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Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one 
of the leading causes of mortality across the globe, responsible for the death of around 10 million patients 
every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse 
effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have 
foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their 
underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or 
piplartine, is one such alkaloid isolated from Piper longum Linn., which is shown to be safe and has significant 
potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability 
of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways 
such as phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, nuclear factor-
kappa B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks 
of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, 
metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize 
the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a 
drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates 
the anti-cancer properties of PL against different types of cancer, which permits further investigation by 
conducting clinical studies.
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Introduction
Regardless of the notable progress achieved in cancer diagnosis and treatment, it is still considered as one 
of the most dreadful and prevalent diseases having very high morbidity and mortality rate [1-10]. There are 
diverse types of cancer, all of which are associated with atypical growth and proliferation of cells leading to 
approximately 10 million deaths per year [11-16]. The majority of cancers occur due to genetic mutations 
associated with lifestyle and environmental-related factors, although some of the cancer types are caused 
because of inherited genetic makeup [10, 17]. A considerable proportion of the global cancer burden can be 
relieved by evading the risk factors, such as consumption of carcinogenic products, poor diet, and absence 
of physical activity leading to obesity, sexually transmitted diseases, and pollution, to name a few [17]. A 
diverse range of drugs have been discovered and screened with the aim to cure this disease in the last few 
decades. However, most of the standard chemotherapeutics fail to provide complete relief to the patients and 
are further known for imparting innumerable side effects and secondary diseases like myelosuppression, 
nausea, vomiting, heart diseases, hepatic dysfunction, hypertension, malaise, etc. In addition, extensive use of 
those drugs also results in the development of chemoresistance in cancer cells [18-22]. Therefore, advances 
in the development of novel, non-toxic, effectual, and cost-effective therapeutic modalities are an urgent 
requirement for the management of this life-threatening disease.

Since ancient times, plant-derived phytochemicals and herbal medicines are being explored as 
a treatment modality against different chronic diseases, including cancer, and thus have gained extensive 
popularity for possessing beneficial healing properties [23-35]. The healing properties of the plant-derived 
products are due to the presence of a wide range of biologically active alkaloids, flavonoids, tannins, 
diterpenoids, carotenoids, and phenolic compounds present in various parts [36-42]. Therefore, these 
compounds play a vital role in preventing cancer initiation and suppressing the process of cell proliferation, 
invasion, metastasis, and chemoresistance [43-52]. Interestingly, it was reported that, almost one-third of 
all the emerging drugs approved by the United States Food and Drug Administration (US FDA) consist of 
natural products either in their native form or their analogs [19, 53, 54]. Even though experts across the 
globe pay more attention to exploring the anti-inflammatory, anti-oxidant, anti-cancer, chemosensitizing, 
and radiosensitizing potential of the active compounds extracted from natural sources, several other 
phytochemicals are still left to be recognized [41, 53, 55-59].

Piperlongumine (5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)-pyridinone, 
PL; Figure 1), also known as piplartine, is the major active alkaloid present in the fruits and roots of Piper 
longum Linn., commonly known as long pepper or “Pippali” belonging to the Piperaceae family [60-63]. 
Accumulating lines of evidence have documented its role in cancer prevention, and it is reported to be 
effective against many human cancer cell lines of breast, colon, liver, lung, prostate, skin, and thyroid. As PL 
is a naturally occurring alkaloid, it is comparatively less toxic, and it can also concomitantly modulate the 
expression of various target genes, thereby imparting potential anti-cancer effects [62].

Sources of PL
PL is extracted from the fruits and roots of P. longum L. (Figure 2), and was first isolated and characterized 
in 1963 [60, 64]. The plant grows in the wild tropical rain forests of India, Indonesia, Malaysia, Rhio, Timor, 
Nepal, Philippines, and Sri Lanka [65]. It has also been grown indigenously in India, along with cultivation in 
tropical and subtropical areas of Asian and Pacific islands [66].
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Figure 1. Chemical structure of PL
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Biosynthesis and chemistry of PL
The chemical structure of PL is composed of two α,β-unsaturated imide functionalities [67]. The structure 
of PL was first determined in 1968, and generally, the linkage of 5,6-dihydropyridin-2(1H)-one to a 
3,4,5-trimethoxyphenyl group via an E-acryloyl group form a molecule of PL [68]. Using the same components, 
He et al. [69] synthesize PL. The 5,6-dihydropyridin-2(1H)-one synthesized from commercially available 
2-piperidone acted as one of the precursors. Another precursor, 3,4,5-trimethoxycinnamic acid, was converted 
to acyl chloride 3,4,5-trimethoxycinnamic acid using an oxalyl chloride. Then the sodium hydride deprotected 
5,6-dihydropyridin-2(1H)-one was allowed to react with (E)-3-(3,4,5-trimethoxyphenyl) acryloyl chloride 
that gave rise to the resultant compound PL [69].

Similarly, Sun et al. [70] has synthesized PL by adding acyl chloride (or acid anhydride) to a 
5,6-dihydropyridin-2(1H)-one and incubating the solution at 0°C followed by the addition of sodium hydride, 
and the solution was kept at 0°C for a couple of hours and then stirred for the next 18 h at room temperature 
in dry air. The solution was then transferred into ice water, and subsequent extraction was done with ethyl 
acetate. The organic phases were dried, concentrated, and purified to get the final product PL and its analogs 
through the flash column chromatographic method [70].

Another group has reported that the synthesis of PL involves the fusion of α,β-unsaturated δ-lactam 
with the cinnamates [71]. The N-Boc protection of the commercial compound, δ-valerolactam, using the 
di-tert-butyl dicarbonate leads to the synthesis of α,β-unsaturated δ-lactam with 98% yield. The N-Boc 
protected lactam compound derived from δ-valerolactam is converted to 3-(phenylthio) piperidin-2-one 
with the complementary treatment of freshly prepared lithium diisopropylamide and diphenyl disulfide [71]. 
The sulfide is then allowed to oxidize. The resultant sulfoxide is thermally eliminated, which gives rise to 
α,β-unsaturated δ-lactam, and it’s the N-Boc deprotection in an acidic environment that produced the desired 
lactam molecule. The phosphonoacetamide is then synthesized from lactam through the Arbuzov reaction. 
It is then allowed to mediate sodium hydride deprotonation and react with 3,4,5-trimethoxybenzaldehyde, 
giving rise to PL with 51% yield [71]. The 3,4,5-trimethoxybenzyl in PL is an anti-cancer exhibiting moiety 
that is employed in synthesizing the PL derivatives such as L50377 to improve anti-cancer efficacy [72].

PL is also combined with metal complexes such as ruthenium and platinum to increase its anti-cancer 
efficiency [73, 74]. In line with this, a novel PL and ruthenium complex was synthesized from two precursor 
complexes, such as [RuCl2(N-N) (P-P)] and 1,4-bis(diphenylphosphino)butane [73, 75]. Further, platinum-
based PL derivatives were also synthesized using the demethylated PL, PIP-OH ligand that was allowed to 
react with the platinum precursor PtCl2(PPh3)2, and through the exchange of one chloride molecule, it resulted 
in a novel platinum-based PL complex, i.e., cis-[PtCl(PIP-OH)(PPh3)2]PF6 [74].

Biological activities of PL
A plethora of studies have reported multiple biological properties of P. longum L., including anti-arthritic, 
anti-asthmatic, anti-diabetic, anti-epileptic, anti-inflammatory, anti-microbial, anti-oxidant, anti-stress, 
anti-tumor, anti-ulcer, as well as immunomodulatory properties [61, 66]. A study demonstrated 
the hepatoprotective effects of P. longum via decreasing the rate of lipid peroxidation and increasing 
glutathione (GSH) levels [76]. Furthermore, administration of the roots of P. longum displayed 

Figure 2. Source of PL
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high antifertility effects [65]. Another study conducted by Khushbu et al. [77] has demonstrated the 
cardioprotective effect of P. longum against biochemical and histopathological damages in rat models 
suffering from acute myocardial infarction. Furthermore, the anti-thrombogenic properties of PL (50 mg/kg) 
were also observed in the pulmonary thrombosis mice model [78]. PL was also found to inhibit an essential 
rate-limiting enzyme, human aldose reductase, involved in the conversion of glucose to sorbitol. Diabetic 
complications are generally associated with sorbitol accumulation. Therefore, these insights point towards 
the anti-diabetic effects of PL [79].

Furthermore, a novel PL-mediated therapeutic strategy for atherosclerosis plaque revealed that PL 
acted via the suppression of platelet-derived growth factor (PDGF) receptor signaling [80]. An in vivo study 
demonstrated the anti-depressant and anxiolytic effects of PL through experimental analyses including open 
field, forced swimming tests, and elevated plus maze [81]. Interestingly, the synergistic effects of PL have also 
been observed with existing anti-bacterial drugs, including tetracycline and rifampicin, thereby improving 
their effectiveness [82]. Thus, the above reported biological properties reflect the vast therapeutic potential 
of PL in the treatment of various anomalies.

