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Abstract
With the rapid development of gene therapy technology and the outbreak of coronavirus disease 
2019 (COVID-19), messenger RNA (mRNA) therapeutics have attracted more and more attention, 
and the COVID-19 mRNA vaccine has been approved by the Food and Drug Administration (FDA) for 
emergency authorization. To improve the delivery efficiency of mRNA in vitro and in vivo, researchers 
have developed a variety of mRNA carriers and explored different administration routes. This review 
will systematically introduce the types of mRNA vectors, routes of administration, storage methods, 
safety of mRNA therapeutics, and the type of diseases that mRNA drugs are applied for. Finally, some 
suggestions are supplied on the development direction of mRNA therapeutic agents in the future.
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Introduction
Gene therapy, as a novel therapeutic method, is used to treat cancer, genetic diseases, infectious diseases, 
and other diseases [1–3]. Among them, messenger RNA (mRNA)-based therapeutics as vaccines against 
coronavirus disease 2019 (COVID-19) have been urgently authorized by the Food and Drug Administration 
(FDA) in the United States. mRNA was discovered in the 1960s and the in vitro mRNA transcription entered 
a rapid development in the late 1980s [4, 5]. Moreover, in vivo transfection of mRNA has been studied since 
the 1990s [6]. In general, the naked mRNA is negatively charged and belonged to macromolecules, which 
could not be effectively taken up by target cells because of the negatively charged cell membranes [7, 8]. 
Moreover, even though the mRNA cargo is taken up by the target cells and enters the endosomes, the mRNA 
needs to escape from the endo/lysosomes and enter the cytoplasm for gene transfer. Therefore, efficient 
vectors are essential for successful mRNA delivery [9–18].
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With a variety of mRNA delivery systems undergoing development, mRNA-based therapeutics have 
showed promising application prospects including viral vaccines, cancer therapy, cardiovascular diseases, 
and other types of diseases [19–24]. To improve the delivery efficiency of mRNA-based therapeutics in 
vitro and in vivo, various mRNA carriers are developed, including lipid nanoparticles (LNPs) [25], cationic 
peptides [26–28], polymers [8, 29–32], and other types of biomaterials [33–36]. It is expected that mRNA 
can specifically reach target cells and efficiently express functional proteins. It is worth mentioning that 
mRNA vaccines, including mRNA-1273 and BNT162b2, had been urgently authorized by FDA as COVID-19 
vaccines, further promoting the great development of mRNA drugs [37–39]. At present, there are many 
other mRNA-based formulations in clinical trials trial stage [22].

To improve the delivery efficiency of mRNA drugs, a variety of mRNA carriers have been designed and 
developed, including LNPs, cationic peptides, polymers, and other types of carriers. Moreover, to maximize 
the efficacy of mRNA therapeutics, the administration routes of mRNA therapeutics are explored according 
to the types of diseases. Additionally, the mRNA stability, storage conditions, and in vivo safety of mRNA 
therapeutic agents are also urgently needed to be considered. In this review, we will briefly introduce the 
mRNA carriers for mRNA delivery (Figure 1); the key steps of preclinical development of mRNA-based 
therapeutics include administration routes, storage methods, and safety, and mRNA drugs for disease 
treatment. Finally, we put forward some suggestions on the development of mRNA therapeutics and the 
directions of mRNA drugs in the future.

Figure 1. mRNA carriers and disease types of mRNA drug action

mRNA carriers
LNPs
LNPs are served as smart nano-sized carriers for mRNA delivery in vitro and in vivo. In general, lipids 
are amphiphilic molecules and contain three parts: a polar head group, a hydrophobic tail, and a linker 
between the two parts. However, LNPs for mRNA delivery usually contain cationic lipids, ionizable lipids, 
or other types of lipids (Figure 2) [25].

