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Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly 
of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations 
and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. 
Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations 
potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review 
highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal 
polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of 
cytoskeletal function.
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Introduction
Cytoskeletal proteins form the backbone of the different types of structural polymers found in every 
eukaryotic cell. Such polymers include microfilaments (MF), mini-filaments, microtubules (MT) and 
intermediate filaments (IF). Each polymer has a relatively homogeneous composition. Monomeric 
cytoskeletal proteins bind in a head-to-tail manner to form long chains of different geometries and biophysical 
properties. These monomers include actin (which forms MF), myosin (mini-filaments), tubulin (MT), and 
various families of IF proteins, including keratins, desmins, glial fibrillary acidic protein (GFAP), peripherin, 
vimentin, internexins, nestins and others (reviewed in [1]). MFs and mini-filaments enable cells to adapt to 
their surroundings. They exert several roles in cell division and support cell migration in physiological and 
pathological contexts, for example during invasion and metastasis. MTs are essential as they form the physical 
scaffold that mediates an even separation of genetic material during cell division, but they play limited roles 
in cell migration. IFs confer mechanical resistance to the cells.
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Like every protein in the eukaryotic proteome, cytoskeletal proteins are substrates of diverse protein 
kinases. Phosphorylation changes their interactive and dynamic properties with respect to their non-
phosphorylated forms. In the specific case of cytoskeletal proteins, phosphorylation controls their assembly 
and disassembly affinity and dynamics, as well as the biochemical and biophysical properties of the polymers 
themselves. Phosphorylation also modulates their interactome, which also affects the stability and function 
of the polymers.

Genetic modifications affecting protein kinases are very frequent in cancer [2]. The most typical are 
mutations or deletions that cause loss of function or increased catalysis [3]. These two outcomes also 
emerge when portions of kinases become fused with incorrect pieces of DNA as part of genomic cancer 
recombination, leading to abnormal activation. One example is the Philadelphia translocation, which is 
typical of chronic myeloid leukemia (CML) cells. It consists of a reciprocal translocation between parts of 
human chromosomes 9 and 22 that leads to the production of a constitutively active Abelson kinase (BCR-
ABL), which triggers uncontrolled proliferation by phosphorylating multiple substrates [4]. On the other 
hand, activating mutations may lead to unexpected effects on the different cytoskeletal systems. For example, 
mutations to the small GTPase RhoA may lead to increased activation of proteins that control mini-filament 
formation [5]. These events disturb the delicate balance of MFs and mini-filament dynamics that enable cells 
to maintain their form and function in the context of the host tissue.

These and other examples found in the latter sections of the present work highlight the fact that 
alterations of the phosphorylation of cytoskeletal proteins caused by cancer-related mutations may change 
the dynamics, architecture, and function of the different cytoskeletal polymers. These events cause aberrant 
molecular behaviors that may confer specific properties to cancer cells, e.g., increased cell migration, invasion, 
division, mechanosensing, etc.

The study of these modifications is complicated by the existence of multiple isoforms of these proteins, 
some of which have non-overlapping functions. There are many isoforms of actin, tubulin and myosin, and 
multiple forms and variants of IF. How phosphorylation impacts every isoform of every cytoskeletal protein 
is not only impossible to describe, but mostly unknown. Because of this, we describe only the current state 
of the art regarding the phosphorylation of selected isoforms of actin, myosin II, tubulin and vimentin. We 
focus on the functional effect of these phosphorylations, and what the consequences would be if the extent of 
these phosphorylations was altered in the context of cancer progression. While phosphorylation has proven 
crucial for the function of some of these filament-forming polymers, e.g., myosin II, the function of many of the 
phosphorylations described here is still unexplored. Thus, a major goal of this work is to provide a wide, yet 
incomplete, perspective of the field, identifying potential hotspots that may be amenable to specific targeting 
to treat diverse forms of cancer.

Actin
Actin forms MFs by adenosine triphosphate (ATP)-dependent polymerization. Together with myosin II mini-
filaments, MFs constitute the contractile apparatus of animal cells. A vast array of nucleators, cross-linkers 
and other binding partners regulate multiple aspects of its ability to form filaments and the multiple cellular 
functions they enable [6, 7].