Molecular targets of PL
A plentiful of studies have evidenced the multi-targeted nature of PL, which contributes to its diverse 
pharmacological activities. It was found to modulate the important cell signaling pathways such as 
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), 
nuclear factor-kappa B (NF-κB), Janus kinases (JAK)/signal transducer and activator of transcription 3 (STAT3), 
and extracellular signal-regulated kinase (ERK) which play a critical role in regulating the processes 
involved in the initiation, development, and progression of cancer. PL significantly downregulated the mRNA 
expression of the cell cycle regulatory genes such as cyclin B1, cyclin D1, cyclin-dependent kinases (CDK)-1, 
CDK4, CDK6, and proliferating cell nuclear antigen (PCNA) [83]. This compound also modulated the expression 
of cell survival and invasion associated genes such as heme oxygenase 1 (HMOX1), heat shock protein 
family A member 1A (HSPA1A), caspase-3 (CASP3), cyclin dependent kinase inhibitor 1A (CDKN1A), MYC, 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG), B-cell lymphoma 2 (Bcl-2), 
NF-κB subunit 1 (NF-κB1), AKT3, matrix metalloproteinase-9 (MMP-9), and Twist [84, 85] (Figure 3).
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Figure 3. PL regulates the molecular targets and various signaling pathways involved in cancer progression
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PL and PI3K/Akt/mTOR signaling
The PI3K/Akt/mTOR pathway is an important cell signaling pathway that has a critical role in several cellular 
processes such as proliferation, growth, and cellular metabolism. The abnormality of this signaling pathway 
is a common cause of cancer, and many studies reported the downregulation of this pathway by PL [86-89]. 
For instance, PL was found to suppress this pathway in breast cancer cells, which led to cell apoptosis and 
autophagy [90]. In addition, inhibition of this pathway following PL treatment was observed in cervical 
cancer, colorectal cancer (CRC), and lung cancer cells as well, which resulted in the prevention of tumor 
growth [90-93]. Further, suppression of the Akt/mTOR pathway by PL was also associated with the partial 
inhibition of glycolysis, as suggested by a study on lung cancer cells [94]. Additionally, suppression of the 
Akt/mTOR signaling pathway by PL in renal cell carcinoma cells was demonstrated to be reactive oxygen 
species (ROS) dependent, which led to cell death and inhibition of tumor initiation and progression [90]. 
Furthermore, PL treatment suppressed lung tumor growth in an in vivo model by inhibiting the PI3K/Akt/
mTOR pathway [95]. As this pathway regulates many other processes involved in cancer development and 
progression, further studies are warranted to delineate the effect of PL on these processes, which would pave 
the way in the management of different malignancies. In addition, novel analogs of PL and their interaction 
with this pathway can be explored, which would help to develop novel Akt/mTOR inhibitors for the treatment 
of different cancers.

PL and NF-κB signaling
The NF-κB signaling pathway is known to play an active role in cell survival and proliferation. It regulates 
numerous physiological processes such as development, differentiation, inflammation, immunity, and 
metabolism in the initial and later stages of cancer [96-99]. Therefore, the agents that suppress the activation 
of this pathway have high potential in the prevention and treatment of cancer [98]. Suppression of the NF-κB 
signaling pathway and its related genes by PL was reported in different cancers [83]. Further, an in vitro 
study demonstrated that PL treatment caused ROS-dependent inactivation of the inhibitor of NF-κB kinase 
subunit beta (IKKβ), which ultimately caused inhibition of the NF-κB signaling pathway in breast cancer 
cells [100]. Moreover, PL was found to inactivate NF-κB and dysregulate the expressions of NF-κB mediated 
proteins, thereby inhibiting metastasis in prostate cancer cells [101]. Furthermore, an in vivo study of lung 
cancer showed that PL modulated the components of the NF-κB signaling pathway, and inhibited tumor 
growth [102]. These studies suggest that PL and its analogs may have high potential in deactivating the NF-κB 
pathway, which is constitutively expressed in different cancers.

PL and JAK/STAT3 signaling
JAK/STAT3 signaling pathway is known to regulate the cellular processes involved in cell survival, cell 
division, invasion, angiogenesis, migration, metastases, chemoresistance, and radioresistance. JAK/STAT 
signaling is found to be active in different types of human malignancies and promotes tumorigenesis [18, 
84, 103-108]. An in vitro study on gastric cancer cells has demonstrated that PL efficiently inhibited cell 
proliferation, invasion, and migration by blocking the JAK1,2/STAT3 signaling pathway [109]. Furthermore, 
PL was found to distinctly repress STAT3 activity independent of the phosphorylation of JAK2, which is an 
upstream regulator of STAT3. Further, the downstream regulators of STAT3, such as c-myc, p21, p27, and 
survivin, were modulated by PL [110]. Another group synthesized a series of PL derivatives and demonstrated 
that one of the derivatives, namely CG-06, could suppress the activation of STAT3 by directly binding to it and 
partly through ROS generation. The derivative was found to be more effective than PL [111]. However, further 
studies are required to decipher the exact mechanism of STAT3 suppression by PL and its analogs which pave 
the way in developing therapies against different cancers.

PL and ERK signaling
ERK is an important cell signaling pathway that is mainly associated with the induction of autophagy [112]. 
The effect of PL on the ERK pathway was studied on biliary cancer cell lines, which revealed that PL treatment 
resulted in ROS mediated activation of the ERK pathway, which ultimately induced autophagy in these 
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cells [112]. In addition, this compound increased the levels of intracellular ROS and imparted ROS-dependent 
cell death via stimulation in c-Jun N-terminal kinase (JNK) and ERK levels. Further, suppression of proteasome 
activity by PL also imparts to cancer cell death [113]. PL also negatively regulates ERK1/2 signaling pathways, 
thereby suppressing the level of c-Fos in CRC cells [93]. Additionally, PL was shown to inhibit MEK/ERK 
signaling in a dose and time-dependent manner, leading to CRC cell death [114]. Moreover, PL was shown 
to modulate the expression of ERK1/2 and induce cytotoxicity in lung cancer cells [91]. As this pathway is 
expressed in many other cancers, further investigation on the effect of PL on the proteins involved in this 
pathway is warranted.

Other targets
Apart from the aforementioned signaling pathways, PL was found to target a wide range of proteins that 
play a key role in cancer development. For instance, PL regulated the expressions of critical proteins 
involved in apoptosis such as Bcl-2, Bcl-2 associated X apoptosis regulator (Bax), Bcl-2 associated agonist 
of cell death (Bad), B-cell lymphoma-extra-large (Bcl-xL), X-linked inhibitor of apoptosis protein (XIAP), 
poly (ADP-ribose) polymerase (PARP), and caspases [113, 115-117]. PL was also shown to modulate 
microtubule-associated protein 1 light chain 3 (LC3), which is considered as one of the important markers 
of autophagy [90, 118]. A handful of studies also suggested that PL-induced G2/M phase cell cycle arrest by 
acting on the cell cycle regulatory proteins such as cyclin B1, cyclin D1, CDK1, CDK4, CDK6, and PCNA [100]. 
PL also increased the expression of growth arrest and DNA-damage-inducible alpha (GADD45α) in gastric 
cancer cells and downregulated the levels of cdc2 to induce cell cycle arrest [119]. Additionally, PL inhibited 
the invasiveness and metastatic potential of prostate cancer cells by modulating the expressions of 
interleukin (IL)-6, IL-8, and MMP-9 [101]. In addition, PL was found to downregulate slug and upregulate 
E-cadherin and inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells [120]. PL was also 
found to inhibit transforming growth factor-beta (TGF-β)-induced EMT in breast and lung cancer cells by 
modulating the expressions of E-cadherin, Snail1, and Twist1 [121]. These studies clearly indicate that PL is 
a multi-targeted agent and can be used to target multiple deregulations in different cancers.

Anti-cancer activities of PL
Increasing lines of evidence suggest that PL has been found to impart potential anti-cancer activities both 
in vitro and in vivo. Studies over the years [64, 85, 90-95, 100-102, 109-117, 119-149], have reported the 
potential of this alkaloid to be used both directly as an anti-cancer drug (Figure 4, Table 1) and in combination 
with the standard chemotherapeutic drugs (Table 2) to enhance their efficacy. The following section describes 
the anti-cancer properties of PL in different cancers and its mechanism of action.

