the immune response to different 
pathogens [13]. Meanwhile, after monkeypox emergency, some studies reviewed the potential efficacy of 
vaccinia to protect against the pathogen, based on cross-reaction between orthopoxviruses [14, 15]. 
Trained immunity and cross-reactivity are heterologous benefits of vaccines—that means, they confer some 
level of protection apart from the pathogen-specific protection [16].

Here, we summarize how these two different heterologous effects of vaccines may contribute to fight 
infectious diseases, using the recent examples of COVID-19 for trained-immunity and monkeypox for 
cross-reactivity. In addition, we discuss how new, modern vaccines could achieve similar effects: even 
though subunit differ from the attenuated vaccines according to immunogenicity, trained-immunity 
induction and cross-reactivity potential, adjuvants based on pathogen-associated molecular patterns 
(PAMPs), recognized by pattern-recognition receptors (PRRs), could be explored for improving the 
heterologous benefits. The chart below illustrates these points, which will be reviewed in this 
article (Figure 1).

Figure 1. Contributions of PAMPs adjuvants to subunit vaccines. While subunit vaccines are safer, presenting less 
reactogenicity, attenuated vaccines are more immunogenic and likely to enhance cross-reactivity (because there are more 
antigens available) and trained-immunity (because of PRRs recognition). PAMPs, such as outer membrane vesicles (OMVs) 
from Gram negative bacteria, lipopolysaccharide (LPS), and other PRR agonists activate the innate response, similarly to 
attenuated vaccines, potentially working on trained immunity; thus, they might confer cross-reaction because they are 
expressed by different pathogens. Finally, they enhance the immunogenicity of subunit antigens, which are safer and preferable 
for special populations, such as pregnant women, immunosuppressed patients, children, and the elderly. CpG: 
cytosine-phosphate-guanine
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Trained immunity benefits
Trained immunity is defined as the functional reprogramming of innate cells in response to PRRs unspecific 
stimuli. Trained immunity happens on a long-term basis and allows the immune system to respond with 
more or less intensity, adapting itself to the context and reacting adequately upon a second stimuli [17]. As 
it is known, the innate activates the adaptative immunity, secreting cytokines and chemokines to recruit 
effector cells and modulate the overall response [18]. This type of “memory” of innate cells is crucial for the 
individual homeostasis, establishing patterns for activation or tolerance [19]. Considering anti-viral 
response, trained immunity results in increased receptors expression, enhanced phagocytic and killing 
capacity and production and secretion of adequate cytokines for anti-viral response [20].

Certain live-attenuated vaccines were shown to induce heterologous effect, which has been attributed 
to trained immunity: smallpox-vaccinees were less likely to be hospitalized by different infectious 
diseases [21]; measles and yellow fever immunization were associated with reduced carriage of 
Haemophilus influenzae and pneumococci [22]; administration of measles-mumps-rubella (MMR) vaccine 
was associated with reduced hospitalization [23] and combined vaccination with oral polio and BCG 
resulted in decreased children mortality [24]. BCG has been extensively studied for its heterologous effects, 
which are the reduced prevalence of other mycobacterium infections, as leprosy [25], prevention of 
hospitalization by respiratory infections and sepsis [26], infant survival [27], protection against yellow 
fever attenuated virus [28] and, more recently, reduced COVID-19 fatal cases [29].

The trained immunity phenomena highlight how vaccines present several benefits, contributing to 
non-specific protection from different pathogens and regulation of tolerance mechanisms [16]. 
Unfortunately, the increasing anti-vaccine movements and the decay in vaccine coverage in various 
countries are preventing people from obtaining these benefits and, during the pandemic, the problem 
worsened [30–32].

Cross-reactive responses
Vaccinia is an orthopoxvirus, which had been used for attenuated vaccines that allowed the eradication of 
smallpox. As soon as the monkeypox outbreak started, there were questioning about the efficacy of vaccinia 
to prevent the infection [33]. However, it should be noted that, after smallpox eradication, the production of 
such vaccines became limited: now, there are modified vaccinia Ankara (MVA), nonreplicating; ACAM, 
replicant competent and LC16, minimally replicating [34]. Bioinformatics analysis predicted that 
cross-reactivity was likely to happen because of similar sequences in vaccinia and monkeypox viruses [35].