There are multiple isoforms of actin, including muscle-specific and non-muscle [8]. Due to its abundance, 
ubiquity and high degree of homology among isoforms (Figure 1), we focus on cytoplasmic, β-actin. Human 
β-actin (ACTB gene; Uniprot #P60709) is located in chromosome 7p22.1 in humans. β-actin forms MFs in 
every non-muscle cell lineage, mediating protrusion, assembly of contractile structures and other motility-
related structures, e.g., podosomes [9]. Somatic mutations of the ACTB gene associated to cancer have not 
been reported. However, the filamentous state of actin is a checkpoint for cell proliferation that is deregulated 
in several types of cancer [10]. Although the effect of actin phosphorylation in MF dynamics has yet to be 
studied in detail, some phosphorylation events have been described that potentially affect actin filamentation 
and/or disassembly (see Table 1 for a list). For example, serine (Ser)33 appears phosphorylated in multiple 
phospho-proteomic analyses, including diverse types of cancer cells that include human epidermal growth 
factor receptor 2 (HER2)-positive, luminal A and triple negative breast cancer [2, 11] and lung cancer 
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(http://phosphosite.org, search term = ACTB, Ser33). Its phosphorylation lies downstream of polo-like 
kinase 1 (PLK1) since the specific inhibitor BI 4834 abrogates it [12]. Although it is unclear whether PLK1 
directly phosphorylates β-actin in Ser33, the crucial role of this kinase in cancer cell division [13] suggests 
that PLK1-dependent actin phosphorylation may control actin function (by controlling actin polymerization 
and/or cross-linking) in cancer cell proliferation.

Another potentially important residue is Tyr53. It is conserved from Dictyostelium discoideum to humans. 
It resides in the D-loop of actin [14], which is essential for actin polymerization [15]. Tyr53 phosphorylation 
decreases the affinity of actin monomers for each other, causing filament shortening [16]. This mechanism 
is critically important in the central nervous system. During synaptogenesis, Tyr53 phosphorylation 
increased actin turnover [17]. Although the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 
inhibits its phosphorylation (and that of Tyr362, of unknown function), it is unlikely that this kinase, which 
phosphorylates Ser/threonine 18 (Thr), directly phosphorylates Tyr53 (or Tyr362). However, MEK control, 
directly or indirectly, some potential Tyr kinases that may phosphorylate Tyr53 (and/or Tyr362). For example, 
extracellular signal-regulated kinase (ERK), the canonical target of MEK [18], can phosphorylate and activate 
RhoA [19], which increases focal adhesion maturation [20]. In this manner, ERK would increase Src activation 
by recruiting it to focal adhesions. However, active Src does not remain in focal adhesions, but propagates 
rapidly [21]. Based on these data, a possible model emerges in which Src is activated at focal adhesions in a 
MEK/ERK-dependent manner. Active Src would diffuse from focal adhesions and phosphorylate filamentous 
actin in Tyr53. This could destabilize MFs, thereby decreasing its assembly in contractile actomyosin bundles 
associated to focal adhesions. According to the actin treadmilling model [7], monomeric actin would eventually 
undergo Tyr53 dephosphorylation to be reused by the cell to form other structures, e.g., lamellipodia or 
podosomes/invadopodia in less contractile/more protrusive regions. In this regard, Src overexpression 
promotes invadopodia [22] which, similar to podosomes, appear in regions in which actomyosin bundles 
are scarce. Importantly, Tyr53 also appears nitrated [23], which accelerated filament elongation, promoting 
the formation of disorganized F-actin aggregates, which may be very important for actin dynamics in highly 
oxidative contexts, e.g., in lung cancer [24].

Finally, actin phosphorylation in Tyr91 has been observed in multiple types of cancer, including diverse 
subtypes of breast cancer [2], colorectal carcinoma [25], lung cancer [26] and diverse types of leukemia 
(http://phosphosite.org, search term = ACTB, Tyr91). Tyr91 phosphorylation was modestly affected by 
treatment of non-small cell lung cancer cells with the EGFR inhibitor erlotinib [27]. However, the effect of this 
phosphorylation in the regulation of the actin cytoskeleton in cancer cells has yet to be addressed, although 
it could be related to its ability to polymerize and/or form filaments. Similar to Tyr53, Tyr91 also appears 
nitrated in vivo [23], with potential implications in the regulation of actin dynamics by the oxidative state of 
the cell.