Figure 4. Anti-cancer activity of PL
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Table 1. Mechanism of action of PL against different cancers

Cancer In vitro/In vivo Model Outcome/Mechanism References
ABC-DLBCL In vitro OCI-Ly10, U2932, DB

↑p21, ↓NF-κB
↑Apoptosis, ↓Bcl-2, ↓survivin, ↑Bax [122]

Bladder cancer In vitro

In vivo

T24, BIU-87, EJ
T24 xenograft

G2/M phase arrest, ↓GSH
G2/M phase arrest, ↓β-catenin, ↓ ZEB1, 
↓N-cadherin, ↓claudin-1, ↓ZO-1, ↓Slug

[123]

Biliary cancer In vitro HuCCT-1, OCUG-1 G2/M phase arrest, ↑apoptosis, ↑p-ERK, 
↑LC3-II, ROS

[112]

Breast cancer In vitro MCF-7 ↓Akt/mTORC1, ↓GSK-3β, ↓TSC2, ↓4E-
BP1, ↓p70S6K, ↑LC3-II, ↑autophagy

[90]

In vitro MDA-MB-231, BT-549, Hs578T Growth, ↓metastasis, ↓EMT, ↓ZEB1, 
↓slug, ↑E-cadherin, ↓MMP2, ↓MMP9, 
↑miR-200c, ↓IL-6, ↑ROS, ↑autophagy

[120]

In vitro MDA-MB-468, MCF-7 ↓Proliferation, ↑G2/M arrest, ↑apoptosis, 
↓topoisomerase II, ↑p53, ↑p21, ↓Bcl-2, 
↑Bax, ↑Cyt C, ↑caspase-3, ↑caspase-7, 
↑caspase-8

[116]

In vitro BT474, MCF7, SkBr3 ↓p-HER1, ↓p-HER2, ↓p-HER3, ↑ROS [126]
In vitro MCF-7, MCF-10A ↑Apoptosis, ↑HO-1, ↑Nrf2 [213]
In vitro MCF-7 ↑BIM, ↑cleaved caspase-9 and 

caspase-3, ↓p-FOXO3A, ↓p-Akt
[92]

In vivo MCF-7 xenograft ↓tumor growth, ↓p-FOXO3A, ↑BIM [92]
In vitro SKBR3 ↑apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4, 

↓cMyc, ↓EGFR, ↓survivin, ↓cMET
[125]

In vitro MCF-7 ↓SETDB1, ↑FosB, ↑cleaved PARP, 
↑caspase-9

[117]

In vitro MCF-7 ↑E-cadherin, ↓snail1, ↓Twist1, ↓cyclin D1 [121]
In vitro MCF-7 ↓CDK1, G2/M phase arrest

↓CDK4, ↓CDK6, ↓PCNA, ↓p-CDK1, 
↑cyclin B1, ↑ROS, ↓GSH, ↓p-IκBα, 
↓mRNA expression of cyclin B1, ↑mRNA 
p21 expression, ↓NF-κB activation

[100]

Cervical cancer In vitro HeLa ↑BIM, ↑cleaved caspase-9 and 
caspase-3, ↓p-FOXO3A, ↓p-Akt

[92]

CCA In vitro KKU-055, KKU-100, KKU-139, 
KKU-213, KKU-214

G2/M phase arrest, ↑apoptosis, ↑ROS, 
↓p-Akt, ↑Bad, ↓Bcl-2, ↑NQO1, ↑HO-1, 
↑SOD2, ↑p21, ↑p-ERK, ↑p-JNK,

[113]

CRC In vitro LOVO, SW480, HCT116, 
HT29, HCT8, SW620

↓Cell viability, ↓clonogenic potential, 
↓cyclin D1, ↓c-Fos, ↓p-EGFRTyr1068, ↓Akt, 
↓ERK1/2

[93]

In vivo HT-29-xenograft ↓Tumor growth, ↓c-Fos and cyclin D1 
positive cells

[93]

In vitro SW-620 ↓Proliferation [116]
In vitro HCT 116, HCT 116 Bax−/−, HCT 

116 p21−/−, HCT 116 p53−/−
G2/M phase arrest, ↑apoptosis [131]

In vivo DMH & DSS induced ↓Tumor growth, G2/M phase arrest, 
↑apoptosis, ↓Bcl-2, ↑cleaved caspase-3, 
↓Ras, ↓cyclin D1, ↓NF-κB

[130]

In vitro DLD-1 G2/M cell cycle arrest, ↑apoptosis, 
↑ROS, ↓GSH, ↓TrxR

[129]

In vitro HT29, SW620, HCT116 ↑Nrf2, ↑ROS, ↑Bax, ↑cleaved caspase-3, 
↑cleaved PARP, ↑MDM2

[132]

In vivo HT-29-xenograft ↓Tumor growth, ↓tumor volume, ↓mutant 
p53, ↑Bax, ↑cleaved PARP

[132]

In vitro HT-29, HCT 116 ↑Apoptosis, ↑p-ERK [114]
In vivo AOM/DSS induced ↓COX-2, ↓IL-6, ↓β-catenin, ↓snail [128]
In vitro HCT116 ↑apoptosis, ↑p-c-Jun, JNK activation [133]
In vitro INT-407, HCT-116 ↑ROS, ↓FN1, ↓CDH2, ↓CTNNB1, ↓Bcl2, 

↓survivin, ↑p53, ↑Bax, ↑SMAD4, ↑p21, 
↓Twist

[127]
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Table 1. Mechanism of action of PL against different cancers (continued)

Cancer In vitro/In vivo Model Outcome/Mechanism References
Gastric cancer In vitro AGS, HGC-27 G2/M phase arrest, ↑GADD45α, ↑ROS [119]

In vitro SGC-7901, BGC-823 ↑ROS, ↓MDM-2, ↓cyclin B1, ↓Cdc2, 
G2/M phase arrest, ↑p-eIF2α, ↑ATF4, 
KATO III ↑CHOP, ↑apoptosis

[135]

In vivo SGC-7901 xenograft ↑ROS, ↓TrxR1, ↑cleaved caspase-3, 
↑CHOP, ↑MDA

[135]

In vitro MKN45, AGS G2/M phase arrest, ↓p-JAK1, ↓p-JAK2, 
↓p-STAT3, ↓Ki-67, ↓MMP-9, ↓Twist, 
↓cyclin D1

[109]

In vitro MGC-803 ↑BIM, ↑cleaved caspase-9 and 
caspase-3, ↓p-FOXO3A, ↓p-Akt

[92]

Glioma In vitro HGG ↑ROS, ↓PRDX4, ↑cleaved caspase-3, 
↑P-H2AX, ↑CHOP, ↑p-eIF2α, ↑apoptosis

[136]

In vitro U87MG ↓Proliferation, ↑apoptosis, ↑FOS, ↑RAF1, 
↑NFKB1, ↑NFKB1A, ↑NFKB2, ↑PIK3CA, 
↑TP53, ↓AKT1, ↓AKT2, ↓DVL1, ↓EGFR, 
↓PIK3R1, ↑PTEN, ↑BRAF, ↓KRAS

[134]

HNC In vitro UMSCC1, UMSCC10A, 
UMSCC17A

↑Apoptosis, ↑LC3-II, ↑ROS, ↑8-oxo-dG, 
↓GSTP1 activity

[142]

In vivo UMSCC10A xenograft ↓Tumor volume [142]
In vitro SAS, CGHNC8 ↓SOX2, ↓NANOG, ↓Oct-4, ↑E-cadherin, 

↑CK18, ↓N-cadherin, ↓vimentin, ↓snail, 
↓slug

[144]

In vivo SAS & CGHNC8
xenograft

↓Tumor weight, ↓tumor growth [144]

In vitro OC2, OCSL ↓Proliferation, ↑G0/G1 arrest, ↑p21, 
↑apoptosis, ↑PARP-1, ↑caspase-3, 
↑senescence

[145]

HCC In vitro HUH-7, HepG2 ↑ROS, ↓proliferation, ↑apoptosis, 
↓procaspase-3, ↑Bax, ↑cleaved 
caspase-3, ↑G2/M arrest, ↑ATF4, 
↑p-eIF2α, ↑p-PERK, ↓TrxR1, ↓Bcl-2

[64]

In vivo HUH-7 xenograft ↓Tumor volume and weight, ↑ROS, 
↓TrxR1

[64]

Lung cancer In vitro A549 ↓Proliferation, ↑cell death, ↓migration [143]
In vitro A549, H1299 ↑Apoptosis, ↑ROS [138]
In vitro H1975, H23, HCC827 ↓HK2, ↑cleaved-PARP, ↑caspase-3 [94]
In vivo H1975 & HCC827

xenograft
↓p-Akt, ↓p-S6, HK2, ↓Ki-67, ↓tumor 
weight, ↓tumor growth

[94]

In vitro A549, A549/DTX ↑Cleaved PARP, ↓Bcl-2, ↑Bax, ↑LC3-II, 
↑apoptosis, ↓p-Akt (Thr308 and Ser473), 
↓PI3K, ↓mTOR (Ser2448)

[95]

In vivo A549/DTX xenograft ↓Tumor volume, ↓Ki-67, ↓p-Akt, ↓mTOR [95]
In vitro A549 ↑ROS, ↑LC3B-II [137]
In vitro A549 ↑Apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4, 

↓cMyc, ↓EGFR, ↓survivin, ↓cMET
[125]

In vitro A549, NCI-H460 ↑Apoptosis, ↑Bax, ↑cleaved caspase-3 
and -8, ↓Bcl-2

[102]

