
Explor Target Antitumor Ther. 2025;6:1002351 | https://doi.org/10.37349/etat.2025.1002351 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Targeted Anti-tumor Therapy

Open Access Mini Review

Unmasking the microbiome: the hidden role of gut bacteria in the 
pathogenesis of colorectal cancer and its prevention strategies
Tallha W. Khawaja1† , Lei Zhao2†, Raiq Siddiq1, Mohammad U. Ahmad1, Caitlin P. Burns1, Jacob M. 
Parker1, Mark R. Wakefield3,4, Yujiang Fang1,3,4*
1Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des 
Moines, IA 50266, USA
2Department of Respiratory Medicine, the 2nd People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical 
University, Hefei 230011, Anhui, China
3Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
4Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
†These authors contributed equally to this work.
*Correspondence: Yujiang Fang, Department of Microbiology, Immunology & Pathology, Des Moines University College of 
Osteopathic Medicine, West Des Moines, IA 50266, USA. yujiang.fang@dmu.edu
Academic Editor: Nicola Normanno, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Italy
Received: July 23, 2025  Accepted: November 5, 2025  Published: November 24, 2025

Cite this article: Khawaja TW, Zhao L, Siddiq R, Ahmad MU, Burns CP, Parker JM,  et al. Unmasking the microbiome: the 
hidden role of gut bacteria in the pathogenesis of colorectal cancer and its prevention strategies. Explor Target Antitumor 
Ther. 2025;6:1002351. https://doi.org/10.37349/etat.2025.1002351

Abstract
Colorectal cancer (CRC) is a significant global health problem, ranking as the third most common cancer 
and the second leading cause of cancer deaths in the world. The highest incidence of CRC is found in 
developed regions, thus underlining its characterization as a Western disease. Major risk factors for CRC 
include an unhealthy diet, lack of physical exercise, and cigarette smoking. The gut microbiota refers to the 
complex community of microorganisms inhabiting the digestive tract and plays a crucial role in the 
maintenance of host health and modulation of immune responses. Gut dysbiosis can be caused by poor diet 
and alcohol consumption, increasing CRC risk. Specific bacteria, such as Fusobacterium nucleatum and 
Escherichia coli, may have a close relationship with CRC development, while the beneficial bacteria are 
frequently depleted in CRC patients. This paper will discuss the mechanisms of colorectal carcinogenesis, 
focusing on the effects of bacterial genotoxins, immune evasion, inflammation, and diet. Additionally, it 
reviews preventative strategies including short-chain fatty acids (SCFAs), prebiotics, probiotics, synbiotic 
supplements, and the method of fecal microbiota transplantation (FMT), showing their potential to improve 
overall gut health and reduce the risk for CRC. Understanding these mechanisms and implementing specific 
preventative strategies could significantly enhance clinical interventions and reduce the global burden of 
CRC.
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Introduction
Colorectal cancer (CRC) is an emerging global health burden, characterized as the third most common kind 
of cancer, and is the second-leading cause of cancer-related death worldwide [1]. CRC is prevalent in highly 
developed countries, including the United States, Canada, and parts of Europe. By contrast, Africa and South 
Central Asia have a relatively low incidence of CRC, making it primarily a Western disease. CRC affects both 
men and women, though males generally have a slightly higher incidence rate [2]. The major lifestyle risk 
factors for CRC include diet, physical activity, and smoking. It is estimated that high processed red meat 
consumption and low fiber, saturated fat, calcium, and vitamin D intake confer an increased CRC risk, while 
regular physical activity and ideal weight can reduce CRC risk [3]. Moreover, genetic predispositions and 
environmental factors can increase the likelihood of CRC; regular screening and early detection may be 
necessary in people who have a family history of the disease [1, 3]. CRC can disrupt different parts of the 
colon and is classified as proximal (right-sided) or distal (left-sided). Distal CRC is more prevalent and can 
include the sigmoid colon or the rectum. This is contrasted to right-sided cancers, which have a poorer 
prognosis compared to other forms of CRC [4]. Understanding the various loci and mechanisms of CRC can 
contribute to the development of location-specific preventative strategies or treatment modalities.

The gut microbiota consists of a diverse community of microorganisms residing in the digestive tract 
that work in concert with the host. Its development begins at birth and is affected by things such as mode of 
delivery and breastfeeding, followed by environmental exposures. Once established, the gut microbiota 
plays a crucial role in maintaining host health, primarily residing in the colonic compartment, where it 
plays a vital role in digestion, metabolism, and immunological development [5]. It degrades complex 
carbohydrates, synthesizes essential vitamins, and modulates the gut barrier integrity [6, 7]. The gut 
microbiota can also modulate the immune system through the production of short-chain fatty acids (SCFAs) 
such as butyrate, which are the end products of dietary fiber fermentation by gut bacteria. Butyrate 
supports the immune system by promoting the differentiation and function of regulatory T cells (Tregs) [6–
8]. Moreover, the interference of the gut microbiota with the immune system may further affect the innate 
immune response. Through interaction with pattern recognition receptors, like Toll-like receptors, the gut 
microbiota can modulate the activity of the immune system. This enhances the body’s ability to identify and 
respond to pathogens and can exert some pro-inflammatory effects [9]. These interactions provide insight 
that could lead to the development of targeted prevention and treatment strategies based on the objectives 
of restoring the gut microbiota and hence reducing the risk of CRC through the use of probiotics or dietary 
interventions.