The head group of cationic lipids is permanently positively charged [23] and can condense the 
negatively charged mRNA into nanoparticles. For example, Malone et al. [5] developed cationic lipid 
N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) for mRNA delivery. In 
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human, rat, mouse, and Drosophila cells, carrier/mRNA showed efficient gene transfection. Additionally, 
1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), an analogue of DOTMA, has been applied either 
along or together with other materials for mRNA delivery. Kranz et al. [40] used cationic lipid DOTMA 
and 1,2-dioleoylphosphatidylethanolamine (DOPE) to construct a cationic liposome (Lipo) to load mRNA 
encoding tumor antigen. The resulting Lipo/mRNA (RNA-Lipo) could efficiently mediate mRNA uptake and 
induce the antigen expression by dendritic cells (DCs) and macrophages. RNA-Lipo encoding tumor antigens 
induced strong effector and memory T cell responses, mediating an excellent inhibition of progressive 
tumors. Wang et al. [41] designed a cationic Lipo composted of DOTAP and cholesterol at a molar ratio 
of 1:1, and such Lipo could achieve effective encapsulation of protamine/mRNA through electrostatic 
interaction with carrier/mRNA complexes. Modified mRNA encapsulated by Lipo-protamine-RNA (LPR) 
showed significantly increased cellular uptake by tumor cells, and LPR exhibited significant improvement 
compared with the equivalent plasmid DNA (pDNA). In the H460 xenograft-tumor model, mRNA encoding 
herpes simplex virus 1-thymidine kinase served as a therapeutic gene, systemic administration of LPR 
considerably inhibited the tumor growth. Moreover, Lei et al. [42] used mRNA encoding interleukin 
15 (IL-15) as a therapeutic gene; in the orthotopic CT26 colon cancer model, intraperitoneal and intravenous 
administration of carrier/mRNA encoding IL-15 could effectively inhibit tumor growth and lung metastasis 
by inducing systemic antitumor immune response.

Figure 2. Representative cationic lipids, ionizable lipids, and other kinds of lipids in mRNA formulations. DLin-MC3-DMA: dilinoleylmethyl- 
4-dimethylaminobutyrate; DMG: dimyristoylglycerol; DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; PEG: polyethylene glycol

For ionizable lipids, each ionizable lipid had its own acid dissociation constant (pKa). Once the 
pH value was less than pKa, these ionizable lipids were protonated and positively charged; when the 
pH value was higher than pKa, these ionizable lipids were unionized [43]. Due to toxicity issues of 
cationic lipids, ionizable lipids served as alternatives. In general, we hoped that ionizable lipids were 
non-ionized under physiological conditions (pH 7.4), so as to reduce their systemic toxicity in the blood 
circulation; on the other hand, the ionizable lipids should be protonated in early endosomes (pH 5.5–6.0) 
and could promote the endo/lysosomal escape of lipid/mRNA complexes into cytoplasm for mRNA 
translation [44]. Recently, FDA approved the first RNA drug (patisiran) for the treatment of hereditary 
transthyretin protein amyloidosis (hATTR), which had an ionizable lipid called DLin-MC3-DMA [45]. 
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Additionally, other scientists also used DLin-MC3-DMA to mediate mRNA for expressing therapeutic 
proteins including human erythropoietin and frataxin in vivo [46, 47]. Finn et al. [48] used an ionizable 
lipid as a part of LNPs to co-deliver Cas9 mRNA encoding transthyretin and single guide RNA (sgRNA), 
successfully editing mouse transthyretin gene in the liver. Ramaswamy et al. [49] developed 
lipid-enabled and unlocked nucleic acid modified RNA as a safe and effective LNP mRNA delivery 
platform. Among them, an ionizable lipid, Arcturus Therapeutics’ lipid (ATX) was one component 
of LNPs for mediating mRNA encoding human factor IX protein to treat hemophilia [49]. Moreover, 
An’s group [50] and Sabnis’ group [51] used biodegradable ionizable lipids for mRNA delivery in vivo. 
Kauffman et al. [52] designed diketopiperazine-based ionizable lipid C12-200 for mRNA delivery. 
Moreover, Oberli’s group [53] and Yin’s group [54] used C12-200 lipid to mediate mRNA expressing 
therapeutic protein for cancer immunotherapy and genome editing, respectively.