In vivo A549 xenograft ↓Tumor volume, ↓tumor weight, ↑Fas, 
↑DR4, ↑Bax, ↓Bcl-2, ↑cleaved caspase-3 
and -8, ↓nuclear p50 and p65

[102]

In vitro A549 ↑E-cadherin, ↓snail1, ↓Twist1 [121]
In vitro A549 G1 phase arrest, ↑ROS, ↓cyclin D1, 

↓CDK6, ↑p-ERK1/2, ↓p-Akt, ↓p-Rb, 
↓NF-κB p65 nuclear translocation, ↓Rb, 
↓CDK4

[91]
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Table 1. Mechanism of action of PL against different cancers (continued)

Cancer In vitro/In vivo Model Outcome/Mechanism References
MM In vitro OPM2, MM1R, U266, IM-9, 

NCI-H929
↑Apoptosis, ↑caspase-3, -9, or -8 activity, 
↑cyclin E, ↓Bcl-2, ↑Bax/Bcl-2, ↑ROS, 
↓STAT3 activity, ↑p21, ↑p27, ↓c-myc, 
↓cyclin A, ↓survivin

[110]

Prostate cancer In vitro PC-3, DU-145, LNCaP ↓Proliferation, ↓NF-κB, ↓IL-6, ↓IL-8, 
↓MMP-9, ↓invasion, ↓adhesion, ↓ICAM-1

[101]

In vitro DU-145 ↓p-STAT3Tyr-705, ↓cyclin A, ↓survivin, 
↑cleaved PARP, ↓cell survival, ↑G1/S 
arrest, ↑ERK1/2, ↓Bcl-2

[111]

In vitro PC-3 ↓Akt/mTORC1, ↓GSK-3β, ↓TSC2, 
↓p70S6K, ↑LC3-II, ↑autophagy, ↓4E-BP1

[90]

Pancreatic cancer In vitro MIAPaCa-2, PANC-1 ↑Cell death, ↑ROS [140]
In vitro Panc1, L3.6pL ↑Apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4

↓cMyc, ↓EGFR, ↓survivin, ↓cMET
[125]

In vitro PANC-1, MIA PaCa-2 ↑ROS, ↑SOD1, ↑GSTP1, ↑HO-1 [85]
In vivo PANC-1 xenograft ↓Tumor growth, ↓Ki67, ↑8-OHdG [85]
In vitro PANC-1, AsPC-1, BxPC-3 ↓c-Myc, ↓cyclin D1, ↓Bcl-2, ↓Bcl-xL, 

↓XIAP, ↓VEGF, ↓MMP-9, ↓NF-κB, 
↓survivin,

[115]

In vivo BxPC-3 xenograft ↓Tumor growth, ↓c-Myc, ↓cyclin D1, ↓Bcl-
2, ↓survivin, ↓XIAP, ↓VEGF, ↓MMP-9, 
↓NF-κB, ↓Bcl-xL

[115]

In vitro MIA PaCa-2, PANC-1 ↓GST activity, ↑JNK activation, ↑c-Jun, 
↑HMOX1, ↑HSPA1A, ↑Myc, ↑CASP3, 
↑PIK3CG, ↓Bcl-2, ↓NF-κB1, ↓AKT3, 
↑cleaved caspase-3, ↑cleaved PARP, 
↑apoptosis, ↑ATF-2, ↑CDKN1A, ↓p-ERK

[139]

RCC In vitro 786-O ↓Akt/mTORC1, ↓GSK-3β, ↓TSC2, 
↓p70S6K, ↑LC3-II, ↓4E-BP1

[90]

In vitro 786-O ↑Apoptosis, ↑ ROS, ↓Sp1, ↓Sp3, ↓Sp4, 
↓cMyc, ↓EGFR, ↓survivin, ↓cMET

[125]

In vitro 786-O, PNX0010 ↓cMET, ↓p-ERK1/2, ↓p-STAT3, ↓p-Akt, 
↑ROS

[146]

In vivo PTX xenograft ↓Tumor growth, ↓cMET [146]
Skin cancer In vitro A375, A875, B16-F10 G2/M phase arrest, ↑apoptosis, ↑cleaved 

caspase-3, ↓Bcl-2, ↑Bax, ↑p-JNK, ↑ROS, 
↑p21, ↑p27

[141]

8-OHdG: 8-hydroxy-2’-deoxyguanosine; ABC-DLBCL: activated B cell-like subtype of diffuse large B cell lymphoma; 
ATF4: activating transcription factor-4; CCA: cholangiocarcinoma; Cdc: cell division control; CHOP: C/EBP homologous protein; 
CK18: cytokeratin 18; cMET: hepatocyte growth factor receptor; COX-2: cyclooxygenase-2; DMH: 1,2-dimethylhydrazine; 
DR4: death receptor 4; DSS: dextran sulfate sodium; DTX: docetaxel-resistant; EGFR: epidermal growth factor receptor; 
FOXO3A: forkhead box O3A; GST: GSH S-transferase; GSTP1: GST pi 1; HCC: hepatocellular carcinoma; HO-1: heme 
oxygenase-1; MDA: malondialdehyde; MM: multiple myeloma, MMP-9: matrix metalloproteinases-9; Nrf2: nuclear factor-
erythroid-2-related factor-2; HK2: hexokinase 2; NQO1: NAD(P)H quinone dehydrogenase 1; p-eIF2α: phosphorylation 
of eukaryotic initiation factor-2α; PRDX4: peroxiredoxin 4; PTX: paclitaxel; Rb: retinoblastoma; RCC: renal cell carcinoma; 
SETDB1: SET domain bifurcated histone lysine methyltransferase 1; SOD: superoxide dismutase; SOX2: sex determining 
region Y-box 2; Sp: specificity protein; TrxR: thioredoxin reductase; VEGF: vascular endothelial growth factor; ZEB1: zinc finger 
E-box binding homeobox 1; ZO-1: zonula occludens-1

Table 2. Chemosensitizing potential of PL

Drugs Cancer In vitro/
In vivo

Model Mechanism References

Bortezomib MM In vitro NCI-H929 ↑Apoptosis, ↓p-STAT3 [110]
Cisplatin HNC In vitro AMC-HN2, -HN3, -HN4, -HN6, 

-HN7, -HN8, SNU-1041, -1066, 
-1076, HN30, HN31, UMSCC1, 
93-VU-147T

↑ROS, ↓GSH, ↑GSSG, ↑PUMA, 
↑cleaved PARP, ↑p-JNK, ↓GSTP1, 
-HN9, ↑p-p53 (Ser 15), ↑apoptosis

[149]

In vivo AMC-HN2 & -HN9, xenograft ↓Tumor growth, ↑p53, ↑apoptosis [149]
Doxorubicin Prostate 

cancer
In vitro DU-145 ↑Apoptosis, ↑caspase-3, ↑cleaved 

PARP
[148]
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Table 2. Chemosensitizing potential of PL (continued)

Drugs Cancer In vitro/
In vivo

Model Mechanism References

5-Flurouracil Oral cancer In vitro SAS, CGHNC8 ↓Cell viability, ↓survival [144]
Gemcitabine Pancreatic 

cancer
In vitro BxPC-3, PANC-1, AsPC-1 ↑Apoptosis, ↓NF-κB [115]

In vivo BxPC-3 xenograft ↓Tumor burden, ↑apoptosis, ↓NF-κB [115]
Oxaliplatin Gastric 

cancer
In vitro SGC-7901, AGS, BGC-823 ↓TrxR1 activity, ↑ROS, ↑apoptosis, 

Activation of p38 and JNK signaling 
pathways, ↑γ-H2A.X

[147]

In vivo SGC-7901 xenograft ↓Tumor growth, ↓TrxR1 activity [147]
PTX Intestinal 

Cancer
In vitro INT-407 and HCT-116 ↓Proliferation [127]

GSSG: GSH disulphide; p: phosphorylated

ABC-DLBCL
Diffuse large B cell lymphoma (DLBCL) represents the most typical type of non-Hodgkin’s lymphoma, and 
ABC-DLBCL is the most aggressive form of DLBCL, which results in poor 5-year survival of patients [122, 150]. 
It was reported that PL significantly induced apoptosis and cell death in ABC-DLBCL cell lines via suppression 
of NF-κB signaling pathway and modulating the NF-κB-mediated proteins responsible for apoptosis and cell 
survival such as Bcl-2, survivin, Bax, and p21 [122].

Bladder cancer
Bladder cancer, one of the most predominant cancers of the urinary tract, occurring most frequently in 
males than in females, is found to affect around 430,000 people worldwide annually [151]. PL was found 
to inhibit the proliferation, migration, and invasion of bladder cancer cells in vitro by targeting the F-actin 
reorganization and modulating the ERK and PKC pathways. It further arrested the cell cycle at the G2/M 
phase. The results were also confirmed through in vivo studies where PL was demonstrated to inhibit tumor 
growth and EMT, one of the important hallmarks of cancer [123].