Figure 1. Homology between human actin isoforms

Table 1. Main human β-actin phosphorylation sites

Gene Site Putative kinase Discovered by/inhibitor Effect References
ACTB Ser33 PLK1 BI_4834 Probably mitosis [12]

Tyr53 Src Biochemical assays, targeted mutation MF disassembly [16, 17]
Tyr91 EGFR erlotinib not known [27]

EGFR: epidermal growth factor receptor; Tyr: Tyrosine
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Non-muscle myosin II
Functionally, non-muscle myosin II (NMII) is a hexameric molecular motor made of different combinations 
of genes. It always comprises two heavy chains [myosin heavy chain II (MHCII)] and four light chains, two 
regulatory (RLC) and two structural (essential, ELC). There are three genes that encode MHCII isoforms: 
MYH9 (Uniprot #P35579, human chromosome 22q12.3), MYH10 (Uniprot #P35580, human chromosome 
17p13.1) and MYH14 (Uniprot #Q7Z406, human chromosome 19q13.33); three genes that encode RLC: 
MYL9 (Uniprot #P24844, human chromosome 20q11.23), MYL12A (Uniprot #P19105, human chromosome 
18p11.31) and MYL12B (Uniprot #O14950, human chromosome 18p11.31); and one gene that encodes ELC, 
MYL6 (Uniprot #P60660, human chromosome 12q13.2). The typical structure of NMII involves MHCII from 
the same gene forming a central homodimer (they do not heterodimerize). Each heavy chain contains two 
tandem IQ motifs that bind to ELC and RLC. These binding sites define the “neck” of the hexamer, which is 
flexible and enables the conformational movement that generates mechanical work upon ATP hydrolysis 
when the hexamer is bound to actin [28]. Actin binding and ATPase activities lie upstream of the neck in a 
≈ 800 amino acid long globular head domain. Downstream of the neck, both heavy chains display a ≈ 1,000 
amino acid long coiled-coil domain that supports dimerization. The C-terminus of the heavy chains ends in a 
non-helical domain of variable length that controls the oligomerization of the hexamer into larger order units 
termed mini-filaments (the name has a historic connotation based on electron microscopy (EM) visualization 
of thick and thin bands in muscle sarcomeres, which are made of myosin II and actin, respectively).

Whereas binding to calcium-sensitive proteins controls muscle myosin II function, NMII is largely 
controlled by phosphorylation. In fact, RLC phosphorylation is essential for the conformational extension 
that is required for NMII hexamers to form mini-filaments [29]. Likewise, phosphorylations in the 
coiled coil domain controls dimerization; and those in the non-helical tailpiece (NHT) domain regulate 
oligomerization [30]. Phosphorylations of the globular domain of the heavy chain are less characterized. In 
Table 2, it summarizes the phosphorylations affecting the different chains of the NMII hexamer, including 
phosphorylations of RLC (MYL9/12) that modulate its function as well as that of the entire NMII hexamer; 
those of ELC (MYL6); as well as of the three genes of MHCII (MYH9/10/14).

Table 2. Main human NMII (RLC, ELC and MHCII-A, B, C) phosphorylation sites

Gene Site Putative kinase Discovered by/inhibitor Effect References
MYL9/
MYL12

Ser1/2 PKCα Targeted mutation Inhibits ATPase activity [32, 33]
Thr18 CITK, ZIPK, 

ROCK1/2
Targeted mutation, 
biochemical assays

Synergizes with pSer19 to 
stabilize conformation and boost 
ATPase activity

[38, 109]

Ser19 MLCK, MRCK, 
CITK, ZIPK, 
ROCK1/2

ML-7, dominant negatives, 
Y-27632, siRNA

Conformational extension and 
increased ATPase activity

[35, 110]

Tyr155 EGFR Targeted mutation, 
cetuximab

Inhibited NMII assembly [37]

MYL6 Tyr29 not known not known Carcinoma progression [111]
Tyr89 EGFR? Genfitinib not known [41]

MYH9 Tyr158 Src siRNA Decreases listeria infection [112]
Thr1800, 
Ser1803, Ser1808

TRPM6/7 Biochemical assays Decreases filament stability [43]

Ser1916 PKCβ Go6976 Decreases filament stability, 
increases Mts1 binding

[45]

Ser1943 CK-II Targeted mutation Decreases filament formation [47]
MYH10 Ser1810, Thr1815 TRPM6/7 Biochemical assays Decreases filament stability [43]

Ser1935 PKCζ Targeted mutation, PKCζ 
pseudosubstrate

Impairs filament stability and cell 
polarity

[49]