Dysbiosis, which is an imbalance in the levels of different gut microbiota, can significantly increase the 
risk of CRC. Risk factors such as a poor diet and significant alcohol consumption have the ability to disrupt 
the gut microbiome function, promoting a cancer-conducive environment [10]. For instance, a diet high in 
processed red meats and low in fiber may change the levels of gut bacteria, while alcohol can directly 
exacerbate inflammation and increase the growth of harmful bacteria [11]. Fusobacterium nucleatum, an 
opportunistic pathogen, is frequently found at elevated levels in CRC patients and linked to poor prognosis. 
This bacterium promotes tumor growth, metastasis, and an inflammatory environment, making it a 
potential CRC biomarker [12]. Other bacteria associated with CRC include Bacteroides fragilis, Escherichia 
coli, Enterococcus faecalis, and Streptococcus gallolyticus, each contributing to disease progression through 
toxin production, chronic inflammation, and immune system modulation. Conversely, beneficial bacteria 
such as Bifidobacterium, Lactobacillus, Enterococci, and Propionibacteria are often depleted in CRC patients 
[7]. The benefits of the gut microbiota to the host’s physiology are vast, including nutrition, immune 
development, and host defense [13]. Some bacterial species present in the gut also have the ability to 
participate in the biosynthesis of several components, such as vitamin K and vitamin B [14]. As stated 
above, SCFAs are a byproduct of dietary fiber fermentation by the gut bacteria, which can ultimately play a 
role in the immune response and further prove the gut bacteria’s necessity for human function and well-
being.

Comprehending the pathways in which gut dysbiosis contributes to the development of CRC facilitates 
the formulation of focused prevention interventions. Diet modification, supplementation with probiotics, 
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prebiotics, synbiotics, SCFAs, and fecal microbiota transplantation (FMT) are approaches that restore a 
healthy gut microbiome, regulate immune responses, and reduce the risk of developing CRC. This review 
highlights the pathogenic mechanisms as well as the potential of these microbiota-centered interventions.

Pathogenesis of CRC
Although the specific pathways that lead to the development and progression of CRC are unknown, several 
variables have been identified as crucial. These variables consist of immunological evasion strategies, 
nutritional effects, chronic inflammation, and bacterial genotoxins. The effects of these strategies are 
visualized in Figure 1. We will provide further explanation about these recommended techniques in the 
upcoming sections.

Figure 1. Overview of gut microbiota-driven mechanisms in colorectal cancer. DNA-damaging bacterial toxins induce 
genomic instability, while dysbiosis triggers inflammation and proinflammatory cytokine release. Gut microbes upregulate 
suppressive immune cells, and together with diet, disrupt gut barrier integrity—promoting tumor development. Created in 
BioRender. Khawaja, T. (2025) https://BioRender.com/c2nwdgb.

Genotoxins derived from various bacteria play a critical role in the development and further 
progression of CRC. For instance, colibactin, produced by polyketide synthase-bearing Escherichia coli 
strains, and a cytolethal distending toxin produced by Campylobacter jejuni, have the ability to induce 
double-stranded breaks in the host cell DNA [15, 16]. These genotoxins induce a signaling cascade of DNA 
damage leading to persistent and sustained mitosis due to the inactivation of checkpoints, chromosomal 
aberrations, and an increased rate of genomic mutations, resulting in the development of various cancers 
[17]. According to the driver-passenger model, driver bacteria are a subpopulation of native intestinal 
bacteria that induce CRC by producing genotoxic compounds that damage the DNA in epithelial cells. These 
initial alterations in the tumor environment further select for the overgrowth of opportunistic bacteria, 
termed passenger bacteria [18]. The genotoxins produced by the gut microbiota constantly initiate DNA 
damage in host epithelial cells in synergy with chronic inflammation and other environmental factors 
within the gut microenvironment, facilitating CRC initiation and its further progression [19].