Biliary cancer
Biliary cancer is one of the most aggressive types of neoplasms, with a very high rate of mortality, poor 
prognosis, and low 5-year survival rate [152]. PL was reported to show potent anti-proliferative activity 
against both biliary epithelial tumor cells and gallbladder carcinoma cells in vitro via arresting the cell cycle 
at the G2/M and G0/G1 phase, respectively. Further, PL induced apoptosis and autophagy in biliary cancer 
cell lines, which could be attributed to the modulation of the ROS-activated ERK pathway [112].

Another rare type of biliary cancer, CCA, often results in poor diagnosis and prognosis [59, 153]. Studies 
assessing the efficacy of PL treatment on CCA cell lines have revealed that this compound induced cell 
cycle arrest at G2/M phase and apoptosis by regulating the expression of different pro- and anti-apoptotic 
proteins [113]. In addition, this compound increased the levels of intracellular ROS and imparted ROS-
depended cell death via stimulation of JNK and ERK levels. Further, the suppression of proteasome activity by 
PL was also suggested to be responsible for inducing apoptosis [113].

Breast cancer
Breast cancer is one of the most prevalent cancers worldwide and constitutes the major cause of cancer-
related mortality in females [154-156]. Studies over the years [90, 92, 100, 116, 117, 120, 121, 125, 126] 
have demonstrated that PL regulated the major processes leading to the development and progression of 
breast cancer, including cell proliferation, growth, invasion, migration, metastasis, and EMT. An in vitro study 
has demonstrated that PL treatment induced apoptosis and autophagy in breast cancer cells via modulating 
the downstream components of the Akt/mTOR signaling pathway [90]. Another study reported that PL 
suppresses TGF-β induced migration, invasion, and EMT in breast cancer cells by reversing the effects of 
TGF-β on the EMT-related protein E-cadherin and modulating the expressions of Snail1 and Twist1 [121]. 
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Additionally, PL was found to inhibit proliferation and induce apoptosis in breast cancer cells by modulating 
the expressions of critical proteins such as topoisomerase II, p53, p21, Bcl-2, Bax, cytochrome c (Cyt C), 
caspase-3, caspase-7, and caspase-8 [116]. Additionally, studies have also demonstrated that PL suppressed 
the invasiveness of triple-negative breast cancer cells (TNBC) and inhibited EMT through modulating the 
expressions of key proteins such as MMPs, ZEB1, Slug, and E-cadherin. Further, it enhanced the expression 
of the microRNA, miR-200c, loss of which plays a critical role in tumorigenesis [120, 124]. Furthermore, PL 
was found to target the human epidermal growth factor receptor (HER) family in breast cancer, which plays a 
major role in controlling the intracellular signaling pathways. PL significantly diminished the phosphorylated 
levels of HER1, HER2, and HER3 via increasing the generation of ROS in breast cancer cells [126]. It was also 
demonstrated that ROS dependent cytotoxicity exerted by PL could suppress the expression of IKKβ, which 
resulted in inactivation of the NF-κB signaling pathway and subsequently an upsurge in the levels of p21 
mRNA [100]. Additionally, another study reported that PL suppressed SETDB1, which induced the level of 
caspase-9 dependent-PARP cleavage leading to apoptosis in MCF7 cells. In addition, PL also enhanced the 
transcriptional activity of FBJ murine osteosarcoma viral oncogene homolog B (FosB), which might also be 
responsible for PL-induced apoptosis [117].

Cervical cancer
Cervical cancer is the fourth most prevalent cancer among women, and it constitutes about 4% of all the 
malignancies [157, 158]. PL was shown to induce apoptosis and inhibit cell viability in cervical cancer 
cell line HeLa. In addition, it was observed that PL upregulated the expression of pro-apoptotic protein 
Bcl-2-like protein 11 (BIM) and significantly inhibited the Akt signaling pathway, thereby leading to the 
dephosphorylation of FOXO3A [92]. However, further in-depth studies are required to establish the role of 
PL in this cancer.

CRC
The incidence of CRC is increasing globally, and it is also estimated that by 2035, the percentage of mortality 
due to CRC will increase by 60-70% [50, 159, 160]. Numerous studies have demonstrated the efficiency of 
PL against CRC both in vitro and in vivo. One such study has reported that PL induced cytotoxicity on CRC 
cells mainly through the suppression of cyclin D1, which was involved in maintaining the tumorigenicity of 
the CRC cells. PL also negatively regulated the Akt and ERK1/2 signaling pathways, thereby suppressing the 
levels of c-Fos in CRC cells. Another in vivo study by the same group has demonstrated that PL significantly 
inhibited the tumor growth in the xenograft mouse model of CRC [93]. Further, a study has also proposed 
that PL inhibited mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) signaling in CRC cells, thereby 
inducing cell death in a dose and time-dependent manner [114]. Further, PL was shown to significantly inhibit 
the proliferation of SW-620 CRC cell lines [116]. Moreover, PL was found to induce apoptosis in CRC cells by 
inhibiting the JNK signaling pathway [133]. In addition, this compound was able to induce cytotoxicity and 
apoptosis in CRC cells without alerting the expressions of Bax, p21, and p53 [131]. PL was also reported to 
induce ROS generation in CRC cells and target the GSH anti-oxidant and TrxR systems. Further, enhanced 
levels of ROS generated by PL led to DNA damage and cell cycle arrest in the CRC cells [129].

The potential of PL was also examined in a DMH/DSS-induced experimental colon cancer model. On PL 
treatment, a significant improvement in weight and food intake of the mice was observed. In addition, cell 
cycle arrest at the G2/M phase and induction of apoptosis were observed, which resulted in the reduction 
of tumor growth. Further, the potential of PL in inhibiting tumor formation was attributed to the inhibition 
of the Ras/PI3K/Akt/mTOR signaling pathway [130]. This compound was also found to suppress tumor 
growth in a nude mouse model and induced the restoration of wild-type p53 function [132]. Additionally, 
administration of PL could significantly alleviate the levels of COX-2, IL-6, β-catenin, and snail, thereby 
attenuating inflammation and tumor progression in azoxymethane (AOM)/DSS-induced mouse model of 
CRC [128]. PL was also found to impart morphological changes and nuclear damage in CRC, which further 
prompted apoptosis and cell death. Apart from this, PL drastically increased the intracellular levels of ROS, 
which also resulted in apoptosis, as evident from the modulation in the expression of numerous proteins such 
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as Bax, Bcl-2, survivin, p53, and p21 associated with the process. Additionally, PL was found to hamper the 
migration potential of the CRC cells [127].

Gastric cancer
Gastric cancer may occur from acute gastritis and is known to be the third prevalent cause of cancer-related 
mortalities worldwide [161-163]. Over the years, the potential of PL against gastric cancer is demonstrated 
with the help of numerous pre-clinical studies. For instance, PL was reported to induce the generation of ROS 
in gastric cancer cells, which resulted in inhibition of cell proliferation and subsequently cell death. Further, 
induction of GADD45α was observed upon PL treatment which led to cell cycle arrest in the G2/M phase [119]. 
It was also suggested that PL might modulate the expression of TrxR1, one of the key anti-oxidant enzymes, 
both in vitro and in vivo, which caused ROS-mediated apoptosis in gastric cancer cells [135]. Moreover, 
another study has proposed the anti-cancer potential of PL might be attributed to its ability to inhibit the 
JAK1,2/STAT3 signaling pathway [109]. Further, PL was found to induce BIM-mediated apoptosis regulated 
by the significant upregulation of the tumor suppressor and transcription factor FOXO3A [92].

Glioma
High-grade glioma (HGG) is the commonest type of brain cancer out of the 120 types, which results in a 
poor prognosis [136, 164]. PL was shown to interact with the levels of ROS-degrading enzyme PRDX4 and 
induce ROS generation in HGG cells, which further led to the induction of endoplasmic reticulum (ER) stress 
and apoptosis [136]. Glioblastoma multiforme (GBM) is the most prevalent and lethal type of glioma with a 
poor 5-year survival rate [59, 136]. A potent analog of PL, (E)-N-(4-fluorobenzyl)-3-(3,4,5-trimethoxyphenyl) 
acrylamide (NFBTA), showed significant anti-cancer activity against GBM cells. In vitro studies on NFBTA 
treated GBM cell line U87MG have also reported that this compound is highly selective towards the cancer 
cells and imparted significant anti-proliferative and apoptotic effects. Further, NFBTA was also involved 
in modulating the expression of the key factors of the oncogenic signaling pathways such as FOS, RAF1, 
NFKB1/1A/2, BRAF, PIK3CA/R1, Tumor protein 53 (TP53), phosphatase and tensin homolog (PTEN), Akt1/2, 
EGFR, dishevelled segment polarity protein 1 (DVL1), and KRAS [134].

