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Abstract
Cancer is an aging-associated disease and caused by genomic instability that is driven by the accumulation 
of mutations and epimutations in the aging process. Although Ca2+ signaling, reactive oxygen species (ROS) 
accumulation, DNA damage response (DDR) and senescence inflammation response (SIR) are processed during 
genomic instability, the underlying mechanism for the cause of genomic instability and cancer development is 
still poorly understood and needs to be investigated. Nociceptive transient receptor potential (TRP) channels, 
which firstly respond to environmental stimuli, such as microbes, chemicals or physical injuries, potentiate 
regulation of the aging process by Ca2+ signaling. In this review, the authors provide an explanation of the 
dual role of nociceptive TRP channels in regulating cancer progression, initiating cancer progression by 
aging-induced genomic instability, and promoting malignancy by epigenetic regulation. Thus, therapeutically 
targeting nociceptive TRP channels seems to be a novel strategy for treating cancers.
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Introduction
Cancer is a genomic disease. Increased rates of cancer in an aging population are an integral component of 
aging associated diseases [1]. Because genomic instability is caused by the accumulation of mutations and 
epimutations in the aging process, it contributes significantly to activation of oncogenes and dysfunction in 
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tumor suppressor genes, which are involved in cancer development [2]. Genomic instability derives from 
DNA damage response (DDR), and the p53 family proteins drive the DNA repair system to recover errors 
caused by genomic instability in order to maintain homeostasis of normal tissue [3]. Once there is a blockage 
of the balance between genomic instability and the DNA repair system, DDR results in p53 family proteins 
dysfunction which promotes cancer progression [4].

Genomic instability is the most important condition to induce cancer development, but it may trigger 
the key process in initiating cancer progression before activation of oncogenes and dysfunction in tumor 
suppressor genes. Based on the mitochondrial free radical theory of aging, excessive increase in intracellular 
reactive oxygen species (ROS) levels induces genomic instability and would lead to cellular dysfunctions and 
aging [5]. Intracellular ROS accumulation can be stimulated by mitochondria Ca2+ overload [6]. Therefore, 
Ca2+ signaling plays an important role in determining intracellular ROS accumulation, DDR, and genomic 
instability following initiation of cancer progression.

Ca2+ signaling is also a crucial regulator of pathways in promoting cancer progression with oncogenic 
activation [7]. The contribution of Ca2+ signaling to cancer cell growth, metastasis and chemotherapy 
resistance has been extensively investigated [8, 9], including regulation by epigenetic mechanisms to induce 
malignancy [10]. The therapeutic targeting of Ca2+ signaling provides a novel approach for treating cancer. 
Recently, nociceptive transient receptor potential (TRP) channels, which belong to a special group of TRP 
channels, have been involved in the nociceptive pathway and include members of the TRP ankyrin (TRPA), 
and TRP canonical (TRPC), TRP mucolipin (TRPM) and TRP vanilloid (TRPV) subfamilies that potentiate 
regulation of the aging process and tumorigenesis by Ca2+ signaling [11-15]. This is different from the classical 
function of nociceptive TRP channels in excitable cells (neurons, muscle cells and some endocrine cells) 
that causes an influx of ions through the cell membrane to induce a depolarization of the cell which in turn 
triggers action potentials [16]. Most cancer cells are classified into non-excitable cells, and overexpressed 
nociceptive TRP channels in cancer cells are thus unusual [17]. However, multiple roles of Ca2+ signaling 
from nociceptive TRP channels in cancer development have been independently reported. In this review, we 
discuss and summarize the possible mechanisms that indicate Ca2+ signaling from nociceptive TRP channels 
modulates cancer progression.

