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Abstract
Fungal compounds have long been used for centuries as food supplements. β-glucans have been identified as 
the most interesting molecules with beneficial effects in several chronic diseases. In vitro studies have shown 
that they are able to elicit the immune cells maturation and activation with the result of an increased release 
of proinflammatory cytokines and chemokines and a stimulation of anti-bacterial activity of macrophages 
and neutrophils. As β-glucans enhance pathogen elimination through non-self antigens identification, they 
can also direct immune response against tumor cells. These compounds also stimulate the activity on adaptive 
immune cells and they have been regarded as biological response modifiers. In this way, β-glucans can be 
exploited as adjuvant cancer therapy, in particular by a synergic action with chemotherapy or immunotherapy. 
In the immuno-oncology era, the need is to identify innovative drugs that can simultaneously target and 
inhibit different biological processes relevant for cancer cells survivors. Recent clinical studies showed 
promising results about the combination of β-glucans and immune checkpoint inhibitors for patients affected 
by different solid tumors. This review aims to investigate molecular mechanisms of action of β-glucans and is 
focused on their application in clinical practice as immune-adjuvants for treatment of cancer patients.
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Introduction
Mushrooms have been utilized as food supplements for several centuries and their therapeutic properties on 
human health have long been studied.

β-D-glucans are polysaccharides found as cell wall components with structural function and are extracted 
from different species of yeast, mushroom, bacteria and barley. β-glucans extracted from oat or barley have 
to be distinguished from ones extracted from fungal cell components, because they have different molecular 
structure and play distinct roles in regulation of human metabolism [1].
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There are numerous pharmaceutical products based on these polysaccharides, such as schizophyllan, 
lentinan, grifolan, polysaccharide-peptide (PSP) complex and polysaccharide-protein (PSK) complex [2].

These compounds are known to have an immune-modulating action capable of stimulating the immune 
system’s response by activation of macrophages, phagocytosis of the pathogen and release of proinflammatory 
cytokines [3]. They positively influence the homeostasis of the organism, particularly modifying the intestinal 
microbiota [4-7].

Glucan receptors are expressed on macrophages, natural killer (NK) cells and neutrophils [8]. Among 
these dectin-1, complement receptor 3 (CR3), lactosylceramide (LacCer), natural cytotoxicity receptor p30 
(NKp30) and scavenger receptors are the most studied ones [9]. β-glucans have a distinct affinity with these 
receptors according to the different chemical structure and are therefore capable of triggering different host 
responses [10].

This immune-stimulating capacity of β-glucans makes wide and varied medical use. The ability to 
modulate humoral and cellular immunity can be exploited, for example, in the treatment of various chronic 
inflammatory diseases.

β-glucans are able to reduce the level of total serum cholesterol and glucose, in addition to acting on 
the control of body weight [11]. The mechanism that rules the cholesterol-lowering effects of β-glucans 
takes place through the gut microbiota and the production of short-chain fatty acids (SCFAs, for example 
propionate). The gut microbiota degrades the fibers from which SCFAs are obtained; the increase of them at 
the expense of the acetic acid (main substrate for cholesterol biosynthesis) results in decrease in cholesterol 
biosynthesis [12]. Recent studies suggested that β-glucans control circulating lipid levels by excretion of fecal 
lipids and by regulation of the activity of hydroxy-3-methyl-glutartyl-coenzyme A reductase [13].

The β-glucans are able to attenuate blood postprandial glycemic and insulin peak forming a barrier in the 
small intestine which prevents glucose absorption. Moreover, the latest evidence points to a role in activating 
metabolic pathways through phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt), which 
have a key role in the pathogenesis of diabetes [14]. Furthermore the enrichment of food with β-glucan is 
required in order to produce low glycemic index meals suitable for diabetic subjects [15, 16].

In this way, β-glucans have a potentially beneficial activity in the prevention and treatment of diabetes 
mellitus, hypercholesterolemia and associated cardiovascular diseases [14, 17].

β-glucans have been studied as potential adjuvant agents in treatment of gastrointestinal, hepatic and 
respiratory infections, caused by bacterial, viral and fungal microorganisms.