Immunization with vaccinia induces a broad response characterized by neutralizing antibodies with 
different specificities, which supports the cross-reactive response for different poxviruses [36]. A study 
found memory B cells in volunteers vaccinated with vaccinia virus over 40 years ago and, even though 
these cells were rare, the group managed to characterize a monoclonal antibody which was promising as 
therapeutic and prophylactic treatment against poxviruses [37]. In addition, a serologic investigation 
verified circulating neutralizing antibodies in 33–53% of people older than 45 years, who were likely to 
have been vaccinated against smallpox [38].

It was described that neutralizing antibodies correlate with protection against poxvirus [39, 40]; 
however, CD4+ cells are just as important, provided that they support antibody secretion, seem to be 
longer-lived than CD8+ cells and major histocompatibility complex (MHC)-II epitopes are likely to present 
cross-reaction with different poxviruses [40–42]. Moreover, animal studies highlighted previously that 
cytotoxic response triggered by vaccinia seems to be related to the administration site: scarification would 
confer a better CD8+ response, because of skin-resident T cells, which would be better than injection for 
protection upon dermal challenge [43, 44]. Furthermore, mice studies found that vaccinia inoculation 
induced trained natural killer (NK) cells, which protected the animals depleted from T and B lymphocytes 
from viral challenge, suggesting how vaccinia immunization might result in polarization of different arms of 
the immune response, which are likely to protect the recipients [45].
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From human, real-world evidence, an observational study estimated the vaccinia efficacy against 
monkeypox to be 79%, although it has not been peer-reviewed yet [46]. A study conducted 5 years after 
discontinuation of smallpox vaccination predicted that the population would be 85% protected against 
monkeypox [47]. However, as Fine and collaborators [47] highlighted in the manuscript, the waning 
immunity over the years is likely to decrease this level of protection. Indeed, a serological survey which 
comprised European, South American, Asian, and African samples verified low neutralizing antibodies in 
people vaccinated decades before, as well as in unvaccinated volunteers [48]. Another study found 400 
monkeypox cases in 7,339 vaccinees who received one dose of MVA, highlighting that the two-dose regimen 
is required for better efficacy [49]. On the other hand, another study found that when unvaccinated people 
are compared to people vaccinated with one dose of a non-replicant vaccinia virus, they present a 7.4 
higher risk of getting infected by monkeypox; when compared to people vaccinated with two doses, the risk 
increases to 9.6—showing that even one dose can confer some level of protection, what might be important 
to respond to outbreaks, when there is a limited vaccine supply [50]. Altogether, these studies support the 
importance of studying immunization strategies to control orthopoxviruses outbreaks, whether using 
existing smallpox vaccines or searching new ones.

To note, immunosuppressed patients and pregnant women present poorer outcomes to monkeypox 
infection [33] and, during the COVID-19 pandemic, it was pointed out how these groups were 
underrepresented in clinical trials, hampering the vaccination policies for these populations [51]. All that 
considered, it would be important investigate subunit vaccines, which are safer options for these 
groups [52]. Cross-reactive epitopes of  vaccinia  virus were identi f ied previously [42, 53], 
intranasal-delivery of recombinant vaccinia antigen was promising for mucosal protection [54] and, 
compared to DNA, recombinant proteins were more immunogenic and protective [55]. Despite the lack of 
studies comparing protein antigens to the attenuated virus, the search for subunit candidates for 
poxviruses vaccines should be encouraged.

Could subunit vaccines mimic trained-immunity and enhance cross-
reactivity?
Attenuated and inactivated vaccines present several PAMPs, which are likely to promote trained immunity, 
consequently conferring heterologous effects for these vaccines [16, 56]. Even though subunit vaccines are 
safer, the scientific community can explore the trained immunity benefits of PAMPs investigating them as 
adjuvants [19, 52]. In addition to enhanced immunogenicity and targeting of trained immunity, PAMPs are 
affordable options for developing countries, allowing them to establish their own manufacturing, 
consequentially improving vaccine coverage [57, 58].

Excellent revisions described the benefits of PAMPs as adjuvants [57, 59], some of them focused on 
COVID-19 [60, 61]. The combination of PAMPs or chemically synthetized PRRs agonists to other adjuvants 
and delivery systems is another strategy which has been studied, not only to enhance immunogenicity but 
also to modulate the immune response [59].