Ser1937 PKCζ Biochemical assays, siRNA Impairs filament stability [48]
MYH14 Thr1832/1838 TRPM6/7 Biochemical assays Decreases filament stability [43]
PKCs: protein kinase C; ROCK: RhoA-coiled coil kinase; MLCK: myosin light chain kinase; CITK: citron kinase; MRCK: 
myotonic dystrophy kinase-related; ZIPK: zipper-interacting protein kinase; siRNA: small interfering RNA; TRPM6/7: transient 
receptor potential melastatin 6/7
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RLC is the most important regulatory hotspot of myosin II by phosphorylation. Several residues have 
been described, including Ser1/2. Their phosphorylation inhibits NMII function, as they decrease ATP 
catalysis on the NMII hexamer head [31]. Although they control NMII function in response to growth factors 
downstream of conventional PKCs [32, 33], their mutation to a non-phosphorylatable version does not 
prevent cell division [34].

Conversely, Ser19 phosphorylation mediates the conversion of folded, assembly incompetent into 
extended, assembly competent NMII hexamers. Extended hexamers whose RLC is phosphorylated in 
Ser19 immediately form bipolar filaments that grow by lateral association, as outlined below [29]. Ser19 
phosphorylation also increases ATP catalysis in the associated MHCII [35, 36]. On the other hand, Thr18 only 
appears phosphorylated if Ser19 is also phosphorylated [37]. Based on its in vitro effect boosting ATP catalysis 
of the bound MHCII, Thr18 is considered a synergy site with Ser19. It also has increases the half-life of NMII 
mini-filaments, which is essential during cell migration [38]. Several kinases induce these phosphorylations, 
including ROCK, MLCK, CITK, MRCK and ZIPK/death-associated protein kinase 3 (DAPK3) [30].

Very recently, we have identified Tyr155 phosphorylation downstream of EGFR. However, this 
phosphorylation only occurs when RLC is not bound to NMII. Tyr155 phosphorylation prevents the association 
of RLC with NMII, thus de facto decreasing the amount of NMII available to form filaments [37].

On the other hand, the role of ELC phosphorylation in cellular physiology or NMII function remains 
practically unexplored. Tyr29 appears more phosphorylated in many types of cancer, but the kinase remains 
unidentified [39]. Conversely, Tyr89 phosphorylation is dependent of EGFR III [40] and its phosphorylation 
is inhibited in cells treated with the EGFR inhibitor gefitinib [41]. However, whether this phosphorylation 
decreases NMII assembly is unknown, and currently under investigation in our lab.

Regarding the heavy chains, there are isoform-specific differences regarding heavy chain phosphorylation 
that have potential effects on diverse types of filaments depending on their molecular composition. In 
general, head domain phosphorylations have the potential to control actin binding and ATPase activity of 
myosin II. However, this has been poorly explored. Conversely, phosphorylations of the coiled coil domains of 
MHCII-A/B/C are better characterized. These regions are important for dimerization, and phosphorylation 
has been shown to decrease the stability of the hexamers and hinders their lateral association with other 
hexamers to form filaments. This revealed that lateral interactions are highly dependent on the net charge 
of the interacting regions [42]. Phosphorylation of Thr1800, Ser1803 and Ser1808 in MHCII-A, Ser1810 
and Thr1815 in MHCII-B and Thr1832/Ser1838 in MHCII-C decrease the formation of filaments of the 
corresponding isoform [43]. The kinases that regulate most of these phosphorylations are α-kinases, for 
example TRPM6/7 [43]. However, how theses kinases distinguish between isoforms is unclear.

Finally, phosphorylations at the end of the coiled-coil or into the NHT domain of MHCII decrease mini-
filament formation. One such residue is Ser1916 in MHCII-A. Its phosphorylation by PKCβ reduces filament 
stability [44, 45] as it increases NMII-A interaction with Mts1/S100A4, which forces NMII-A to stay in an 
assembly-incompetent conformation [46]. Phosphorylation of Ser1943 in MHCII-A has this effect. Casein 
kinase (CK)-II phosphorylates MHCII-A in Ser1943, promoting NMII-A filament disassembly [47]. In 
MHCII-B, Ser1935 and Ser1937 (MHCII-B) are phosphorylated by PKCζ [48, 49], but they have a similar 
effect. Importantly, and because NMII-B filaments are more stable than those made of NMII-A, these 
phosphorylations impair cell polarity and migration [49].