Except for cationic or ionizable lipids, the LNPs typically also included other lipid components, 
such as phospholipids, PEG-functionalized lipids (PEG-lipids), or cholesterol. These lipids were used 
to improve particle stability, tolerability, and biodistribution [20, 44, 55]. DSPC as a phospholipid, had 
saturated tails, and the cylindrical geometry contributed DSPC molecules to form a lamellar phase 
for stabilizing LNPs [56, 57]. DSPC was included in mRNA-1273 and BNT162b2, the two COVID-19 
vaccines. DOPE contained two unsaturated tails, and its conical shape tended to an inverted hexagonal 
H(II) phase, which destabilized endo/lysosomal membranes and facilitated endosomal escape of LNPs. 
Moreover, PEG-lipids also affected the delivery properties of LNPs [57–60]. PEG-lipids could relieve 
particle aggregation and stabilize LNPs. In addition, PEG segment prolonged the blood circulation time 
by means of reducing the clearance of kidneys and mononuclear phagocyte system [58–60]. The extent 
of these effects depended on the proportions and properties of the PEG-lipids (such as lipid length and 
chain length of PEG) [20, 57]. Cholesterol could enhance particle stability by modulating membrane 
integrity and rigidity [55]. The geometry of cholesterol derivatives also affected the delivery efficacy 
and biodistribution of LNPs. For example, LNPs contained cholesterol derivatives adopting a polyhedral 
shape, which had multilamellarity and lipid partitioning [61]. Moreover, oxidation of cholesterol tail 
enabled more LNPs to accumulate in liver endothelial cells and Kupffer cells instead of hepatocytes [62].

Cationic peptides

Cationic peptides have been used as carriers to load nucleic acid for its intracellular delivery 
(Figure 3) [63]. Among them, cationic cell-penetrating peptides (CPPs)-based mRNA delivery systems 
were developed for promoting T cell immunity response in vivo. For example, Feiner-Gracia et al. [64] 
used R9 peptide to load mRNA to form CPP-mRNA polyplexes and unveiled the impact of peptide 
stoichiometry on the destabilization of mRNA in blood serum. Additionally, Coolen et al. [65] used 
cationic peptide LAH4-L1 to encapsulate mRNA into LAH4-L1/mRNA polyplexes, then LAH4-L1/mRNA 
polyplexes were adsorbed onto poly(lactic acid) nanoparticles (PLA-NPs). PLA-NPs/LAH4-L1/mRNA 
nanocomplexes showed efficient gene transfection in DCs and activated innate and immune signaling 
responses [65]. Qiu et al. [27] introduced PEG modified cationic peptide KL4 (PEG12KL4) for pulmonary 
delivery of mRNA. PEG12KL4/mRNA complexes showed efficient transfection in human lung epithelial 
cells at a mass ratio of 10:1 (w/w). PEG12KL4/mRNA complexes were prepared into dry powder by 
spray drying (SD) and spray freeze drying (SFD) techniques. The intratracheal administration of 
PEG12KL4/mRNA complexes resulted in luciferase expression in the deep lung region of mice. The 
transfection efficiency of PEG12KL4/mRNA complexes was superior to LipofectamineTM 2000/mRNA 
complexes. Lou et al. [66] reported cationic peptide GALA-functionalized mRNA polyplexes (PPx-GALA) 
by copper-free click chemistry to enhance presentation of mRNA antigen by DCs. PPx-GALA formulation 
exhibited more efficient cellular uptake than lipofectamine-mRNA formulation. PPx-GALA containing 
mRNA encoding ovalbumin (OVA) showed enhanced T cell responses and DC maturation compared 
with free mRNA.
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Figure 3. Representative cationic peptides for mRNA delivery

Polymers
Polymers with high molecular weight (usually to 104–106 dalton) could effectively load negatively 
charged nucleic acids by electrostatic interaction, so as to promote the nucleic acids delivery [3, 15–18]. 
In general, most polymeric carriers could improve the transfection efficiency and stability of mRNA. 
Zhao et al. [67] modified polyethyleneimine with stearic acid [polyethyleneimine-stearic acid (PSA)] 
and PSA could self-assemble to form polymeric micelles. PSA/mRNA nano-micelles could efficiently 
deliver mRNA and induce antigen-specific immune response. Blakney et al. [68] synthesized mannosylated 
polyethyleneimine by the host-guest interaction to deliver self-amplifying mRNA (sa-mRNA). Mannosylation 
of polyethyleneimine increased the percentage of transfected cells ex vivo. Additionally, mannosylated 
polyethyleneimine could promote the protein expression in the epithelial cells resident in human 
skin [68]. Vogel et al. [69] used medium-length polyethylenimine (PEI) to deliver synthetic mRNA and 
sa-mRNA expressing influenza virus hemagglutinin. They found that sa-mRNA was more effective than 
mRNA in protection against infection, and sa-mRNA combined in a trivalent formulation could protect 
against sequential H1N1 and H3N2 challenges. Liu et al. [70] synthesized zwitterionic phospholipidated 
polymers (ZPPs) to deliver mRNA to spleen and lymph nodes (Figure 4). This modular modification 
approach produced tunable zwitterionic species for serum resistance and introduction of alkyl chains 
simultaneously enhanced endosomal escape, which transformed deficient polymers into efficient 
zwitterionic mRNA carriers.