β-glucans have been also studied as modulators of human immunodeficency virus (HIV)-associated 
immune dysfunction. In fact, they are involved in regulation of gut barrier permeability [18] and might be 
responsible for microbial translocation from the gastrointestinal tract into systemic circulation. It has been 
supposed an interesting role of β-glucans in the pathogenesis of non-acquired immunodeficiency syndrome 
(non-AIDS) events, but further studies are needed to explore their contribution in HIV infection and course 
[19-21].

In Eastern world, mushrooms are widely used as medical and nutritional support in cancer patients, 
in order to improve fatigue and cachexia and to increase tolerability to chemotherapy. In fact, numerous 
animal and human studies have shown remarkable activity against a wide variety of tumors [22, 23]. In the 
oncological field, β-glucans can stimulate the innate and adaptive immune response, inhibit the proliferation 
of cancer cells, promote apoptosis and block the angiogenesis [24-26].

The advantages of β-glucan derive from its non-toxicity and a non-immunogenicity due to its absence 
of proteins and peptide components; in this way the β-glucans have a specific modulatory activity of the 
immune system as they bind specific receptors [27].

The purpose of this review is to deepen the molecular mechanism of β-glucan and in particular its role 
as immune-modulator, the potential association with immunotherapy and future therapeutic applications.
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Benefit from β-glucans in cancer patients
As we know, the immune system is classified into adaptive and innate [28]. The first is represented by a rapid 
line of defense against pathogens while the adaptive system develops a long-lasting response that protects 
the organism from subsequent encounters with the same pathogen and therefore plays a fundamental role in 
the protection against infections and in the efficacy of vaccines [29-31]. One of the mechanisms that stimulate 
the induction of trained immunity is epigenetic reprogramming: after stimulation with certain ligands such 
as β-glucan or Bacille Calmette-Guerin (BCG), the immune cells undergo a functional reprogramming which 
involves an increase of their reactivity to the next stimulation [32]. The control and surveillance of tumors 
involves an intricate dance between the adaptive and innate immune system.

It has been demonstrated that the association of β-glucans with chemotherapy is able to enhance 
cytotoxicity and can improve patient clinical outcome. The use of medical mushroom extracts has been 
studied in association with chemotherapy in different kinds of cancers, such as estrogen receptor negative 
human breast cancer, gastric and colorectal cancer, non-small-cell lung cancer (NSCLC) and hematologic 
diseases [33-36].

The advent of immunotherapy has dramatically changed cancer treatment. In particular, the use of 
immune checkpoint inhibitors (ICIs) has had great success in the treatment of numerous types of malignancies 
and their use in clinical practice is progressively increasing. The response to immunotherapy is variable often 
due to a different involvement of the tumor microenvironment (TME). To modify TME with increasing the 
presentation of antigens by the tumor mass and thus stimulating the response of the immune cells towards 
the tumor cells is, currently, under investigation [27].

In this regard, β-glucan molecules are a potential immune-modulator that acts on the innate and adaptive 
immune response within TME. Β-glucan could have an adjuvant role in stimulating and improve clinical 
response to ICIs [37].

Molecular composition and modulation of immune cells
β-glucans are polysaccharides composed of D-glucose monomers linked together by 1→3 linear β-glycosidic 
bonds. The glycosidic chain core has 1→6 side branches that are specific of fungi-derived glucans [38]. In 
some subgroups of fungi, the polysaccharide chain may also be bound with protein or peptides, by forming 
PSK or PCP complexes [39].

β-glucans has been deeply studied as biological response modifiers (BRMs) [40]: they interact directly 
with receptors located on plasmatic membrane of immune cells and are able to elicit an effective inflammatory 
and immune response against non-self antigens expressed by pathogens but also on tumor cells [41].

The immune-modulatory properties of β-D-glucans have been widely investigated and it has been 
supposed that they exert an antitumor activity, by enhancing immune system against tumor cells and by 
inhibiting tumor invasion and progression through a complex modulation of mechanisms of apoptosis and 
angiogenesis [42].