Tubulin
There are three isoforms of tubulin, each one including several variants. For the sake of brevity, and due 
to the grouped homology among them (Figure 2 and Table S1), we focus on α1-tubulin, encoded by the 
gene TUBA1A (Uniprot #Q71U36, human chromosome 12q13.12), β1-tubulin, encoded by the gene TUBB1 
(Uniprot #Q9H4B7, human chromosome 20q13.32) and γ1-tubulin, encoded by the gene TUBG1 (Uniprot 
#P23258, human chromosome 17q21.2). α- and β-tubulins are the major components of polymeric MTs. 
γ-tubulin is mainly present at the centrosome [also known as MT-organizing center, (MTOC)], nucleating 
polymerization by forming the γ-tubulin ring complex (γTuRC). This complex acts as a template for α/β 

https://doi.org/10.37349/etat.2021.00047


Explor Target Antitumor Ther. 2021;2:292-308 | https://doi.org/10.37349/etat.2021.00047 Page 297

monomer incorporation [50]. Phosphorylations affecting these subunits are summarized in Table 3, but their 
effects in tubulin dynamics are very poorly characterized, particularly in cancer. A few significant residues 
include Ser48 (and Ser75 of β-tubulin). These are likely Aurora kinase sites, as two independent Aurora 
kinase (AURK) inhibitors reduce their phosphorylation levels [51]. Due to the key role of AURK in cancer [52], 
it will be extremely interesting to study whether these sites are involved in the potential regulation of MT 
dynamics. In this regard, Aurora kinase A (AURKA) inhibition inhibits osteosarcoma cell division by preventing 
MT stabilization to form the mitotic spindle [53].

On the other hand, tubulin phosphorylation in Ser165 by PKCα increases MT dynamics, cell motility 
and acquisition of a mesenchymal phenotype characterized by expression of neural (N)-cadherin [54]. 
This strongly suggests that this phosphorylation could be a key event in the acquisition of mesenchymal 
phenotypes, which is a typical event during the transition of tumors from non-invasive to invasive states.

Finally, phosphorylation of centrosomal γ-tubulin in Ser131/385 is mediated by SadB. This 
phosphorylation is involved in centrosome duplication during mitosis, a key event during cell division. A 
phospho-mimetic form induces spontaneous centrosome duplication, whereas a non-phosphorylatable 
mutant impairs centrosome duplication [55]. SadB also phosphorylates γ-tubulin in Ser385, regulating 
S-phase progression by moderating the activities of E2 promoter-binding factors. When phosphorylated by 
SadB in this amino acid, γ-tubulin increases its nuclear localization [56].

Vimentin
Vimentin (UniProt # P08670) is located on human chromosome 10p13. Vimentin forms very stable IF. 
Unlike actin, myosin and tubulin, IFs are not very dynamic, but they endow cells with structural stability. 
Importantly, vimentin is an IF typical of mesenchymal and hematopoietic cells, and a signature gene of the 
epithelial-mesenchymal transition (EMT) [57]. As such, it is a marker of cells that evolve into mesenchymal 
phenotypes, acquiring migratory capability as tumors become invasive. The development of cancer affects 
this protein, including epigenomic alterations [58, 59] and somatic mutations in squamous lung cancer [60], 
gastric adenocarcinoma [61], and other types of cancer.

Vimentin undergoes extensive phosphorylation, which potentially controls its cellular function. The best 
characterized phospho-residues are grouped in the non-helical N-terminus domain [62] (see Table 4). Some 
crucial residues include Ser5, Ser7, Ser8, Ser9 and Ser10, which are phosphorylated by PKCα [63]. Since 
phosphorylation of these residues control leukocyte transmigration downstream of phosphatidyl inositol 
3-kinase, isoform γ (PI3Kγ) [64], it is possible that they also control CTC extravasation, which tends to mimic 

Figure 2. Grouped homology among human tubulin isoforms. Range shown in the homology of an isoform with itself refers to the 
minimal and maximal homology among sub-isoforms (see Table S1 for full details)

Table 3. Main human tubulin phosphorylation sites

Gene Site Putative kinase Discovered by/inhibitor Effect Reference
TUBA Ser48 AURK AZD1152, ZM447439 Not known [51]

Ser165 PKCα bisindolylmaleimide EMT [54]
TUBB Ser75 AURK AZD1152, ZM447439 Not known [51]
TUBG Ser131 SadB Targeted mutation Centrosome duplication [55]