Other types of carriers
As DCs could present antigen to T cells, DCs were utilized to deliver mRNA vaccine candidates. DCs 
could phagocytize pathogens and present the antigens to CD8+ and CD4+ T cells mediated by major 
histocompatibility complexes (MHC) class I and class II. Therefore, the ex vivo mRNA vaccine loading into 
DCs, and then reinfusion of transfected DCs into autologous recipient could induce an immune response. 
The ex vivo loading of mRNA by DCs was achieved by electroporation or lipid-derived carriers [71, 72]. 
This approach mainly exhibited cell-mediated immunity and was used for cancer immunotherapy [73]. 
Moreover, cationic nano emulsions were in oil in water emulsion-based delivery system. MF59, an oil in 
water emulsion adjuvant, was extensively studied for influenza vaccine development [35]. MF59 contained 
squalene droplets (4.3%) and surfactants like Tween 80 (0.5%) and Span85 (0.5%). To effectively 
encapsulate mRNA into cationic nano emulsions, DOTAP was the key component, which was used to 
complex with mRNA. Cationic nano emulsions not only accelerated the intracellular delivery of the mRNA, 
but also protect it against RNases degradation [74].
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Figure 4. ZPPs used for efficient mRNA delivery into spleen and lymph nodes [70]. A. Phospholipidation transformed 
polycations to efficient zwitterionic mRNA carriers enabling protein expression in the spleen and lymph nodes; B. the 
synthetic route toward zwitterionic polymers PAn-xPm. “x” in “PAn-xPm” was defined as the number of Pm molecules 
functionalized on each polycation; C. fifteen An molecules and seven Pm molecules were used for combinatorial PAn-xPm 
synthesis. AIBN: azodiisobutyronitrile; An: amines; CPDB: 2-cyano-2-propyl benzodithioate; DMSO: dimethyl sulfoxide; 
GMA: glycidyl methacrylate; PGMA: poly(glycidyl methacrylate); Pm: alkylated dioxaphospholane oxide molecules; 
THF: tetrahydrofuran
Note. Adapted from “Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and 
lymph nodes,” by Liu S, Wang X, Yu X, Cheng Q, Johnson LT, Chatterjee S, et al. J Am Chem Soc. 2021;143:21321–30 
(https://pubs.acs.org/doi/pdf/10.1021/jacs.1c09822). Copyright © 2021 American Chemical Society.

As the most widely used mRNA carriers, LNPs had high encapsulation efficiency and could exhibit 
efficient mRNA transfection in vitro and in vivo. In addition, LNPs had strong penetration into tissues and 
could achieve organ-specific targeting by regulating lipid components. Moreover, LNPs exhibited low 
cytotoxicity and immunogenicity. However, because LNPs contained a lot of components such as ionizable 
lipid (or cationic lipid), phospholipids, PEG-lipids, and cholesterol, the preparation process was complicated; 
microfluidic devices were usually required for preparation. Cationic peptides could be grafted with functional 
groups or modified with CPPs, which contributed to the cellular uptake and promoted mRNA transfection. 
However, cationic peptides needed to be prepared by solid-phase peptide synthesis. Additionally, a single 
cationic polypeptide could only be used for intracellular mRNA delivery; to achieve in vivo mRNA delivery, 
cationic lipids were usually modified with PEG segment. For polymers, the simple preparation process, 
abundant sources, and mass production had attracted widespread attention. However, compared with Lipos, 
transfection efficiency of polymers needed to be further improved.