Several preclinical and clinical studies have shown that β-D-glucans are able to modulate the 
responsiveness and the interaction between innate and adaptive immune systems [43] (Figure 1). They 
can enhance antimicrobial activity of macrophages, monocytes and neutrophils, leading to maturation of 
these target cells and to an increased proinflammatory cytokine and chemokine release. This reflects in a 
stimulation of adaptive immune cells, including CD4+ T cells, CD8+ cytotoxic T lymphocytes (CTL) and B cells. 
Specifically, the tumoricidal mechanisms carried out by T cells and induced by β-glucans can be summarized 
in this way. The β-glucan binds specific receptors (for example, Dectin-1 which will be discussed below) 
expressed on myeloid cells, which are converted into antigen presenting cells (APCs). The binding activates 
the CD4+ and CD8+ T cells which in turn will produce pro-inflammatory cytokines [respectively tumor 
necrosis factor (TNF)-α, anti-tumor cytokine interferon-gamma (IFN-γ), Granzyme B, and perforins], leading 
to the destruction of cancer cells [44]. Similarly β-glucan induces switching of suppressive M2 macrophages 
into inflammatory M1 macrophages which in turn will activate Th1-type T cells, causing damage to cancer 
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cells through the secretion of pro-inflammatory cytokines by T cells [45]. On the other hand, the link between 
β-glucan and polymorphonuclear cell will cause cell apoptosis with the release of ROS in the microenvironment 
leading to the death of tumor cells from oxidative stress [46]. Besides, β-D-glucans are also modulators of NK 
cells cytotoxicity. These compounds are able to stimulate activation of NK cells against tumor cells, both by 
production and release of pro-inflammatory cytokines and by complement activation [47]. In this context, it 
has been shown that β-glucans can induce granulopoietic progenitors and, in general, innate immune cells 
towards a tumor-suppressive phenotype [48].

In this way, it has been hypothesized that β-D-glucans may play an important role as immune-modulator 
agents and can be used as a synergic treatment in combination with ICIs.

Receptors of β-glucan
The interaction between β-glucans and their receptors on human cells is likely to be very complex and only 
partially known. The main receptors that are involved in inflammatory and immune-response are Dectin-1, 
CR3, LacCer, NKp30 and scavenger receptors [9].

Dectin-1
Dectin-1 is a type II transmembrane pattern-recognition receptor with an extracellular C-type lectin-like 
domain fold and a cytoplasmic domain that contains an immunoreceptor tyrosine-based activation motif 
(ITAM) [10, 49]. After binding of β-glucans, it can mediate the non-opsonic phagocytosis of opportunistic 
pathogens and it is responsible of cytokine release [50]. In fact, Dectin-1 induces phosphorylation of its 
ITAM and spleen tyrosine kinase (Syk) and activates an intracellular PI3K/Akt pathway. Thus, the result is an 
increased production and release of various inflammatory cytokines, such as TNF, CXC-chemokine ligand 2 
(CXCCL2), Interleukin-2 (IL-2), IL-10 and IL-12. Dectin-1 can also collaborates with Toll-like receptors (TLRs) 
expressed on the same cell, in order to enhance cytokine production, such as TNF-α, IL-6, IL-10 and IL-23, and 
down-regulate release of IL-12 [51].

Furthermore, Dectin-1 associated intracellular signaling also involves cytoplasmic Nod-like receptor 
protein 3 (NLRP3) inflammasome, which activation seems to be essential for IL-1b production and 
secretion [52]. In human cells, Dectin-1 has another binding site that can recognize an endogenous ligand on 
T cells: in this sense, Dectin-1 has been proposed to act as a T cell co-stimulatory molecule [53].

Figure 1. Interaction pathways between β-glucans and the immune system
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CR3
CR3, also known as macrophage 1 antigen (Mac-1), belongs to the family of β2 integrins and is an heterodimeric 
glycoprotein composed of two non-covalently associated chains (CD18 and CD11b), found on immune cells 
such as neutrophils, macrophages, lymphocytes and NK cells [54]. Its lectin-like domain is responsible for 
binding to β-glucans and this binding primes leukocytes for cytotoxicity and phagocytosis of target cells, 
through a Syk-PI3K molecular pathway. In fact, CR3 has a second ligand able to recognize iC3b-coated tumor 
cells and its activation for complement-dependent cytotoxicity and then tumor cell lysis requires its dual 
binding to iC3b and β-glucan [55, 56].

LacCer 
LacCer is the most abundant neutral glycosphingolipid and it is expressed on various human cells, among 
these on neutrophils. LacCer forms lipid rafts on plasmatic membrane of neutrophils and, after binding with 
β-glucans, it activates a signal transduction pathway involving Src family kinase/PI3K. The result is neutrophil 
chemotaxis [57, 58] and enhanced cytokine release [59, 60]. Furthermore, it has been demonstrated that CR3 
and LacCer was partially co-localized on lipid rafts of plasma membrane of neutrophils and some preclinical 
data suggest that LacCer-mediated phagocytosis may be dependent on CR3, suggesting a co-stimulatory 
activity of these two β-glucans receptors [61].