Ca2+ signaling from nociceptive TRP channels potentiates initiation of 
cancer progression
Nociceptive TRP channels respond to environmental stimuli and cause the aging process
Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the 
peripheral nervous system [18], which cause an initial response to environmental stimuli, especially 
microbes, chemicals or physical injuries. Although numbers of TRP channels are identified by their 
characteristics and functions, several TRP channels are characterized by nociceptive TRP channels, 
including TRPA1, TRPC1/C3/C5/C6/C7, TRPM2/M3/M8 and TRPV1/V2/V3/V4, which are involved in the 
nociceptive pathway [19]. Interestingly, these nociceptive TRP channels in non-excitable or excitable cells 
potentially initiate the aging process due to excess Ca2+ signaling from active nociceptive TRP channels upon 
continual environmental stimuli [11-15]. Environmental stimuli, such as bacterial endotoxins, oncovirus, 
di-(2-ethylhexyl)-phthalate (DEHP), particulate matters (PMs) or ultraviolet radiation have responding 
nociceptive TRP channels. The responding TRP channels of environmental stimuli was illustrated in Table 1. 
Some environmental stimuli (e.g., PMs) can directly activate nociceptive TRP channels [20], but others activate 
nociceptive TRP channels through G protein-coupled receptors (GPCR) [21]. The GPCR-TRP axis mediates 
sensation and inflammation responses to environmental stimuli; for instance, after irradiation by ultraviolet 
B (UVB), the activation of nociceptive TRP channels (e.g., TRPC7) induces response to UVB-induced skin 
damage through the GPCR-phospholipase C (PLC)-diacylglycerol (DAG) signaling [13]. When environmental 
stimuli activates the responding TRP channels, increased Ca2+ influx contributes to oxidative stress [22]. 
Mitochondria Ca2+ overload induces intracellular ROS accumulation and DDR, which triggers the senescence 
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inflammation response (SIR) and senescence-associated secretory phenotype (SASP) activation, leading to 
genomic instability and cancer progression [23].

Table 1. Nociceptive TRP channels respond to environmental stimuli

Environmental stimuli Category Nociceptive TRP channel Reference
Microbes Gram-negative bacteria: bacterial endotoxins TRPA1, TRPM3, TRPM8, TRPV1 [81]

Oncovirus EBV TRPA1 [82]

HBV TRPC6 [83]

HPV TRPV4 [84]

Chemicals Mustard oil, formalin TRPA1 [85]

Menthol, icilin TRPM8

DEHP TRPV1 [86]

Particulate matter TRPA1, TRPC6, TRPM2, TRPV1, TRPV4 [20]

Physical injuries Mechanical gating TRPA1, TRPC1, TRPC3, TRPC6, TRPM8 [87]

UVA TRPA1 [88]

UVB TRPC7 [13]

EBV: Epstein-Barr virus; HBV: hepatitis B virus; HPV: human papilloma virus; UVA: ultraviolet A

Ca2+-activated K+ channels potentially trigger the cell cycle in initiating tumorigenesis
Excess Ca2+ signaling from active nociceptive TRP channels upon continuous environmental stimuli may 
lead to cancer progression that is due to the change of intracellular proton dynamics [24-26]. It is still 
unclear how Ca2+ signaling controls intracellular proton dynamics to initiate cancer progression and to 
promote tumorigenesis. Proton signaling, especially Ca2+ signaling, influences changes in water properties 
and water content in the cytoplasm that occur along with the cell cycle [27]. According to the novel theory 
of cancer research, the water structure between primary cells and cancer cells is completely different; the 
water structure in the primary cell (cell cycle arrest) is bound (like an iceberg) and molecules cannot move 
freely [24]. Interestingly, in cancer cells (cell cycle activation), water is free and molecules can move around 
easily. Proton diffusion determines if the cell physiology is faster than protein interaction [27]. Indeed, many 
proteins perform their functions by also being dependent on proton dynamics. In primary cells, Ca2+ signaling 
from active nociceptive TRP channels potentiates activation of Ca2+-activated K+ channels to reduce the 
intracellular K+ concentration, which releases cell proliferation by releasing the cell cycle and the intracellular 
water structure (Figure 1), and the free molecules, such as ions, proteins or nucleotides can move easily to 
maintain cell survival. This could be key to the role of Ca2+ in initiating tumorigenesis, because Ca2+ signaling 
from active nociceptive TRP channels requires polarization of the cell membrane and thus consequently 
activity of K+ channels, which are decisive for cell proliferation [28], similar to fertilization in triggering the 
development [29]. The fast proton diffusion method confirmed that fertilization induced the formation of 
free water from bound water [30].