Routes of administration
Administration routes of mRNA therapeutics could greatly influence organ distribution and the therapeutic 
outcomes of carrier/mRNA complexes [75, 76]. The route of administration was usually determined 
by the properties of carriers and therapeutic indications. In general, i.v. administration of LNPs mainly 
accumulated in the liver after i.v. injection because of the discontinuous hepatic vasculature [77]; 
nanoscale diameters of LNPs [78] targeted the liver by adsorption of apolipoprotein E [79, 80], and 
LNPs could be metabolized by specified lipid metabolism pathways. Therefore, i.v. administration 
of LNPs mainly accumulated in the liver [81]. The i.v. administration of LNPs-mRNA could be used to 
express proteins that were missing in inherited metabolic and hematological diseases or produce 
antibodies that neutralized pathogens or acted on target cells [82–84]. The i.v. administration of 
LNPs-mRNA could accumulate in multiple lymph nodes throughout the body. Compared with local 
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injection, the i.v. administration of mRNA vaccines was able to induce stronger antigen-specific 
cytotoxic T lymphocyte response [40, 85]. Topical administration methods had been used for 
mRNA therapeutics. Topical administration of carrier/mRNA complexes could accomplish local 
therapeutic effects. Local injection enables the supplementation of therapeutic proteins in 
specific organs including heart [86, 87], eyes [88, 89], and brain [90]. Additionally, the local 
injection could also evoke systemic responses, for example, i.d., i.m., and s.c. had been used for 
vaccination [20, 91], because the resident and recruited antigen-presenting cells (APCs) existed in 
skin and muscle, which could internalize and express mRNA-encoded antigens. Furthermore, the 
vascular and lymphatic vessels also helped APCs and mRNA vaccines migrate to drain lymph nodes 
and stimulate T cell immunity [20, 91]. Both i.d. and i.m. administrations of mRNA vaccines were 
able to induce robust immune response at a well-tolerated dose [92, 93]. Additionally, LNPs-mRNA 
complexes could be intratumorally injected into tumor tissues to boost a local pro-inflammatory 
environment, which resulted in immune cell activation and systemic anticancer responses [94, 95].

Stability and storage of mRNA therapeutics
Storage of mRNA therapeutics needed to be considered before clinical translation, because the storage 
in an aqueous, freezing, or lyophilized manner and the category of cryoprotectants (sucrose, trehalose, 
or mannitol) affected the long-term stability of carrier/mRNA formulations [96]. The addition of 
sucrose or trehalose to mRNA therapeutics, stored in liquid nitrogen, could maintain delivery efficacy 
of mRNA for at least 3 months in vivo [96]. It was worth mentioning that the authorized COVID-19 
mRNA vaccines were stored in freezing conditions using sucrose as a cryoprotectant [20]. mRNA-1273 
was stored at –15℃ to –20℃ and injected after thawing, while BNT162b2 needed to be stored at –60℃ 
to –80℃, and required thawing and dilution with saline before administration [20]. Although the 
cold-chain transportation-maintained mRNA vaccine activity, it also caused high transportation costs 
and delayed the vaccination process. Therefore, it was necessary to develop the technologies that did 
not need freezing or low-temperature storage for mRNA therapeutics.

Safety of mRNA therapeutics
The safety profile of carrier/mRNA formulations was closely related to carriers and mRNA molecules. For 
LNPs, lipid components may activate host immune response by systemic or topical administration. For 
example, PEG-lipids tended to induce hypersensitivity reactions through stimulating the complement 
system [97]. Moreover, the production of anti-PEG antibodies would result in fast clearance of PEGylated 
nanoparticles during the blood circulation. To relieve safety concerns, some natural and synthetic 
polymers served as alternatives [97]. Additionally, cationic and ionizable lipids had been reported 
to arouse the secretion of pro-inflammatory cytokines and reactive oxygen species (ROS) [98–100]. 
Moreover, cytotoxicity of carriers also needed attention, and it was reported that the in vivo application 
of LNPs might cause liver and lung injuries in rodents. Furthermore, the immunogenicity of in vitro 
transcribed mRNA was also a safety concern, because immune response of in vitro transcribed mRNA 
may suppress antigen expression and attenuate vaccine efficacy. To minimize the immunogenicity of 
mRNA, chemical modification of specific in vitro transcribed mRNA nucleotides and chromatographic 
purification were carried out [101, 102].

mRNA drugs for disease treatment
Infectious diseases
Influenza was usually caused by viruses; mRNA vaccines could stimulate both cellular and humoral 
immunity, protecting the human body from the infection of influenza (Table 1). In 2019, COVID-19 
broke out worldwide, causing huge economic losses and health threats. To effectively prevent COVID-19, 
Pfizer/BioNTech and Moderna developed mRNA vaccines NT162b2 and mRNA-1273, respectively, 
which obtained urgent authorization from FDA. Both NT162b2 and mRNA-1273 were associated with 
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some allergic symptoms including pain, redness, and fever, and BNT162b2 had lower adverse reactions 
than mRNA-1273 [103].