NKp30
NKp30 belongs to immunoglobulin-like transmembrane receptor family and it was needed to bind 1-3 
β-glucan by NK cells. It has been demonstrated that this receptor can activate Src family kinases and mediate 
granule polarization and perforin release in NK cells. In this sense, NKp30 has been recognized as a pattern-
recognition receptor, whose stimulation enhances NK cell killing of fungi, such as Cryptococcus neoformans 
and Candida albicans [62].

Scavenger receptors
It has been demonstrated that fungal β-glucans can also bind to other membrane receptors, such as scavenger 
receptors. β-glucans can interact with the CD5 ectodomain, present on plasmatic membranes of T and B cells 
and can induce mitogen-activated protein (MAP) kinase activation and cytokine release [63].

Preclinical studies
Several β-glucans extracted from different species of fungi have been investigated as BRMs and the most 
relevant ones are described in Table 1.

Table 1. Biological activity of most relevant β-glucans investigated in pre-clinical studies

Pre-clinical study (ref.) Treatment models β-glucans/fungus Biological activity
Sorimachi K, et al., [64]
Niu YC, et al., [65]

Animal model (rat bone 
marrow)
Animal model (mouse S180 
cells), IV administration

Glucan/Agaricus 
blazei Murill

- ↑ secretion of IL-8 and TNF-α by macrophages
- ↑ production of IL-23, IL-12, IL-1
- ↑ cytokine and leukocyte growth factor 

production
Kubala L, et al., [66]
Zhong K, et al., [67]

Human model
Mice splenic Lymphocytes

Schizophyllan/
Schizophyllum 
commune

- ↑ lymphocytes proliferation, through production 
of IL-2

- ↑ production of pro-inflammatory cytokines IL-
6, IL-8, and TNF-alpha

Yang A, et al., [68] Murine macrophages
Human hepatoma HepG2 
cells

TPG-1/Trametes 
robiniophila

- ↑ production of TNF-α and IL-6 through toll-like 
receptor 4 (TLR4)

Wang J, et al., [69]
Wang  SY, et al., [70]
Chien CM, et al., [71]

Animal model, in vitro, Raw 
264.7 cells
Human myeloid leukemia 
cell lines
Human umbilical cord blood

Proteoglycan 
fraction/
Ganoderma 
lucidum

- ↑ anti-inflammation activity against 
lipopolysaccharide (LPS) stimulation

- ↑ T cells activity
- ↑ expression of IL-1, IL-2, IL-6, TNF-α and 

INF-γ
- modulate NK cell cytotoxicity
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We focused on BTH-1677 (Imprime-PGG) because it is one of the most studied β-glucans in combination 
with ICIs.

BTH-1677 is a water-soluble and intravenous formulation of yeast-derived β-glucan purified from the 
cell wall of Saccharomyces cerevisiae. It is recognized as a fungal pathogen-associated molecular pattern 
(PAMP) and it is able to trigger a complex and coordinated immune response that involves both innate and 
adaptive immune cells. Its mechanisms of action as immune-modulator and anti-tumoral agent has been 
deeply investigated in preclinical and clinical studies.

Bose et al. [78] demonstrated that BTH-1677 interacts with human-isolated neutrophils and monocytes 
through a CR3 and complement-dependent manner. This result has been also confirmed in a mice model [79].

As shown in preclinical studies [80], when BTH-1677 enters the blood, it is bound by endogenous plasma 
anti-β-glucan antibodies (ABAs) and it constitutes a tripartite immune complex, by attracting the opsonization 
by complement protein iC3b. This macro-complex interacts with CR3 and FCγ receptor II (CD32a) located on 
neutrophils, macrophages and monocytes, and stimulates inflammatory cytokine production and release. It 
results in activation of innate immune response and enables direct killing of antibody-targeted tumor cells, 
through a mechanism of antibody-dependent cellular phagocytosis [81, 82]. Dectin-1 binds directly BTH-
1677 and other fungal compounds, but it has been suggested that the tripartite immune complex described 
above could also signal through Dectin-1, by interacting simultaneously with CR3 [81]. These innate immune 
functions are detected only in the presence of sufficient ABA in serum. It suggests that ABA levels may be 
a biomarker to select patients who have benefit to administration of β-glucans and that the exogenous 
supplementation of ABA could apport a rehabilitation of these functions [83, 84].