Decreased intracellular K+ concentration in primary cells alters water structure from bound water to free 
water; it could be due to the K+ content directly affecting bound water structure. The structure of bound water 
is similar to an iceberg, and the melting rate of an iceberg can be determined by K+ content [31]. Accordingly, 
decreased intracellular K+ concentration by activation of Ca2+-activated K+ channels in primary cells may 
interrupt the bound water structure, similar to the melting iceberg. Furthermore, we consider how Ca2+ 

signaling from nociceptive TRP channels activates these K+ channels to alter water structure. TRP channels, 
when activated, contribute to cell depolarization via allowing Na+ to flow into the cell [16]. Similarly, Xenopus 
oocytes revealed a depolarization of the membrane potential by fertilization, which induces Na+ entry [32]. 
Thus, the active nociceptive TRP channels upon continuous environmental stimuli induce Na+ entry, which 
initially causes an increase in intracellular proton signaling, especially Ca2+ signaling; Ca2+-activated K+ 

channels to decrease the intracellular K+ concentration, then the water state is changed gradually from the 
bound state to the free state.
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Figure 1. Environmental stimuli-activated nociceptive TRP channels disturb the balance between cell death and survival 
by high-magnitude Ca2+ entry. Upon the release of cell cycle arrest by initiating the aging process, the fate of cells is 
determined: death or survival. The repair system, such as p53 protein family is involved in this determination. When genomic 
instability cannot be repaired due to dysfunction of the repair system, the release of cell cycle arrest in senescent cells results 
in tumorigenesis, because senescent cells don’t progress to cell death. Senescent cells could initiate the cell cycle through 
Ca2+-activated K+ channels which are activated by nociceptive TRP channels, and stabilize the released-cell cycle with activation 
of oncogenes and dysfunction of tumor suppressor genes. On the other hand, in the aging process, nearly all cells face ROS 
released from mitochondria and DDR and SIR, and if the p53 protein family is activated, eventually contribute to cell death. 
Environmental stimuli-activated nociceptive TRP channels initially result in increased Ca2+ entry to activate death signals which 
oxidize and degrade proteins and induce DNA fragmentation

As shown in Figure 1, once Ca2+ signaling from active nociceptive TRP channels activates K+ channels to 
continuously release the cell cycle, the repair system quickly recovers errors to maintain tissue homeostasis. 
The repair system could be driven by the p53 family proteins first, and then induce death signals following 
resistance to tumorigenesis. The cell dynamic alternation between death and survival might be balanced 
until dysfunction of the repair system, especially p53 family proteins. The switch between cell death and 
tumorigenesis may be the SIR, which is thought to be a contributor towards tumorigenesis with genomic 
instability and dysfunction of the repair system [3]. Accumulation of intracellular ROS and DDR results 
in genomic instability  and dysfunction of the repair system, followed by a change in the activity of 
proto-oncogenes and tumor suppressor genes to accelerate cancer development.