Table 1. mRNA drugs used for prevention and treatment of diseases

Disease type Name Administration route
Infectious diseases
COVID-19 NT162b2 i.m.

mRNA-1273
Rabies RVG-SAM i.m.
Cancer
A20-OVA lymphoma OVA mRNA i.v.
B16F10-OVA melanoma OVA mRNA i.v.

Hepa1-6 orthotopic HCC tumor BisCCL2/5i mRNA i.v.
Cardiovascular diseases
Familial hypercholesterolaemia and 
atherosclerotic cardiovascular diseases

mRNA encoding Cas9 i.v.

Type 2 diabetes VEGF-A mRNA i.d.
Genetic disorder
Monogenic retinal degenerative disorders of 
retinal pigmented epithelium

EGFP mRNA Subretinal injection

Methylmalonic acidemia mRNA encoding human wild-type MCMUT i.v.
Fabry disease α-Gal A mRNA i.v.
CCL2: C-C motif chemokine ligand 2; EGFP: enhanced green fluorescence protein; HCC: hepatocellular carcinoma; 
MCMUT: methylmalonyl-coenzyme A (CoA)-mutase; RVG-SAM: self-amplifying RNA encoding the rabies virus glycoprotein; 
VEGF-A: vascular endothelial growth factor A; α-Gal A: alpha-galactosidase A

Moreover, mRNA vaccines have been used for other kinds of pathogens. For example, 
Castanha et al. [104] indicated mRNA vaccines were efficient against rabies in rodents. During the 
observation period, mRNA vaccine could induce sufficient specific CD4+ T cells and the neutralizing 
antibody titers were stable. Lou et al. [105] used LNPs loading mRNA vaccine to mediate rabies virus 
glycoprotein expression and LNPs loading mRNA vaccine showed a good protection effect.

Cancer
Cancer, as a malignant disease, was a great threat to human life and health [3, 106–108]. In view of 
the unique advantages of mRNA therapeutics, researchers began to use mRNA technology to prevent 
and treat cancer. For example, to enhance the in vivo delivery efficiency of mRNA encoding antigen, 
Haabeth et al. [8] designed charge-altering releasable transporters to mediate mRNA therapeutics to 
APCs. They found that carrier/mRNA vaccine could induce a strong antigen-specific immune response 
in peripheral blood mononuclear cells. Moreover, this mRNA vaccine could efficiently target APCs in 
secondary lymphoid organs after intravenous injection and induced an anti-tumor immune response 
in the established tumors. For another example, to accelerate the intracellular delivery of mRNA 
for antigen translation and activate an appropriate immune response, Miao et al. [109] developed 
a combinatorial library of ionizable lipid-materials. The top candidate formulation could induce a 
robust antitumor immune response and significantly inhibit tumor growth and prolong the survival 
in tumor models [109]. Moreover, liver malignancy was resistant to immune checkpoint blockage, 
Wang et al. [110] found that CCL2 and CCL5 were the main chemokines attracting tumor-associated 
macrophages infiltration and resulted in the resistance to immune checkpoint inhibition. To relieve 
the immunosuppression, mRNA encoding single-domain antibody that specifically neutralized CCL2 
and CCL5 encapsulated in clinically approved LNPs, which resulted in efficient antibody expression in 
the diseased organ. The mRNA therapy combining with programmed cell death protein 1 (PD-1) ligand 
inhibitor considerably improved the survival in liver cancer-bearing mice model and could reduce 
liver metastasis in colorectal and pancreatic cancers. Furthermore, to achieve the goal of the tumor 
prevention and treatment simultaneously, Islam et al. [111] constructed adjuvant plus mRNA vaccine 
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nanoparticles, which was coated with lipid-PEG. This adjuvant plus mRNA vaccine could activate 
adaptive immune response by improving the proportion of OVA-specific CD8+ T cells. This strategy 
showed an excellent anti-tumor effect in OVA-expressing lymphoma and prostate cancer-bearing 
syngeneic allograft mouse models and significantly prevented tumor growth once vaccine was injected 
before tumor implantation.