BTH-1677 can affect macrophage differentiation toward M1 phenotype respect than the suppressive M2 
state [85, 86] and inhibits activation of myeloid derived suppressor cells (MDSC) against T cell proliferation [87]. 
Chan et al. [86] demonstrated that BTH-1677 can modulate in vitro activity of monocyte-derived dendritic 
cells (MoDCs), by eliciting an increased surface expression of the maturation and co-stimulatory markers, 
such as CD80, CD83, CD86 as well as HLA-DR. It leads to an increased production of anti-tumor cytokine 

Table 1. Biological activity of most relevant β-glucans investigated in pre-clinical studies (continued)

Pre-clinical study (ref.) Treatment models β-glucans/fungus Biological activity
Carmona EM, et al., 
[72]
Ali MF, et al., [73]

Rat cells
Human model

Glucan/
Pneumocystis and 
Aspergillus

- ↑ TNF-α, IL-6 and IL-8 production by 
B-lymphocytes

- ↑ IL-23 and IL-6 release by dendritic cells
- ↑ secretion of IL-17 and IL-22, both Th17-

produced cytokines
Kankkunen P, et al., [52]
Ding J, et al., [74]
Vetvicka V, et al., [47]

Human macrophages
Human monocyte-derived 
DCs
Murine melanoma B16 cell 
line

Glucan/
Saccharomyces 
cerevisiae

- ↑ Th2 immune response and inhibits Th1 by 
promoting the release of anti-inflammatory 
cytokines such as IL-10 and transforming 
growth factor (TGF-β)

- ↑ IL-1β transcription and secretion
- ↑ IL12, IL-2, TNF, IFN production
- ↑ tumor-specific CTL activity
- modulate NK cells activity and killing towards 

tumor cells
Ina K, et al., [75] Human model (gastric 

cancer patients), IV 
administration

Lentinan/Lentinula 
edodes

- ↑ PD-L1 tumor expression
- ↑ release of TNF-α, IL-12 and IFN-γ
- ↑ T cells activity, especially CD8+ cells and Th1 

polarization
Masuda Y, et al., [76]
Masuda Y, et al., [77]

Animal model
Animal model

Maitake α-glucan 
(YM-2A)/Grifola 
frondosa

- ↑ activation of dendritic cells and macrophages
- ↑ IFN-γ production by CD4+ and CD8+ T cells

Bose N, et al., [78] Human serum Imprime PGG/
Saccharomyces 
cerevisiae

- ↑ phenotypic and functional activation of 
monocytes

- ↑ activation of neutrophils, through production 
of IL-8, CCL2, and CD11b
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IFN-γ and surface expression of antigen presentation markers. Furthermore, among biological effects 
induced by BTH-1677, it seems to be that it up-regulates programmed death-ligand 1 (PD-L1) expression on 
macrophages surface and also on tumor cells [88].

The activity on innate immunity is also expressed on NK cells: BTH-1677 enhances NK cell functionality 
and killing, which are dependent on IFN-γ and Dectin-1 and represent the main antibody-dependent cellular 
cytotoxicity against tumor cells [89].

Besides, BTH-1677 can inhibit the suppressive activity of Tregs on CD4+ T cells and is able, when treated 
with whole blood, to enhance CD4+ and CD8+ T cell proliferation, also by driving T cell polarization towards 
anti-tumor Th1 phenotype [90, 91].

In order to exploit the immunomodulating effect of BTH-1677, several preclinical studies investigated 
the combination of this β-glucan with anti-tumor monoclonal antibodies (mAbs) acting on immune response. 
The aim was to improve the efficacy of ICIs, in particular anti-programmed death receptor-1 (anti-PD-1)/
PD-L1 mAbs, in combination with β-glucans, by inducing PD-L1 tissutal expression and by enhancing a potent 
and coordinated immune response against tumor cells.

Fraser et al. [92] demonstrated in two distinct mice models (CT-26 and MC-38 model) that the 
combination of BTH-1677 with anti-PD-1 or anti-PD-L1 agents is able to repress tumor growth, compared to 
models treated only with BTH-1677 or anti-PD-1/anti-PD-L1.