Ca2+ signaling from nociceptive TRP channels promotes cancer progression
We pointed out that Ca2+ signaling from nociceptive TRP channels is involved in initiating cancer progression. 
More evidence of nociceptive TRP channels is shown in regulating cancer promotion, because Ca2+ signaling is 
necessary for cancer cell growth, metastasis and chemotherapy resistance [33]. The Ca2+ dependent activation 
of Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates multiple targets, including focal 
adhesion kinase (FAK) which accelerates cancer cell migration and Akt, c-Jun N-terminal Kinase (JNK) and 
Src which promotes cancer cell proliferation [34]. CaMKII-dependent activation of hypoxia-inducible factor 
1-alpha (HIF-1α) and P-glycoprotein prevents cancer cells from chemotherapy drug-induced cell death [35]. 
As shown in Table 2, nociceptive TRP channels are upregulated in many types of cancer cells. TRPA1 and 
TRPC5 perform an important role in transducing chemical nociceptive stimuli [36], but upregulated TRPA1 
and TRPC5 reveal poor prognosis in cancers. TRPC1 and TRPC6 channels, which are involved in nociceptive 
pathways, cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization [37]. 
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TRPC1, TRPC6 and TRPV4 have been implicated in upregulation of breast and gastric cancer. TRPC6 also 
controls glioma development via regulation of G2/M phase transition [38]. TRPC3 and TRPC7 have recently 
been reported to be correlated with nociceptive pain in rodents [13, 39]. Although TRPC3 and TRPC7 mediate 
store-operated Ca2+ entry (SOCE) potentiating acceleration of cancer cell growth [13, 40], seldom does the 
study point out the function of TRPC7 in cancer development.

TRPM2, TRPM3 and TRPM8 have a pathological role for a wide range of inflammatory conditions and 
neuropathic pain [36], and also belong to thermosensitive TRP channels [41, 42]. Those nociceptive TRPMs 
with overexpression facilitate malignancy in a majority of cancers (Table 2). TRPV1, nociceptor, causes pain 
hypersensitivity associated with neuropathic pain, peripheral inflammation [43] and cancer cell growth and 
metastasis (Table 2). Furthermore, long non-coding RNA, an antisense transcript of TRPM2 (TRPM2-AS), 
is overexpressed in prostate cancer and thought to be linked to poor prognosis [44]. The mutated TRPM2 
gene also reveals a marked negative correlation with patient survival rate compared with the normal control 
group [45]. Upregulation of full-length glycosylated TRPV2 protein (f-TRPV2) in urinary bladder carcinoma is 
associated with metastatic ability, which can be regulated by short splice variant of TRPV2 (s-TRPV2). f-TRPV2 
and s-TRPV2 have opposite trends of expression in cancer cells compared to normal cells [46]. Therefore, 
nociceptive TRP channels potentiate initiation of cancer progression and promote cancer development 
and malignancy.

Table 2. Nociceptive TRP channels in regulating cancer progression

Channel Tumor types Tumor cells vs. 
Normal controls

Pathological 
function in cancer

Prognosis Reference

TRPA1 Breast cancer, lung 
cancer, pancreatic cancer, 
nasopharyngeal carcinoma

Over-expression Promote cancer 
cell survival against 
chemotherapeutic 
agents

Unfavorable in breast 
cancer, lung cancer, 
nasopharyngeal 
carcinoma

[82, 89, 90]

TRPC1 Breast cancer (PTEN-deficient 
type), lung cancer, gastric 
cancer, pancreatic cancer, 
colorectal cancer, glioblastoma

Over-expression Promote cancer 
cell growth and 
metastasis

Unfavorable in breast 
cancer (PTEN-deficient 
type), gastric cancer

[91, 92]

TRPC3 Breast cancer (triple negative 
type), ovarian cancer

Over-expression Promote cancer cell 
growth and cancer 
cell survival against 
chemotherapeutic 
agents

Unfavorable in breast 
cancer, ovarian cancer 

[40, 93]

TRPC5 Breast cancer, colorectal 
cancer

Over-expression Promote cancer 
cell survival against 
chemotherapeutic 
agents, tumor 
metastasis

Unfavorable in colorectal 
cancer

[94, 95]

TRPC6 Breast cancer, hepatoma, 
gastric cancer, ESCC, prostate 
cancer, glioblastoma

Over-expression Promote cancer 
cell growth and 
metastasis 

Unfavorable in 
esophageal squamous 
cell carcinoma

[96-101]

TRPC7 Lung cancer, skin sarcoma Over-expression Promote cancer cell 
growth

Not investigated [13]