Ser385 SadB Targeted mutation Promotes γ-tubulin interaction with the chromatin [56]
SadB: synapses of amphids defective kinase
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leukocyte diapedesis [65]. In this regard, vimentin localizes to the trailing edge of migrating leukocytes and 
controls cortex rigidity [66]. This may be important to reduce cancer cell attrition in the bloodstream [67]. 
The ras-related C3 botulinum toxin substrate 1 (Rac1)/p21-activated kinase 1 (PAK1) pathway controls 
the phosphorylation of Ser26, Ser51 and Ser66, impairing IF assembly. Whether this is related to the weak 
oncogenic ability of Rac [68] is currently unknown.

Key residues include Ser39, Ser56, Ser72 and Ser83. In cancer cells, Ser39 phosphorylation by protein 
kinase B (AKT/PKB) protects vimentin from proteolysis and enhances tumor growth and metastasis [69] by 
altering filament assembly [63], which regulates cortex plasticity and could underlie the fact that cancer cells 
are overall softer than non-cancer cells [70].

On the other hand, Ser56 is phosphorylated by the cyclin dependent kinase (CDK) 1. This phosphorylation 
recruits PLK1, which enhances phosphorylation in Ser82 [71]. Consequently, cell arrest in G2/M induced 
by taxanes lead to an accumulation of phospho-Ser56 vimentin in a CDK1-dependent manner. Ser56 is also 
phosphorylated downstream of ROCK and PAK1 in hypoxia [72]. Ser56 phosphorylation promotes disassembly 
of perinuclear vimentin, controlling filament stability [73] and promoting cancer cell invasiveness [74]. 
Likewise, two independent studies indicated that Ser72 phosphorylation downstream of ROCK1 is important 
for cancer cell migration. A phospho-mimetic mutation of Ser72 increased cancer cell speed, whereas a 
non-phosphorylatable form impaired sphingolipid-triggered cell migration, respectively [75, 76]. Finally, 
Ser83 phosphorylation by calcium/CaMKII or PLK1 controls β1 integrin expression at the plasma membrane, 
controlling cell adhesiveness during invasion [77].

Importantly, phosphorylation of Ser39, Ser72 and Ser83 is preserved when vimentin is processed and 
peptides presented associated to major histocompatibility complexes. CD4+ T cells distinguish between 
non-phosphorylated vs. phosphorylated vimentin peptides [78]. Since these phosphorylations are elevated 
in metastatic cells [78], they could be useful as immunotherapeutic targets.

Is it feasible to target cytoskeletal phosphorylation to treat cancer?
A possible role for MT phosphorylation in cancer cell proliferation and migration
Tubulin phosphorylation is arguably the least understood of cytoskeletal phosphorylations. The apparent 
lack of interest in the field may be due to the fact that early use of anti-tubulin polymerization drugs such as 
colchicine or vincas; or MT turnover inhibitors, e.g., taxanes, was very successful to inhibit mitosis in cancer 
cells [79]. The scant information available emerges from global phospho-proteomics approaches. However, 
tubulin appears heavily phosphorylated in cancer cells, which strongly suggests that targeting phosphorylation 
could be of therapeutic interest. Two of the most prominent kinases that target MTs are AURKA and AURKB, 
and clinical approaches are underway to address the viability of their inhibition to treat different types of 
cancer [80]. However, the rationale behind their use is that AURK inhibition impairs mitosis, which is the same 
as targeting MT dynamics via vincas or taxanes. It is likely that AURK-dependent inhibition of cell division is 

Table 4. Main human vimentin phosphorylation sites

Gene Site Putative kinase Discovered by/inhibitor Effect Reference
VIM Ser5/7/8/9/10 PKCα Calyculin A (phosphatase) Cell polarity [63]

Ser26/51/66 PAK1 Biochemical assays, 
selumetinib, vemurafenib

Abnormal assembly [113, 114]

Ser39 AKT/PKB A-674563 Proteolytic protection, 
slowed polymerization?