In another study, Qiu et al. [93] showed that T cells treated ex vivo with anti-PD-1 antibody and co-
cultured with BTH-1677 treated macrophages or dendritic cells have an increased proliferation rate. Then, 
they observed a significantly reduced median tumor volume in a mice model after administration of both 
BTH-1677 and anti-PD-1 mAbs.

In summary, what emerged is how  the monocyte-macrophages cells activated by BTH-1677 in vitro have 
an higher expression of membrane PD-L1; simultaneously, an increase in the expression of the co-stimulatory 
molecule CD86 and other cytokines has been documented, which allow further stimulation on the effector 
action of T cells. Furthermore, the tumor cells themselves, thanks to the activation of a wider, innate and 
adaptive immune response induced by BTH-1677 show an increased expression of PD-L1.

Another interesting data reported is that BTH-1677 has the ability to turn off the inhibitory effect of 
PD-L1 upregulation by enhancing the secretion of immunostimulatory cytokines and the expression of 
costimulatory proteins. These data confirm the idea that BTH-1677 synergizes with ICIs, particularly with 
anti-PD1 antibodies, and it may represent an effective adjuvant therapy along with approved and widely used 
immunotherapy agents [94].

In a similar way, Hong et al. [95] have demonstrated the same effect of a combined therapy of β-glucan 
and anti-tumor mAbs. In this study developed on mice models, the combining administration of β-glucan 
and mAbs against naturally occurring antigens GD2 ganglioside or recombinant human Mucin1 (MUC1) 
elicited a significantly greater tumor regression, respect to the mAbs or β-glucan therapy alone. In this study, 
the expression of CR3 on leukocytes and the binding of iC3b on tumors seem to be crucial for the β-glucan 
adjuvant effect and granulocytes showed to be responsible for antitumor activity (Figure 2).

Clinical studies
Considering the promising results described above in the preclinical models, several trials evaluated the 
interaction of glucans with mAbs in humans (Table 2).

As aforementioned, BTH-1677 is one of most investigated compounds in the field of new frontiers in 
cancer therapies.

In 2015, Halstenson et al. [96] designed a single center, randomized, double-bind, placebo-controlled, 
dose escalation study investigating the safety and the tolerability of intravenous injection of BTH-1677 in 
healthy subjects. In the phase 1a, BTH-1677 was administered to 18 volunteers (≤ 45 years) sequentially 
randomized to receive the single dose of study drug at 0.5-1-2-4 or 6 mg/kg dose. The control group consisted 
of 6 people, who received a single dose of placebo. In the phase 1b, 12 subjects were randomized (3:1) to 

https://doi.org/10.37349/etat.2021.00036


Explor Target Antitumor Ther. 2021;2:122-38 | https://doi.org/10.37349/etat.2021.00036 Page 129

7 daily i.v. infusion at 1, 2 or 4 mg/kg or placebo respectively. Adverse events (AEs) occurred (headache, 
dyspnea, paresthesia, nausea, rash and flushing) were mild and moderate, and were described in 67% of the 
study subjects overall. The appearance of an infusion reaction during the administration of the study product 
at a dosage of 4 mg/kg resulted in an amendment contemplating a slow administration of the 4 mg/kg and 
6 mg/kg doses. In conclusion, the drug was well tolerated after single doses up to 6 mg/kg and after 7 daily 
doses up to 4 mg/kg.

Table 2. Biological activity of most relevant β-glucans investigated in clinical studies

Clinical trial (ref.) Features Patients β-glucans/other drugs Results
Halstenson CE, et 
al., [96]

Phase 1a/b.
Single center, 
randomized, double-
bind, placebo-
controlled, dose 
escalation study

Healthy volunteer 
subjects

Imprime PGG Acceptable safety profile, well 
tolerated

NCT03246685 
[97]

Phase 2.
Multicenter, open-
label study

Advanced 
Squamous Cell 
Carcinoma of H&N 
(SCCHN) patients

Imprime PGG & 
Pembrolizumab

Terminated for enrollment failure

Uhlik M, et al., [98] Phase 2.
Multicenter, open-
label study

44 ABA positive 
mTNBC patients

Imprime PGG & 
Pembrolizumab

mTNBC:
- ORR was 15.9%, with 1 CR 

and 6 PR
- 17/44 shown SD for more than 

1 year (best response) and 
4/44 for more than 2 years

- OS rate at 1 year was ~ 63%; 
median OS is 18.1 months by 
Kaplaian-Meyer estimation 
(95% CI, 12 months-not 
reached)

Figure 2. Activation of β-glucan receptors and intracellular pathways. TLR2: toll-like receptor 2
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The benefit of this β-glucan has been evaluated in association with pembrolizumab in various phase II 
studies in cancer patients. The rationale of the combination with ICIs is based on the hypothesis that glucans may 
stimulate immune system activation pathways complementary to that triggered by monotherapy with mAbs.