Scaria et al. [62] observed a T helper 1 (Th1)-biased immune response when conjugating the receptor 
binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to detoxified 
diphtheria toxin (EcoCRM®) and Adjuvant System (AS) 01 [a liposome-based adjuvant which contains 
monophosphoryl lipid A (MPL), a toll-like receptor (TLR)-4 agonist, and the saponin QS-21]. The quantity 
and functionality of antibodies was robust even when a low antigen concentration was used. In Jangra 
et al. [63], the subunit 1 of spike SARS-CoV-2 protein was complexed with a nanoemulsion containing in 
vitro transcribed (IVT) messenger RNA (mRNA) adjuvant, a retinoic acid-inducible gene I (RIG-I) agonist, 
and induced functional antibodies, which could neutralize other SARS-CoV-2 variants and protect naive 
mice from virus challenge. The L1 envelope protein of vaccinia adsorbed in alum induced the higher 
neutralization percentage when combined with CpG, a TLR-9 agonist [64]. Although most studies exploring 
adjuvants combinations use animal models, the COVID-19 vaccine Soberana 01 is on clinical trials. It is 
composed by recombinant RBD adsorbed in alum and adjuvanted by N. meningitidis OMVs and induced 
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antibodies which neutralized the D614G variant, which presents enhanced transmission. Importantly, most 
of the adverse effects related were local reactions with mild intensity [65]. Another example from clinical 
trials is the vaccination with Cervarix® (GlaxoSmithKline), which employs AS04 as adjuvant (composed of 
MPL adsorbed in alum) and decreased human papillomavirus (HPV) infections apart from types 16 and 18, 
probably due cross-reactive antibodies [66].

Reactogenicity concerns
An important concern about attenuated and inactivated vaccines is the reactogenicity, and the same could 
happen with PAMP adjuvants [52]; however, several PAMP-containing adjuvants have been tested in 
clinical trials, presenting acceptable adverse events, as summarized in Table 1.

Table 1. Adverse events reported in clinical trials using PAMP-based adjuvants

Adjuvant Composition Vaccines Adverse events
SUIVs—influenza (NCT03275389) [67] Injection site pain, fatigue, headache, myalgia
RSVPreF3—respiratory syncytial virus 
(NCT03814590) [68]

Injection site pain, fatigue, headache

RTS,S/AS01—Malaria 
(NCT00866619) [69]

Fever, irritability, drowsiness, loss of appetite

AS01 MPL and saponin

M72/AS01—tuberculosis 
(NCT01755598) [70]

Injection-site pain and influenza-like 
symptoms

Cervarix®—papillomavirus (approved 
vaccine) [71]

Injection site pain, redness and swelling, 
fatigue, gastrointestinal symptoms, headache

AS04 MPL and alum

Fendrix®—hepatitis B (approved 
vaccine) [72]

Injection site pain, fatigue, headache, fever

CpG 1018 CpG oligodeoxynucleotides HEPLISAV-B®—hepatitis B (approved 
vaccine) [73]

Injection site pain, headache, fatigue

Alum/
OMVs

Alum and OMVs from N. 
meningitidis

Soberana 01—COVID-19 
(RPCEC00000338) [65]

Injection site pain and redness

SUIV: supra-seasonal universal influenza vaccines

Nonetheless, it is important to highlight that the adverse events might change according to each 
vaccine, when the antigen or the combination of adjuvants is considered. For example, most studies using 
AS01 reported mainly mild or moderate adverse events [67, 68], but a clinical trial using this adjuvant for a 
tuberculosis vaccines reported a case of pyrexia and two cases of immune-mediated disorders [70]. 
Moreover, a follow-up phase III study comprising approximately 15,000 patients found 16/5,949 and 9/
4,358 cases of meningitis in children and infants, respectively, following vaccination with P. falciparum 
antigen and AS01 adjuvant [74], showing the relevance of conducting follow-up studies.

Conclusions
This brief review summarizes important aspects related to immunization that were relevant in recent 
public health emergencies. Trained immunity conferred by BCG probably reduced the burden of COVID-19 
in some populations. On the other hand, the immune response to vaccinia might have cross-reacted with 
monkeypox. These aspects were not enough to contain any of the outbreaks; however, they show the 
heterologous benefits of vaccines and support the claims for better vaccine coverage worldwide. 
Furthermore, novel adjuvant options and combinations should be investigated, aiming similar features for 
subunit vaccines.
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