[69]

Ser56 AKT/PKB
ROCK

A-674563
siRNA

Filament disassembly [69]
[72]

Ser72 ROCK1 Targeted mutation, Y27632 Increased cell migration [75, 76, 115]
Ser73 AURKB Biochemical assays Mitosis? [114, 116]
Ser83 PLK-1, CaMKII Biochemical assays, KN-93 

(CaMKII inhibitor)
Filament disassembly and 
pathogen interaction

[77, 117, 118]

CaMKII: calmodulin-dependent protein kinase II
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independent of MT phosphorylation. Definitive proof would emerge from experiments aimed at interrogating 
whether phospho-mimetic forms of Ser48 (α-tubulin) and/or Ser75 (β-tubulin) confer resistance to AURK 
inhibitors. Recent work has highlighted that AURKA and PLK1 are essential for MT dynamics and centrosome 
positioning during T cell activation [81], hence their inhibition can play a role in curbing T-cell lymphomas 
and other T-cell-dependent malignancies. However, it will be important to determine whether the effect of 
AURK inhibitors is due to direct phosphorylation of tubulin.

An intriguing possibility is to target tubulin phosphorylation to complement vinca or taxane 
treatments, particularly to counteract the development of resistance, which is observed in many forms of 
advanced cancer. The assumption is that taxane-resistant cells develop mechanisms to undergo mitosis in 
the presence of these inhibitors, overcoming G2/M arrest, e.g., in the presence of hypoxia [82]. An earlier 
study showed that phosphorylation impairs tubulin polymerization promoting protein (TPPP)-dependent 
tubulin polymerization in the brain [83], confirming that targeting tubulin phosphorylation could affect its 
dynamics through different mechanisms than those of vinca or taxanes. In this manner, targeting tubulin 
phosphorylation could be a potentially useful approach to complement current therapies aimed at blocking 
cancer cell division.

Compared to their central role in cell division, the role of MTs in cell migration is more controversial. 
Thus, whether inhibiting their phosphorylation could have an effect on invasion is uncertain. MTs control 
cell polarity [84] and preserve the integrity of the cell as it migrates [85]. Since MTs control vesicle traffic, 
targeting MT dynamics through phosphorylation in this context could impair cancer cell secretion, decreasing 
the ability of cancer cells to exert modifications on the tumor microenvironment.

Targeting myosin and actin phosphorylation: a gateway to curb metastasis
Actin and myosin are also important for mitosis. Different studies have shown that inhibiting MYH10 
expression promotes multinucleation due to cytokinesis failure [86, 87]. Since NMII activation relies on RLC 
phosphorylation, it is theoretically possible to inhibit NMII function by targeting the kinases that mediate 
RLC Ser19 phosphorylation, which is critical for NMII filamentation. Multinucleation due to failed cytokinesis 
is also observed when myosin-specific kinases, e.g., CITK are inhibited or deleted [88]. CITK depletion, 
which reduces NMII phosphorylation and activation, reduces tumor growth in multiple myeloma [89] 
and medulloblastoma [90]. Interestingly, this does not happen when other myosin kinases, e.g., ROCK, are 
targeted (in fact, ROCK inhibitors are routinely used to culture stem cell in vitro to favor growth and prevent 
differentiation [91-93]). This highlights the central role of myosin regulation in many different processes, 
which may render targeting NMII phosphorylation impractical to inhibit proliferation.

On the other hand, targeting NMII (and actin) phosphorylation could prevent tumor cell dissemination. 
Different lines of evidence have suggested that elevated NMII phosphorylation and activity in the cortex 
changes the cellular phenotype from epithelial, or mesenchymal, into amoeboid [94, 95]. Amoeboid shape is 
characteristic of rapidly migrating cells, e.g., leukocytes, and is mainly integrin-independent [96]. In addition, 
elevated levels of phosphorylated NMII correlate with more aggressive tumors, e.g., gliosis-to-glioblastoma 
progression [97]. A recent study has highlighted that melanoma cells that undergo a mesenchymal-to-
amoeboid transition display elevated levels of phosphorylated NMII, while also producing immunosuppressive 
signals [98]. The same group has shown that targeting ROCK alters the sensitivity of cancer cells to mitogen-
activated protein kinase (MAPK) inhibitors [99], indicating that abnormalities in NMII phosphorylation 
downstream of ROCK may be targeted to confer cellular sensitivity to other families of inhibitors.

However, the different levels of regulation dependent on NMII phosphorylation are only beginning to be 
understood. This is a very active line of investigation in our lab.