TRPM2 Breast cancer, lung cancer, 
gastric cancer, pancreatic 
cancer, prostate cancer, HCC, 
oral cancer, glioblastoma

Over-expression, 
mutant type 
in PDAC, long 
non-coding RNA 
TRPM2-AS in 
HCC

Promote cancer 
cell growth and 
metastasis

Unfavorable in luminal 
B and TP53 wild type 
breast cancer, lung 
cancer, PDAC, HCC 
(Long non-coding RNA 
TRPM2-AS) 

[45, 102-107]

TRPM3 ccRCC, glioblastoma, choroid 
plexus papilloma

Over-expression Promote cancer cell 
growth

Not investigated [107-109]

TRPM8 Breast cancer, lung cancer, 
gastric cancer, ESCC, 
pancreatic cancer, prostate 
cancer, HCC, esophageal 
cancer, glioblastoma, 
neuroblastoma, urinary bladder 
carcinoma

Over-expression Promote cancer 
cell survival against 
chemotherapeutic 
agents, cancer 
cell growth and 
metastasis 

Unfavorable in urinary 
bladder carcinoma 

[110-113]
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Table 2. Nociceptive TRP channels in regulating cancer progression (continued)

Channel Tumor types Tumor cells vs. 
Normal controls

Pathological 
function in cancer

Prognosis Reference

TRPV1 Breast cancer, oral cancer, 
glioblastoma

Over-expression Promote cancer cell 
growth

Unfavorable in breast 
cancer

[107, 114, 115]

TRPV2 Breast cancer, gastric cancer, 
ESCC, prostate cancer, HCC, 
ovarian cancer, oral cancer, 
glioblastoma, hematological 
cancer, urinary bladder 
carcinoma

Over-expression, 
full-length TRPV2 
(f-TRPV2) in 
urinary bladder 
carcinoma

Promote cancer 
cell growth and 
metastasis

Unfavorable in multiple 
myeloma, ESCC 

[46, 107, 111, 
116, 117]

TRPV3 Breast cancer, lung cancer, 
oral cancer

Over-expression Promote cancer 
cell growth and 
metastasis

Not investigated [111, 116, 118]

TRPV4 Breast cancer, gastric cancer, 
pancreatic cancer, HCC, 
colorectal cancer, oral cancer, 
glioblastoma

Over-expression Promote cancer 
cell growth and 
metastasis

Unfavorable in gastric 
cancer

[93, 111, 116, 
119-122]

ESCC: esophageal squamous cell carcinoma; PTEN: phosphatase and Tensin Homolog deleted on Chromosome 10; 
PDAC: pancreatic ductal adenocarcinoma; HCC: hepatocellular carcinoma; ccRCC: clear cell renal cell carcinoma

Epigenetic mechanisms seem to promote expression of nociceptive TRP 
channels in cancer cells
Ca2+ signaling is a regulator of pathways vital in cancer progression, enhancing cancer cell growth, metastatic 
ability and cell death resistance [47]. To maintain cancer development, malignant cells tend to alter 
expression of Ca2+ homeostasis genes via regulating epigenetic mechanisms [48]. Therefore, overexpression 
of nociceptive TRP channels in cancers is due to epigenetic regulation to sustain cancer development. 
We previously mentioned that active nociceptive TRP channels potentiates activation of Ca2+-activated K+ 

channels to reduce the intracellular K+ concentration, which releases cell proliferation by releasing the cell 
cycle and the intracellular water structure; chromosome structure could become much less tightly packed 
and lead to epigenetic regulation via free ions and proteins [49].