Head and neck cancer
Head and neck cancer (HNC) is a frequently occurring malignancy globally is associated with poor 
prognosis [165]. In a pre-clinical study, the effects of a combination of PL and p53-reactivation and induction 
of massive apoptosis-1 (PRIMA-1Met, also known as APR-246) on HNC cells were evaluated. PRIMA-1Met 
is known to reinstate the DNA-binding ability of mutant p53 and restore the wild-type p53 activity. The 
combination was found to significantly induce apoptosis and autophagy in HNC cells and reduce tumor 
growth in animal models and thus could be considered as a novel treatment strategy for HNC [142]. Oral 
cancer, the commonest form of HNC, causes around 128,000 deaths yearly and is one of the most prevalent 
in Southern Asia and the Pacific islands [89, 166]. Several pre-clinical studies have evidenced the potential 
of PL against oral cancer. For instance, an in vitro study has reported that PL helped in suppressing the 
stemness of oral cancer cells, an important property needed for tumor maintenance, by modulating the levels 
of the transcription factors Oct-4, NANOG, SOX2, and CK18. This compound also significantly suppressed 
the critical hallmarks of cancer such as migration, invasion, and EMT, thereby inhibiting tumor growth both 
in vitro and in vivo [144]. In addition, another in vitro study has revealed that PL could also bring about 
senescence via upregulation of p21, which is known to be involved in numerous biological processes, 
including senescence [145].

HCC
HCC stands as the fifth most prevalent type of cancer among males and seventh among females [167, 168]. 
In vitro studies on liver cancer cell lines have reported that upon treatment with PL, the ROS levels increased 
significantly, which exerts anti-proliferative effects on these cells. Further, PL treatment led to ROS-mediated 
apoptosis, G2/M phase cell cycle arrest, and ER stress in the liver cancer cells. Additionally, the effects of PL 
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treatment were also evaluated in in vivo models, where a decrease in the tumor progression was observed. 
The tumor-suppressive role of PL was mainly attributed to its ability to target TrxR1, a key enzyme of the 
anti-oxidant system, which was found to be highly upregulated in the case of liver cancer [64].

Lung cancer
Lung cancer is one of the most commonly occurring cancers and has the highest rate of mortality 
worldwide [168-170]. An in vitro study analyzed the effects of PL in lung cancer cell lines with a modulated 
expression of profilin-1 (PFN1), one of the actin-binding proteins (ABPs), which plays a critical role in the 
regulation of cellular migration. It was observed that PL could significantly exert cytotoxic effects on the 
cancerous cells and its effects were more prominent when the expression of PFN1 was downregulated [143]. 
Another preclinical study on non-small cell lung carcinoma (NSCLC) cells revealed that PL treatment 
decreased the levels of HK2, an enzyme of the glycolysis process which was found to be involved in tumor 
progression. Subsequently, the glycolysis process of the cancerous cells was dysregulated by PL treatment. 
Further, it was put forth that inhibition of Akt phosphorylation by PL was partially responsible for the 
inhibition of glycolysis and induction of apoptosis in lung cancer cells. The results were further validated 
in animal models of lung cancer which presented similar outcomes [94]. Additionally, the efficacy of PL in 
inducing apoptosis and autophagy in both in vitro and in vivo models of lung cancer was attributed to its role 
in suppressing the components of the PI3K/Akt/mTOR signaling pathway [95]. Moreover, PL was shown 
to suppress the activation of Akt in lung cancer cells which further inhibited the expressions of ERK 1/2 
and NF-κB [91].

Another in vitro study has reported that in addition to inducing ROS mediated cytotoxicity in lung cancer 
cells, PL modulated the expressions of the Sp regulated genes such as cyclin D1, EGFR, hepatocyte growth 
factor receptor (HGFR), and survivin and also suppressed the transcription factors Sp1, Sp3, and Sp4 [125]. 
Furthermore, PL was found to act upon the components of the NF-κB signaling pathway and inhibited tumor 
progression both in vitro and in vivo [102]. Also, as observed in breast cancer cells, PL was found to be effective 
in inhibiting TGF-β-induced EMT and invasion in lung cancer cells. This compound exerted similar activity 
by reversing the effects of TGF-β on the EMT-related protein E-cadherin and interrelating the expressions of 
Snail1 and Twist1 [121].

PL was also found to impart cytotoxic effects on NSCLC cells compared to the normal lung cells both alone 
and synergistically when used in combination with another alkaloid, sanguinarine [138]. This compound also 
induced anti-cancer activity by promoting the levels of ROS and 1B-LC3B-II, an essential protein involved in 
autophagy. However, PL in combination with gemcitabine enhanced the cytotoxicity but failed to upregulate 
the levels of ROS and LC3B-II [137].

MM
MM is a malignancy of the B-cells, characterized by an atypical growth and invasion of plasma cells to the 
bone marrow [171, 172]. The potential of PL against MM was investigated by an in vitro study where PL was 
found to exert anti-proliferative and anti-apoptotic effects in MM cells. The anti-apoptotic effects of PL were 
mediated by its ability to modulate the Fas- and mitochondria-dependent pathways. Following PL treatment, 
the expression of Bcl-2 was diminished, and an inclination in the Bax/Bcl-2 ratio was observed. Further, 
activation of the caspase family of proteins was also increased. Moreover, significant inhibition of the STAT3 
signaling pathway was also evidenced after PL treatment [110].

Prostate cancer
Prostate cancer is a very common cancer in men with a high rate of incidence in the Western countries 
as compared to the Asian population [97, 173, 174]. PL was found to significantly inhibit the activation of 
NF-κB and modulate the expressions of NF-κB mediated proteins such as IL-6, IL-8, MMP-9, and intercellular 
adhesion molecule 1 (ICAM-1), thereby suppressing the metastatic potential of the prostate cancer cells [101]. 
In addition, PL was shown to inactivate the Akt/mTOR signaling via ROS generation, which subsequently 
induced cell death and autophagy in prostate cancer cells. The same study also evidenced the inhibition of 
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tumor growth in a mouse model of prostate cancer by both PL alone and in combination with chloroquine [90]. 
Moreover, an in vitro study on PL derivatives demonstrated that one of the derivatives, namely CG-06, could 
suppress the activation of STAT3 by directly binding to it and partly through ROS generation more effectively 
than PL [111].

Pancreatic cancer
Pancreatic cancer is a lethal disease with a poor prognosis [26, 175, 176]. A recent study evaluating the 
effect of PL on pancreatic cancer cells has reported that this compound could induce ferroptosis via ROS 
generation. The study further displayed that the cytotoxic potential of PL against pancreatic cancer cells was 
greatly enhanced when used in combination with cotylenin A, a growth regulator, and the commercial drug 
sulfasalazine [140]. Additionally, Karki et al. [125], who have evaluated the potential of PL in breast and lung 
cancers, have reported that the compound was effective in pancreatic cancer cells as well, mainly through 
the suppression of the Sp transcription factors and their regulated genes. Also, PL was found to inhibit cell 
growth via inducing ROS-mediated DNA damage both in vitro and in vivo models of pancreatic cancer [85]. 
Furthermore, PL suppressed NF-κB activation, and other NF-κB regulated genes including c-myc, cyclin 
D1, Bcl-2, Bcl-xL, survivin, XIAP, VEGF, and MMP-9 in pre-clinical models of pancreatic cancer, which led to 
suppression of cell proliferation and induction apoptosis [115]. Additionally, PL treatment resulted in the 
activation of the JNK signaling pathway and time-dependent activation of ERK signaling in pancreatic cancer 
cells, thereby imparting apoptotic cell death [139].

RCC
RCC is the most common type of kidney tumor, which has a high rate of incidence in men than in 
women [177, 178]. Studies on RCC cells have proved that PL could significantly suppress the Akt/mTOR 
signaling pathway mainly through generating ROS in RCC cells, which subsequently led to cell death and 
inhibition of critical hallmarks associated with tumor initiation and progression [90]. Furthermore, Karki 
et al. [125] have evaluated the potential of PL in inhibiting RCC and reported that this compound suppresses 
the Sp transcription factors and regulated genes. Additionally, PL was shown to inhibit the expression of 
c-Met through ROS-mediated proteasome independent pathway in RCC cells, which subsequently inhibited 
the phosphorylated levels of ERK1/2, STAT3, and Akt. The analogs of PL, namely, PL-fluorophenyl (PL-FPh) 
and PL-Dimer (PL-Di), were further found to impart more prominent anti-tumor effects both in vitro and 
in vivo as compared to the native form of PL [146].

Skin cancer
Skin cancer is the most prevalent cancer type among Caucasians, which can be of two types, namely, 
melanoma and non-melanoma [179, 180]. The potential of PL was evaluated in melanoma cells, where this 
compound was found to induce cytotoxicity in a concentration and time-dependent manner. This compound 
induced ROS generation, which ultimately led to a decline in the mitochondrial membrane potential. Further, 
PL was shown to modulate the expression of p21, p27, caspases-3, Bax/Bcl-2, and JNK, which are the critical 
regulators involved in proliferation, cell apoptotic death, and JNK signaling pathway [141].