Possible effects of targeting vimentin phosphorylation in cancer cell division and tumor mechanics
Vimentin knockout mice are viable and fertile, displaying only minor developmental defects [100]. Other 
types of IFs are likely to compensate for the loss of vimentin in a tissue-specific manner, for example epidermal 
keratins in the skin or GFAP in the central nervous system [101].
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Vimentin is prominently expressed in cells that are (or become) motile, including fibroblasts, 
mesenchymal cells, leukocytes and invasive cancer cells. This has suggested that vimentin could be targeted 
to prevent cancer cell motility. Indeed, vimentin is upregulated during EMT, which is a common occurrence 
in many carcinomas, and its repression in these cells decrease breast and colon tumor cell migration, as 
shown by siRNA depletion of vimentin in migrating mesenchymal cells and overexpression of vimentin in 
epithelioid, non-migrating tumor cells [102, 103]. In addition, higher expression of vimentin correlates with 
decreased survival in colorectal cancer, which could be related to a decreased metastatic ability [104].

Regarding vimentin phosphorylation, some sites favor IF assembly, whereas others promote disassembly, 
hence it is difficult to make general statements regarding the effect of its phosphorylation in cancer progression. 
An interesting fact is that many mitotic kinases, e.g., CDKs, PLK1, AURK, induce vimentin phosphorylation, 
hence its phosphorylation is likely to favor cell division. A model emerges in which elevated vimentin 
phosphorylation promotes IF disassembly, favoring cancer cell division. Likewise, recent evidence indicates 
that IFs may promote tumor cell migration [105], hence it is possible that similar mechanisms favor tumor 
cell dissemination. An intriguing possibility is that the preservation of these post-translational modifications 
during antigenic presentation [78] could be therapeutically useful to design novel immunotherapy-based 
strategies. Phospho-vimentin peptides could bear higher specificity for highly transformed cells, improving 
the cytotoxic T lymphocyte (CTL) response against them.

Bystander inhibition of cytoskeletal phosphorylation in current therapies
While a few cytoskeletal components, e.g., myosin II, have well-defined kinomes, most of them lack specific 
kinases. However, most of the reported effects on actin, tubulin and vimentin phosphorylation in cancer cells 
emerge from studies using kinase-specific drugs. Hence, we cannot rule out that some specific phenotypes 
caused by current treatments are related to cytoskeletal phosphorylations. A key example is that of paclitaxel, 
which induces mitotic arrest at G2/M, promoting vimentin phosphorylation in Ser56 via CDK1 [71].

A few years ago, we demonstrated that dasatinib, a Tyr kinase inhibitor used to treat CML and Philadelphia 
chromosome-positive acute lymphoblastic leukemia (Ph+ALL) with several potential targets [106] induced 
myosin II phosphorylation, leading to increased contractility and vascular leakage [107]. This indicated that 
one of dasatinib substrates phosphorylated and inactivated a contractility inhibitor, perhaps ROCK. Likewise, 
we have recently shown that myosin light chain is a target of EGFR, which is a therapeutic target for the 
treatment of breast cancer, among others [37].

It is also possible that therapies aimed at inhibiting kinases in cancer cells have unexpected effects on 
non-cancer cells associated to the tumor microenvironment. For example, cancer-associated fibroblasts (CAFs) 
are very contractile, likely displaying elevated levels of phosphorylated NMII. NMII phosphorylation in these 
cells induces the formation of stress fibers, which predicts contact guidance for surrounding breast cancer 
cells [108]. Therapies designed to alter cytoskeletal phosphorylations in tumor cells could also have a dramatic 
impact on the tumor microenvironment, which will be a fascinating field of research in years to come.

Conclusion
Targeting cytoskeletal phosphorylation has the potential to dramatically alter the mechano-chemical 
properties of tumor cells, inhibiting their ability to develop the cancer program, at least at a preclinical level. 
However, these approaches may also have potentially severe side effects, as every cell, normal or cancerous, 
requires the cytoskeleton. MT inhibitors, discovered over 60 years ago, offered early promise as MT-targeted 
therapies that improved the outcome of many types of cancer by inhibiting tumor cell division. These 
therapies are still the first line of chemotherapeutic treatment in many types of cancer. Hence, it is evident 
that phosphorylation of cytoskeletal components is altered when patients are treated with kinase-targeted 
therapies. We have only scratched the surface in characterizing these effects. Many of them will be unavoidable 
consequences of treatments aimed at other fundamental processes, potentially causing side effects that will 
have to be dealt with. But the potential exists to discover that some cytoskeletal phosphorylation-specific 
effects underlie unexpected and important effects of current and future targeted therapies.
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