Three epigenetic mechanisms are categorized as writers, readers and erasers [50]. Writers that 
introduce various chemical modifications in DNA and histones, for instance, increased histone H3 acetylation 
of the TRPV1 promoter region with histone acetyltransferases (HATs) resulting in upregulated levels of 
TRPV1 in dorsal root ganglia that ultimately induces hyperalgesia in rats [51]. Overexpression of TRPV1 
is reportedly involved in both tumor growth and cancer-induced pain [52]. Indeed, the nociceptive TRP 
channel also induces Ca2+ signaling to produce a snowball effect that activates Ca2+ dependent transcription 
factors to accelerate its expression. Readers have a specialized domain containing proteins that identify and 
interpret those modifications. Ca2+ signaling from TRPV6 activates Ca2+-dependent calcineurin-nuclear factor 
of activated T (NFAT) cells which in turn influences translocation of TRPC6 promoter to upregulate TRPC6 
during pathologic cardiac remodeling [53]. TRPC6 may be overexpressed in cancers due to activating the 
TRPC6-NFAT pathway [54].

Erasers are the dedicated group of enzymes proficient in removing these chemical tags; most enzymes 
are histone deacetylase complexes (HDACs) and these play an essential role in maintaining genomic stability 
in cells [55]. HDACs remove acetyl groups and lead to a more closed chromatin structure, generally associated 
with transcriptional repression. During cancer progression, deficient HDACs activity regulates the expression 
and activity of numerous proteins [56]. Therefore, interruption of the histone variant macroH2A-recruited 
HDAC1 and HDAC2 augments overexpression of TRPC3 and TRPC6 via histone acetylation, resulting in 
increased cell growth and invasion in bladder cancer cells [57]. Although malignant cells potentiate intensive 
epigenetic regulation to upregulate nociceptive TRP channels in maintaining cancer development, the 
epigenetic mechanisms of nociceptive TRP channels activation in cancers needs to be further investigated.

Despite the prevalence of aging-associated cancer development, several types of cancer, especially 
retinoblastoma (RB), occurs mostly in the young. Epigenetic regulation of RB plays an important role in 
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determining RB development, because extensive DNA methylation of RB promoter, RB1 mutations and 
macrodeletions have been reported in RB [58, 59]. TRPV1 as well as TRPM8 are expressed in RB, and serve as 
prognostic factors for RB progression [60]. TRPV1-associated DNA (cytosine-5-)-methyltransferase 1 (DNMT1) 
activation increases methylation of genes that regulate visceral pain sensation in the peripheral nervous system 
of rats [51], and it potentiates regulation of extensive DNA methylation in RB promoter. Besides, epigenetic 
modifications contribute to heritable changes in gene expression without altering the DNA sequence, 
but they can also lead to gene mutations [61]. Hypermethylation of genes mostly occurs as mutations in 
cancers, especially tumor suppressor genes or DNA repair genes [62]. It is still unknown whether TRPV1 
or TRPM8 is involved in controlling germline mutations of epigenetic modifiers in RB, yet Ca2+ signaling 
from nociceptive TRP channels may influence epigenetic mechanisms in determining non-aging-associated 
cancer development.

Targeting nociceptive TRP channels prohibits cancer development
The role of nociceptive TRP channels in regulating cancer progression illustrates that excess Ca2+ 
signaling from active nociceptive TRP channels upon continual environmental stimuli induces the 
aging process and may ultimately lead to cancer progression. Consequently, blockage of excess Ca2+ 
signaling from active nociceptive TRP channels facilitates inhibition of aging-associated cancer 
development (Figure 2). Derinat (sodium deoxyribonucleate) protects skin against UVB-induced cellular 
damage and aging via inhibiting TRPCs, especially nociceptive TRPC7 [63], which reportedly mediates 
aging-associated tumorigenesis induced by UVB [13]. Quenching of ROS accumulation and inflammatory 
response by therapeutic antioxidants, such as hydrogen-rich (H2) water, resveratrol or sesamol significantly 
eliminates the aging process and thus protects against cancer development [64-66]. Although nonsteroidal 
anti-inflammatory drugs (NSAIDs) with anti-inflammatory effects prohibit aging-associated cancer 
development by inducting death signals [3], they also elicit increased ROS level in different cell types [67]. 
The proapoptotic accumulation of ROS in both yeast and mammalian cells is elicited by NSAIDs [68].