Chemosensitizing potential of PL
Chemoresistance stands as the major constraint over using the standard chemotherapeutic agents available 
for cancer [11, 12, 14]. Over the years, several studies have evaluated the potential of PL as a potent and 
affordable anti-cancer drug. PL was found to modulate the key components of the critical signaling pathways 
which are involved in developing chemoresistance in cancer cells. Thus, the recent focus was driven towards 
developing PL as a chemosensitizer which sensitized the cancer cells towards the commercially available 
chemotherapeutics. The following section describes the role of PL in chemosensitizing the cancer cells 
towards some of the essential drugs.
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Cisplatin
Cisplatin is a very common drug that is used in the treatment of many cancer types, including ovarian cancer 
and HNC [181]. However, cisplatin treatment was known to induce chemoresistance in cancer cells. Over 
the years, numerous studies have suggested that cisplatin resistance could arise due to epigenetic changes, 
including lesser accumulation of the platinum compounds in the cells, detoxification by GSH conjugates, 
metallothioneins, and various other antioxidants, rise in the levels of DNA damage repair, changes in the 
status of DNA-methylation, upregulated expression of chaperones, modulation of microRNA expression, 
transcription factors and small GTPases, and dysregulation of the apoptosis and EMT pathway [182]. 
In addition, it was observed that loss or mutation of p53 in HNC is linked to cisplatin resistance due to 
suppression of senescence [183]. However, a recent study showed that PL was able to reduce the cisplatin 
resistance in p53 mutant HNC cells both in vitro and in vivo. In vitro, the combination of PL and cisplatin 
imparted cytotoxicity synergistically and induced ROS generation, and the expression of p53 and p-p53, and 
cleaved PARP, thereby leading to apoptosis. Similar results were obtained in in vivo studies as well, where 
significant apoptotic death and inhibition of tumor growth were observed [149].

Doxorubicin
Doxorubicin, another widely used anti-cancer drug that has been employed for the treatment of a wide variety 
of cancers such as breast, gastric, lung, lymphoma (Hodgkin’s and non-Hodgkin’s), MM, ovarian, sarcoma, 
and thyroid. However, treatment of cancer cells with doxorubicin is known to induce chemoresistance 
through the modulation of different signaling pathways, non-metabolic pathways, and post-translational 
modifications [184, 185]. Numerous reports have suggested that carbonyl reductase 1 (CBR1), which 
results in a declined biotransformation of anthracyclines to lesser active metabolites, might be a key target 
for the chemosensitizing agents. It was reported that when doxorubicin was used in combination with PL, 
the formation of the inactive metabolite doxorubicinol (DOXol) was reduced. Further, molecular modeling 
studies have suggested the interaction between PL and the active sites of CBR1 is similar as reported in 
the case of the previously studied CBR1 inhibitors, which showed potential chemosensitizing effects. 
Additionally, PL was evidenced to suppress chemoresistance of prostate cancer cells and sensitize the cancer 
cells to doxorubicin. When doxorubicin was administered in combination with PL in prostate cancer cells, the 
effect was synergistic, and the treatment induced apoptosis, as evident from the modulated expression of the 
apoptotic proteins such as caspase-3 and PARP. These effects might be attributed to the ability of PL to bind 
with and inhibit CBR1 [148, 186].

5-Fluorouracil
5-Fluorouracil (5-FU) has been in use since 1957 and is still the third most frequently used anti-cancer 
drug for the treatment of solid tumors in the world [187, 188]. It is a very common drug that is used in 
the treatment of oral cancer. However, over the years, studies have evinced that extensive use of the drug 
has led to the development of chemoresistance of oral cancer cells. Studies have shown that high levels of 
CSC markers in cancer cells also result in the development of chemoresistance in cancer cells [189]. PL was 
found to significantly inhibit the stem cell properties in oral cancer cells, which might have contributed to the 
chemosensitizing potential of PL. Thus, PL, when used in combination with 5-FU, helped in enhancing the 
cytotoxic effects by reducing the cell viability and survival of oral cancer cells [144].

Gemcitabine
Gemcitabine is the first-line therapy for pancreatic cancer. However, in the majority of the patients, it induces 
chemoresistance and becomes ineffective due to the activation of the NF-κB pathway, which is predominantly 
implicated in the development of chemoresistance in this cancer [26]. An in vitro study on pancreatic cancer 
cells has evidenced that gemcitabine, when used in combination with PL, imparted more prominent anti-
cancer effects mediated through blockage of NF-κB activation. Furthermore, in in vivo studies, the combined 
treatment was found to be more effective in reducing tumor growth compared to gemcitabine alone [115].
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Oxaliplatin
Oxaliplatin is a platinum-based chemotherapeutic drug that is used for the treatment of various cancers, 
including colorectal and gastric cancers [147, 190]. However, chemoresistance and severe side-effects 
associated with the use of this drug limit its efficacy [191, 192]. TrxR1, a flavoenzyme, is found to be 
overexpressed in various types of cancers and is associated with improved tumor growth and chemoresistance. 
It was observed that PL helped in sensitizing gastric cancer cells towards oxaliplatin mainly by enhancing the 
generation of ROS via suppressing the activation of TrxR1, thereby inducing apoptosis. This combination also 
resulted in the activation of the p38 and JNK cell signaling pathways in vitro and in vivo [147].

PTX
PTX or taxol is one of the widely used anti-cancer drugs used commonly for the treatment of breast, lung, and 
ovarian cancers, etc. [193]. Though the drug is found to be very effective, extensive use of it was often found to 
result in chemoresistance of cancer cells. However, the exact mechanism of PTX associated chemoresistance 
is still not precise [194]. A recent study showed that PL sensitized intestinal cancer cells to PTX by effectively 
inhibiting the proliferation of the cancer cells. Additionally, it was elucidated that PL might have activated the 
SMAD4 pathway, thereby improving the chemotherapeutic effect of the cancer cells by stimulating p21 and 
its downstream pathways resulting in apoptosis [127].

Radiosensitizing potential of PL
Radiotherapy is a widely used treatment modality for cancer patients and is considered to have an added 
advantage due to its localized application. However, over the years, the development of radioresistance due to 
alterations in the signaling pathways associated with radiosensitivity, tumor heterogeneity and cancer stem 
cells have limited the use of radiotherapy and resulted in poor prognosis in the patients [195]. Therefore, 
the application of radiosensitizers was found to be an effective method for improving the radiosensitivity of 
cancer cells and minimizing the adverse effects of radiotherapy on the adjacent normal cells [196].

Small molecule radiosensitizers, including oxygen, active phytochemicals, hypoxia-specific cytotoxins, 
and agents, modulate the cell signal pathways involved in radioresistance [197]. Oxygen is considered 
to be a potential radiosensitizer as the hypoxic tumor microenvironment is one of the major obstacles 
of radiotherapy. Administration of oxygen leads to the formation of peroxide in the hypoxic tumor 
microenvironment resulting in permanent cellular and DNA damage [198]. Additionally, nonmetallic 
nanomaterials such as carbon nanotubes and selenium nanoparticles also enhance the radiosensitivity of 
cancer cells via ROS activation and cellular DNA damage [197]. In this context, PL was reported to show 
similar effects in breast cancer cells. It was found that when PL was used even at a very low concentration 
of 2.5 μmol/L in combination with X-ray radiation (6 Gy), the level of radiation-induced generation of ROS 
in cancer cells was improved, and the rate of apoptosis was also enhanced [199]. PL (0-15 μM) was further 
reported to enhance the radiosensitivity of CRC cells mediated via ROS production, where the radio response 
of the cancer cells was improved in a concentration-dependent manner. Additionally, in animal models, 
tumor growth was delayed when PL (2.4 mg/kg) was administered in combination with a single (8 Gy) and 
fractionated radiations (3 Gy × 3) [129].

RAD001, an inhibitor of mTOR, is an important radiosensitizer used in traditional medical 
radiotherapy [200]. A study had reported that when oral cancer cells SCC4 and SCC25 were exposed to 
radiation (0-8 Gy) in combination RAD001 (30 or 300 nM for 1 h), radiosensitivity of the cells increased 
significantly in 14 days [200]. Interestingly, in a study, oral cancer cell lines SAS and CGHNC8 were subjected 
to PL, radiation, and a combination of both, and after 5-7 days, it was observed that the radiation sensitivity 
of the cells treated with the combination was enhanced by 47.5% and 25.63%, respectively [144]. Thus, it 
is evident that when used in combination with PL, very low intensity of radiation is found to be effective in 
cancer cells which is extremely important because radiation therapy is associated with numerous side effects 
such as mutation, alopecia, myelosuppression, etc. Further, PL attenuated the mRNA levels of the cancer stem 
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cells associated markers such as SOX2, NANOG, and Oct-4, ultimately inhibiting cancer stem cell properties 
which is one of the major obstacles to radiation therapy [144].