Cardiovascular disease
Cardiovascular disease was another major disease threatening people’s life and health, especially 
for middle-aged and elderly patients, with a very high mortality. Despite remarkable advances 
obtained in prevention and treatment, cardiovascular disease was one of the leading causes of death 
worldwide [112, 113]. One of the targets of cardiovascular disease was the high content of proprotein 
convertase subtilisin/kexin type 9 (PCSK9), leading to improved cholesterol in the body and inducing 
familial hypercholesterolaemia and atherosclerotic cardiovascular diseases [114]. Cheng et al. [12] 
used LNPs to co-deliver mRNA encoding Cas9 and sgRNA targeting PCSK9 in vivo. They found preferred 
LNPs remarkably induced the loss in PCSK9 locus and resulted in considerable downregulation of 
PCSK9 protein levels in liver [12]. In addition, except for inhibiting endogenous mRNA of PCSK9, a 
cardiovascular-related mRNA therapeutic namely, mRNA encoding VEGF-A, had entered the clinical 
trials [115]. The intradermal administration of mRNA encoding VEGF-A considerably increased the 
expression of VEGF-A protein and improved skin blood flow in male patients with type 2 diabetes.

Genetic disorder
Exogenous mRNA therapeutic was emerging as a novel medicine of broad applicability in a variety 
of diseases including monogenic disorders [116]. This was because the delivered mRNA was able to 
encode a variety of functionally therapeutic proteins. For example, Patel et al. [88] developed a library 
of LNPs to mediate mRNA delivery into the back of the eye. The preferred LNPs showed efficient gene 
transfection in the retina. Moreover, LNPs loaded mRNA could effectively relieve monogenic retinal 
degenerative disorders of retinal pigmented epithelium. For another example, Sabnis et al. [51] used 
LNPs loaded mRNA encoding human wild-type MCMUT for treating methylmalonic acidemia. Such LNPs 
loaded mRNA encoding MCMUT could dramatically improve the survival and down-regulate the disease 
biomarkers in murine models of methylmalonic acidemia. Fabry disease was an X-linked lysosomal 
storage genetic disorder due to the mutation of galactosidase A gene (GLA), encoding the lysosomal 
enzyme α-Gal A. Zhu et al. [117] encapsulated α-Gal A mRNA with LNPs and injected it intravenously. A 
duration effect was observed after a single dose of mRNA therapeutic in Fabry mice model as confirmed 
by the glycosphingolipids reductions in disease site.

Conclusions
Due to the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA 
vaccines have come into people’s view, such as the emergency approval of Pfizer/BioNTech and Moderna 
mRNA vaccines. This review described the types of mRNA carriers, routes of mRNA administration, and 
storage of mRNA therapeutics, and the type of diseases for which mRNA drugs were appliable was discussed 
in detail.

Advances in mRNA technology and gene delivery have led to the rapid development of mRNA 
vaccines, which also proves the potential of mRNA drugs in clinical application. At present, researchers 
have developed and optimized a variety of LNPs and other types of mRNA carriers, providing beneficial 
guidance for mRNA drug-based prevention and treatment. According to the experience and lessons of 
clinical data, the mRNA formulations needed to be optimized. Firstly, the in vitro and in vivo delivery 
efficiency of mRNA needs to be further improved. For LNPs carriers, modulating the head groups and 
hydrophobic tails can contribute to the cellular uptake of mRNA, and finally promotes the efficacy 
of mRNA therapeutics. Additionally, hybrid nanocarriers can also be constructed by combining lipid 
nanocarriers and cationic polymers or cationic peptides. The hybrid nanocarriers can access to the 
advantages of individual carriers for improving mRNA delivery efficacy.
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Moreover, regulating lipid structure can realize organ-specific delivery of LNPs. For example, 
modulation of lipid alkyl length led to the selective accumulation of LNPs in liver or spleen. Zwitterionic 
phospholipidation of cationic polymers can selectively accumulate in the spleen after systematic 
administration. Moreover, neurotransmitters, as endogenous chemicals, can cross the blood-brain barrier 
and participate in neurotransmission. In addition, neurotransmitter-derived lipids can be used for mRNA 
transmission to the brain after intravenous injection. Neurotransmitter-derived lipids can be used for 
mRNA delivery to the brain after intravenous administration.

At present, the clinical mRNA therapeutic agents were mainly LNPs, and researchers have developed 
a variety of mRNA administration routes. In general, mRNA therapeutic agents have poor stability at 
room temperature and need to be stored at low temperatures, which also leads to additional storage 
and transportation costs. Additionally, safety of mRNA therapeutic agents also arouses clinical concern. 
Biodegradability and versatility needed to be considered during development of mRNA therapeutic agents. 
High efficiency, satisfactory safety, stable storage at room temperature, biodegradability, and versatility will 
be the directions of the development of mRNA therapeutics in the future.
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