In 2017, a phase II trial aimed to investigate the benefit of this combo in head and neck cancers that 
failed or experienced stable disease during pembrolizumab monotherapy. Unfortunately, the study has been 
terminated for enrollment failure [97].

Encouraging data derived from IMPRIME 1, a phase II open-label multicenter trial involving ABA positive 
mTNBC and metastatic melanoma patients. In the breast cohort, 44 mTNBC pre-treated patients were 
enrolled to receive Imprime (4 mg/kg i.v. days 1, 8, 15 of each 3-week cycle) plus pembrolizumab 200 mg 
on day 1 of each cycle [98]. The results presented at San Antonio Breast cancer Symposium in 2019, showed 
that the primary endpoint, objective response rate (ORR), was 15.9%, with 1 complete response (CR) and 6 
partial responses (PR). seventeen of 44 patients were stable for more than 1 year (best response) and 4 of 
44 for more than 2 years. Overall survival (OS) rate detected at 1 year was ~63% and median OS is currently 
18.1 months by Kaplaian-Meyer estimation (95% CI, 12 months-not reached) [99]. Moreover, it demonstrates 
a large activation of both myeloid and T cells with extensive infiltration in tumor tissue samples [98]. These 
data allow to reacquire a possible role of ICIs in combination with immune-stimulating agents in patients 
with mTNBC, overcoming the poorer encouraging results of single agent immunotherapy in this setting [104].

In the melanoma subgroup, patients who have failed ICIs therapy undergo the same combined therapeutic 
regimen. The disease control rate, on 40 patients enrolled, was 45% [with 1 CR and 8 stable diseases (SD)] 
and the median OS was 8.8 months (with 12-month OS rate equal to 45%). As in the breast cancer population, 
the indirect signs of the improved immune stimulation were observed in tissue samples (biopsy) and in 
peripheral blood. Therefore, in melanoma patients with disease control this biological finding is linearly 
correlated with a proportional increase in survival [99].

As previously explained, significant levels of circulating ABA are a sine qua non condition to expect an 
immune-stimulating β-glucan effect [78, 83].

Table 2. Biological activity of most relevant β-glucans investigated in clinical studies (continued)

Clinical trial (ref.) Features Patients β-glucans/other drugs Results
Chan A, et al., [99] Phase 2.

Multicenter, open-
label study

40 ABA positive 
metastatic 
melanoma patients

Imprime PGG & 
Pembrolizumab

Melanoma patients:
- disease control rate (DCR) was 

45% (with 1 CR and 8 SD)
- median OS was 8.8 months 

(with 12 month OS rate equal 
to 45%).

Modak S, et al., 
[100]

Phase 1. 24 chemo-resistant 
NB patients

Oral β-glucan & 3F8 - Acceptable safety profile, well 
tolerated

- The maximum dose tolerated 
of β-glucan was not reached

- A clinical response was 
observed in 63% of patients

Kushner BH, et 
al., [101]

Phase 1. 15 high-risk NB 
patients in remission

β-glucan & bivalent 
gangliosides vaccine

Acceptable safety profile, well 
tolerated

NCT03003468 
[102]

Phase 1b/2. mNSCLC patients Imprime PGG & 
Pembrolizumab

On going

NCT03555149 
[103]

Phase 1b/2.
Open-label, 
multicenter, 
randomized Umbrella 
study

mCRC patients 
(cohort 3)

Imprime PGG & 
Atezolizumab (cohort 3)

On going

mCRC: metastatic CRC; mNSCLC: metastatic NSCLC; mTNBC: metastatic triple-negative breast cancer; NB: neuroblastoma
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In this regard, in a case-report it has been supposed that the function of β-glucan can be rehabilitated 
providing an intravenous supplement of purified ABA or commercial intravenous immunoglobulin G (IVIG) 
in deficient subjects [105].