Lately, research has been focused on exploring the radiosensitizing efficiency of phytochemicals, such as 
curcumin, and resveratrol. For instance, the radiosensitizing activity of curcumin and resveratrol was found 
to be associated with the modulation of the transcription factor, NF-κB, which is known to be involved in the 
radioresistance of cancer cells [201, 202]. Another study evaluating the radiosensitization activity of curcumin 
on in vivo model of CRC reported that when curcumin (1 g/kg; twice daily) was administered in combination 
with radiation (4 Gy, twice weekly; given 1 h after curcumin), the tumor size is reduced significantly. In 
this study, the chemosensitizing potential was also attributed to its ability to inhibit the NF-κB signaling 
pathway [203]. Similarly, BKM120 (0.25-1 μM) and BEZ235 (0-10 nM) enhance the radiosensitivity of cancer 
cells by targeting the PI3K-Akt/mTOR pathway [204, 205]. Multiple lines of evidence have suggested that PL 
treatment significantly modulated the NF-κB and PI3K/Akt/mTOR signaling pathway in different types of 
cancers, which provides a hint to explore more regarding the radiosensitizing potential of PL.

Pharmacokinetics and bioavailability of PL
PL is a hydrophobic drug and thereby exhibits very poor solubility in water. Therefore, despite its immense 
potential as an anti-cancer drug, its low solubility decreases bioavailability and limits its therapeutic 
efficacy [206, 207]. However, the co-administration of PL with docetaxel enhanced the bioavailability of 
docetaxel in Sprague-Dawley rats by 1.68-fold, thus acting as a bio enhancer [208]. A study reported that 
the plasma concentrations of PL, post-administration (50 mg/kg) in rats, were found to be 1511.9 ng/mL, 
418.2 ng/mL, and 41.9 ng/mL PL at 30 min, 3 h, and 24 h, respectively [209]. Due to the low bioavailability 
of PL, the development of novel drug delivery systems is essential for the enhancement of effectiveness in 
vivo [210]. Drug carriers, such as hydrogels, liposomes, microspheres, and nanoparticles, are efficient means 
of improving the solubility, cellular uptake, and bioavailability of a drug. In addition, these drug delivery 
systems are also associated with tumor-targeted drug release [207].

Chitosan is a biocompatible natural polymer, and chitosan-based nanoparticles are a safe and efficient 
drug delivery system. A study showed that PL encapsulated chitosan-based nanoparticles exhibited a high 
potential for tumor-targeted drug release and showed cytotoxicity against gastric cancer cells by increasing 
the intracellular ROS. Moreover, it increased the solubility and bioavailability of PL [207]. Another study 
reported that the encapsulation of PL in chitosan- and fucoidan-based nanoparticles also enhanced its 
bioavailability and solubility. Furthermore, these nanoparticles induced cytotoxicity against prostate cancer 
cells by inducing oxidative stress via the excessive formation of ROS [211]. Nanoemulsions are also known to 
enhance the stability, solubility, and bioavailability of a drug. Pharmacokinetic analysis showed that the orally 
administered PL-loaded nanoemulsion was rapidly absorbed and slowly eliminated compared to the pure 
form of the drug. This improved the oral bioavailability of the PL-loaded nanoemulsion by approximately 
1.5-fold as compared to the pure form. However, a study showed that the bioavailability of PL following oral 
administration at 5 mg/kg and 10 mg/kg were 76.39% and 50.08%, respectively [61]. Hence, further studies 
need to be undertaken in order to elucidate the pharmacokinetic profile of this pleiotropic natural compound.

Toxicity profile of PL
Analysis of the toxicity profile of a compound is a pre-requisite for developing it as an anti-cancer drug. The 
non-toxic nature of PL is evidenced by a number of pre-clinical studies. For instance, a study evaluating the 
effect of paclitaxel and PL nanoformulation on a xenograft model of HCC has evidenced that the combination 
diminished the toxicity imparted by the native form of the drugs on the adjacent tissues of the tumor [212]. 
Additionally, the effect of PL on the normal function of the kidney and liver was evaluated by assessing the 
serum levels of alanine aminotransferase (ALT), urea, aspartate aminotransferase (AST), and creatinine. It 
was observed that PL reversed the levels of these enzymes, which was shown to be escalated with DMH + DSS 
treatment, thus showing that PL does not have any adverse effect on the normal functioning of the liver and 
kidney. Also, on investigating liver sections, no significant alterations were found, thus confirming that PL 
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is not associated with hepatotoxicity [130]. Also, another study showed that though PL exerted significant 
cytotoxicity on lung cancer cells, it did not hamper the growth of normal lung epithelial cells [138]. Further, 
toxicological studies also revealed that the oral administration of a PL-nanoemulsion did not exhibit any 
toxicity in mice for 60 days. However, PL loaded nanoemulsions (10 mg/kg) induced potent anti-tumor 
activity against the in vivo xenograft model of melanoma [206].

Conclusion and future prospects
PL, the amide alkaloid isolated from the roots and fruits of long pepper, is a potential compound for the 
prevention and treatment of many different cancers. Since the discovery of its structure in 1968, many 
researchers have been successful in isolating and synthesizing the compound in laboratories following 
different approaches from the commercially available precursors. A wide variety of PL derivatives such 
as L50377 have also been synthesized, mainly exploiting the anti-cancer property exhibiting moiety 
3,4,5-trimethoxybenzyl present in PL. PL is also combined with metal complexes such as [RuCl2(N-N) 
(P-P)] and 1,4-bis(diphenylphosphino)butane, PtCl2(PPh3)2, cis-[PtCl(PIP-OH)(PPh3)2]PF6 to enhance its 
therapeutic effects.

PL and its derivatives were reported to exhibit diverse biological activities, including anti-arthritic, 
anti-asthmatic, anti-diabetic, anti-epileptic, anti-inflammatory, anti-microbial, anti-oxidant, anti-stress, anti-
tumor, anti-ulcer, and immunomodulatory activities, which encouraged researchers to explore more about 
the pharmacological effects of this compound. The anti-cancer property of PL against different types of 
cancers has been studied in detail in in vitro and in vivo settings. The ability of PL to modulate the important 
cell signaling pathways such as PI3K/Akt/ mTOR, NF-κB, JAK/ STAT3, and ERK suggests that this compound 
is effective in modulating the important hallmarks of cancer, including cell survival, proliferation, invasion, 
migration, EMT, metastases, and angiogenesis. The multi-targeted and pleiotropic nature of PL suggested that 
it might also be able to regulate complex phenomena such as chemoresistance and radioresistance, which are 
the major hindrances towards the current treatment modalities. Further, researchers must focus on exploring 
the effects of PL in different experimental models for a particular cancer type and in conducting more studies 
in ex vivo and clinical settings.

Recently, the focus was driven towards developing PL as a chemosensitizer and radiosensitizer which 
sensitized the cancer cells towards the commercially available chemotherapeutics including cisplatin, 
doxorubicin, 5-FU, gemcitabine, oxaliplatin, and PTX, and ionization/X-ray radiation. PL was found to 
sensitize the cancer cells to chemotherapeutics and radiation by acting on the cell signaling pathways and 
genes associated with chemo and radioresistance, inhibiting the biotransformation of the drugs into less 
active metabolites, and suppressing the properties of cancer stem cells. It was also reported that PL exhibited 
anti-cancer effects at a very low concentration which tends to reduce the chances of toxicity of the adjacent 
normal cells, organs, and adverse side-effects. In fact, PL was reported to impart hepatoprotective and 
cardioprotective effects. Therefore, this compound might be used as an adjuvant in combination with the 
standard chemotherapeutics to relieve the side effects caused by them to some extent.

The main hindrance towards developing PL as a standard chemotherapeutic is its hydrophobic nature 
contributing to its low bioavailability. However, studies have evidenced that PL enhanced the bioavailability 
of docetaxel when used in combination and thus acted as a bio enhancer. Therefore, drug carriers, such 
as hydrogels, liposomes, microspheres, and nanoparticles formulations can be adapted for enhancing the 
bioavailability of PL. It was also found that PL-loaded nanoemulsion showed a better pharmacokinetic profile 
compared to the pure form of this drug.

Although PL has shown immense potential in the prevention and treatment of different types of cancers; 
however, some studies must be conducted as a pre-requisite to validate the pre-clinical studies and developing 
it as a clinical chemotherapeutic drug are mentioned below:

• The chemopreventive effects of PL should be evaluated in different experimental models of a particular 
cancer type.

• Cytotoxicity studies of the compound in different organs should be conducted.
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• Molecular markers should be developed to determine the efficacy of PL in randomized multicentered 
clinical trials.

• The bioavailability of PL and its metabolic and toxicity profile should be studied in detail in humans.
• Effective bioformulations of PL that are designed for sustained release should be developed.
Hence, proper attention should be given to conducting such studies of this compound to develop it 

as a potential anti-cancer drug. Further, it is worth mentioning that the safe nature of PL strengthens the 
evaluation of the therapeutic effects of this drug in clinical trials in the future.
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PL: piperlongumine
PTX: paclitaxel
RCC: renal cell carcinoma
ROS: reactive oxygen species
SOX2: sex determining region Y-box 2
Sp: specificity protein
STAT3: signal transducer and activator of transcription 3
TGF-β: transforming growth factor-beta
TrxR: thioredoxin reductase
VEGF: vascular endothelial growth factor
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