Figure 2. Schematic representation of nociceptive TRP channels in regulating the aging-associated cancer development and 
the strategic targeting of its process. Nociceptive TRP channels respond to specific environmental stimuli, such as microbes, 
chemicals, physical injuries, inducing excess Ca2+ signaling from active nociceptors upon continual environmental stimuli in the 
aging process. Blockage of the aging process which is induced by active nociceptive TRP channels and trigger of repair system 
provide a novel strategy for preventing cancer development

Cancer is an aging-associated disease. Despite blockage of active nociceptive TRP channels and ROS 
accumulation, the potential for cancer is not wholly eliminated. According to our pervious study, 55.8% of 
gene mutations occurred through the natural process of aging, and an external trigger such as environmental 
stimulus is required for aging-associated diseases, especially cancer [13]. DNA repair systems are inactivated 
and dysregulated due to genomic instability. Recently, the nucleotide precursor of nicotinamide adenine 
dinucleotide (NAD), nicotinamide mononucleotide (NMN), has been reported to enhance DNA damage 
repair and maintain mitochondrial homeostasis [69], and activates stem cells for the increase of their 
self-renewal [70] and the maintenance of their pluripotency [71]. Long-term administration of NMN decreases 
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age-associated physiological degeneration in mice [72]. Similarly, mesenchymal stem cell (MSC)-derived 
exosomes have potential for cell-free repair for a variety of diseases and injuries through activating DNA 
damage repair and tissue regeneration [73]. MSC-exosomes, which carry proteins, lipids, DNA, and RNA from 
MSCs, have biological functions similar to MSCs, but have a smaller volume, can penetrate biofilms, have low 
immunogenicity, and can be stored [74].

Once cancer development is initiated by epigenetic mechanisms, cancer evolution creates 
malignant cells and induces changes in the genome [75]; at this stage, NMN and MSC-exosomes 
oppositely promote cancer progression, maintaining cancer cell growth and metastasis [76, 77]. For 
treating cancer cells, targeting nociceptive TRP channel activities by using multiple TRP-specific 
antagonists facilitates elimination or reduction of cancer development; for instance, treatment with 
SKF96365 and 2-aminoethoxydiphenylborate (2-APB) blocks lung cancer cell growth via inhibiting 
nociceptive TRPC1 [13]. Functional expression of TRPM8 in prostate carcinoma can be blocked by 
N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), clotrimazole, 
and DD01050 following decrease of cell growth [33]. TRPV1 activity, which is inhibited by melatonin, 
prevents breast cancer cells from doxorubicin-induced cell death [78]. Furthermore, because of upregulated 
nociceptive TRP channels in cancer cells, overactivation of TRP channels by treating their agonists results 
in huge ROS accumulation and induces cell death signals. Applying TRPV1 agonist capsaicin in breast 
cancer and glioblastoma contributes to cell apoptosis due to mitochondria Ca2+ overloading-increased ROS 
level [78-80]. But treatment with agonists of nociceptive TRP channels in several cancer cells also accelerates 
their malignancy and chemotherapy resistance [33].

Conclusions
This review suggests a dual role of nociceptive TRP channels in regulating cancer progression, initiating 
cancer progression by aging-induced genomic instability, and promoting malignancy by epigenetic regulation. 
Excess Ca2+ signaling from active nociceptive TRP channels under continuous environmental stimuli induces 
intracellular ROS accumulation and DDR, which triggers the SIR and SASP activation, leading to genomic 
instability and cancer progression. Additionally, to maintain cancer development, cancer cells tend to alter 
expression of Ca2+ homeostasis genes via regulating epigenetic mechanisms. Nociceptive TRP channels are 
upregulated in many types of cancer cells and promote cancer cell growth, metastasis and chemotherapy 
resistance. Consequently, we propose a novel strategy for treating cancer: blockage of nociceptive TRP 
channels in the aging process prevents cancer initiation, and targeting nociceptive TRP channels in cancer 
cells provide potential therapies to prohibit cancer progression.
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