This is a case of 84-year-old woman with pre-treated neuroendocrine tumor with baseline ABA levels 
< 1 µg/mL, who received BTH-1677 (4 mg/kg) in compassionate use, pembrolizumab (200 mg flat dose) 
and immunoglobulin G (IgG) (500 mg/kg). Immunoglobulins were infused the day before the first cycle of 
therapy and then on the same day of every subsequent recycle. The treatment was well tolerated, there were 
no AEs except a worsening of a myalgia in the first cycle. Dose and timing of administration of IVIG (1,000 
mg/kg, administered on the same day of treatment, before the infusion of BTH1677 and pembrolizumab) was 
adapted based on the serum IgG levels detected in the pre-treatment blood samples.

This case-report showed that the minimum amount of IVIG supplement appears to be 1,000 mg/kg, based 
on the increase in complement activity and cytokine levels. A partial response in radiological evaluation was 
detected at the second cycle (reduction of 5% of target lesion); at the subsequent control (4th cycle) there 
was a volume increase of target lesions, no other lesions were detected.

Several phase 1 studies, which aim to investigate the role of β-glucans, have been conducted on young 
patients with NB, a childhood cancer still orphaned by effective therapeutic strategies. In 2013 twenty-four 
patients with chemo-resistant NB were enrolled to receive 10 mg/(kg·day) of 3F8 (a mAb directed against 
the ganglioside GD2, a NB surface antigen) associated in each cycle to an oral β-glucan, dose escalated from 
10 to 80 mg/(kg·day). Most patients have a good tolerance of oral β-glucan: there were two cases of severe 
thrombocytopenia, of which one has not regressed and evolved into chronic. This side effect has never been 
described in 3F8 and could be linked to glucan mediated CR3 activation. Other AEs reported were fever, pain 
and urticaria (probably related to 3F8). The maximum dose tolerated of β-glucan was not reached. A clinical 
response, although not striking and of short duration, was observed in 63% of patients [100].

Kushner BH et al. [101] conducted a phase 1 study, involving 15 high-risk NB patients in second or later 
remission who received a combo of an immune-stimulating β-glucan and a vaccine that induced host anti-
ganglioside G2/G3 antibodies. The hypothesis is that the stimulation of humoral immunity can maintain 
the disease remission even among these very high-risk patients. The vaccine/β-glucan treatment was well 
tolerated with no dose-limiting toxicity; painful local reactions have been reported immediately after the 
injection but no other early or delayed toxicity has been documented. The serological and minimal residual 
disease (MRD) responses were encouraging.

Finally, there are two interesting ongoing trials, regarding the association of ICIs and glucan.
(1) The first one (phase Ib-II trial) includes patients with mNSCLC, receiving the combination of 

pembrolizumab and Imprime PGG in second line. The phase II trial will test whether addition of the glucan to 
ICIs increases median progression-free survival (PFS) [102].

(2) In Morpheus (phase Ib-II) study, the cohort 3 composed by mCRC patients will be randomized to one 
of the immunotherapy combination arms, including atezolizumab and Imprime PGG, or the standard-of-care 
control arm. All patients included in the study are BRAF wild type or without microsatellite instability, in 
disease progression during or following 2 (but not more) lines of treatment for mCRC, not prior treated with 
ICIs [103].

Conclusion and future perspective
The new era of drug development has seen integrative therapies as one of the options for numerous diseases. 
The future of cancer immunotherapy could rely on combination therapies based on ICIs with other adjuvant 
drugs, such as personalized cancer vaccines and targeted therapies directed to the TME. Bioactive compounds 
extracted from mushrooms have been shown immuno-modulator activity by stimulating the maturation, 
differentiation and proliferation of innate and adaptive immune cells. In addition, they are well tolerated and 
possess a very low risk of significant negative side effects. In this way, β-glucan demonstrate synergic effect 
with antitumor mAbs agents and they can have an important role to improve the therapeutic effects and the 
quality of life in cancer patients.
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Further studies and clinical investigations are directed to evaluate how mushrooms can be used as 
complementary/integrative therapy to guide oncology strategies. More research and investigations are 
necessary to evaluate the route of administration and dosage of β-glucans and their immune effect on 
bacterial growth and human microbiota.

The future perspective should be also oriented to discovering molecular mechanisms of different fungal 
compounds, interactions with cancer immunotherapy and future applications in clinical practice.
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