Immune evasion is a hallmark process in CRC progression, whereby tumors can evade the host’s 
defense mechanisms. Fusobacterium nucleatum has been shown to play an essential role in increasing 
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myeloid-derived suppressor cells (MDSCs), CD11b+ cells, M2-like tumor-associated macrophages (M2 
TAMs), and tumor-associated neutrophils (TANs). These cells act as negative regulators of antitumor 
immunity [20]. Furthermore, Fusobacterium nucleatum can produce an inhibitor protein that strongly 
inhibits the activity of human T-cells by causing cell cycle arrest at the G1 phase, creating an 
immunosuppressive environment favorable to tumor cell proliferation [21]. Another critical factor involved 
in immune evasion is the transcription factor SOX-17, which is not expressed in the adult normal intestinal 
epithelium but is re-expressed at the beginning of tumorigenesis. It acts by reducing the expression of the 
receptor for interferon-gamma (IFNGR1), dampening colon cancer cells’ ability to respond to this critical 
cytokine [22]. Because interferon-gamma (IFNγ) signaling is critical for a successful anticancer immune 
response, loss of this receptor pathway is associated with resistance to immune checkpoint blockade in 
patients [23]. The immunosuppressed environment initiated by these tumor cells not only allows for the 
escape of immune surveillance but also sets the stage for chronic inflammation, further promoting 
carcinogenesis.

Inflammation is another important process for CRC initiation and progression [24]. Gut pathogenic 
bacteria can activate several signaling pathways associated with IL-17 and NF-κB, and pattern recognition 
receptor-mediated pathways, resulting in inflammation. These pathways have critical roles in immune 
response and inflammation and often disrupt the gut barrier function, further fuelling the inflammatory 
process [25]. Specifically, Bacteroides fragilis initiates an inflammatory cascade involving activation of the 
IL-17R, NF-κB, and STAT3 signaling pathways in colonic epithelial cells, followed by carcinogenesis. The 
basis for this induction is chronic inflammation, which then provides an appropriate microenvironment for 
cancer [26].

Diet also has a vital role in the development of CRC. A high intake of red meat is associated with an 
increase in sulfur production, which is known to have possible carcinogenic action capable of damaging the 
colonic mucosa and favoring carcinogenesis [10]. Conversely, a decreased dietary fiber intake results in a 
reduced production of SCFAs, which are important in maintaining gut health and preventing inflammation. 
Eventually, reduced production of these SCFA will increase the risk of developing CRC [27]. Additionally, 
increased levels of secondary bile acids, such as deoxycholic acid, have been linked to increased CRC 
susceptibility in individuals adhering to a high-fat diet [28]. All these dietary factors will result in an 
environment conducive to cancer development, highlighting the importance of dietary choices in CRC 
prevention.

Prevention and therapy strategies
Understanding the underlying processes of CRC carcinogenesis enables the implementation of specific 
prevention methods. These methods are designed to lessen the effects of negative factors created by the 
pathogenesis of CRC, boost the positive factors, and ultimately lower CRC risk. The importance of dietary 
components, probiotics, prebiotics, synbiotics, and FMT stands out among these approaches. These 
methods not only affect the gut microbiota composition but also aim to regulate the inflammatory and 
immune responses, leading to a more conducive environment for gut health and cancer prevention.

Among the different CRC prevention strategies, SCFA, specifically butyrate, plays a prominent role. 
Butyrate is a compound synthesized via the fermentation of dietary fibers by the gut microbiota and 
possesses many different anti-tumor activities [8]. It preserves the integrity of the colonic epithelium, 
which is crucial in preventing cancer development. It is also postulated that butyrate promotes healthy 
colonocyte turnover by providing an energy source, promoting cell differentiation, and growth [29]. 
Butyrate also enhances insulin sensitivity and lowers adiposity, potentially reducing CRC risk [30, 31]. 
Additionally, it has an anti-inflammatory action by blocking NF-κB activation, which plays a strong role in 
the inflammatory process during tumor development [32]. These protective effects can be promoted by 
increasing the consumption of fiber or by directly taking butyrate supplements. A dietary intake rich in 
fiber is essential in preventing CRC; other SCFAs, namely acetate and propionate, also play an essential role 
in gut health [33]. Acetate, the most abundant SCFA, serves as fuel for cells of the distal gut, modulates lipid 
metabolism, and regulates appetite [34]. Propionate inhibits cholesterol synthesis and exhibits anti-
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inflammatory properties [35]. Collectively, SCFAs provide a healthy gut environment, increase immune 
function, and reduce inflammation, further reducing the risk of CRC.

Probiotics, which are live microorganisms that provide health benefits, have also demonstrated 
promise in modulating the gut microbiota. This is done through promoting colon health and supporting the 
intestinal barrier function, thus making them relevant in the context of CRC [36]. As dysbiosis is connected 
to the development of CRC, probiotics play a critical role in preserving the equilibrium of the gut 
microbiome. In a noteworthy study, 60 patients following surgical CRC resection participated in a 
randomized, double-blind, placebo-controlled experiment to demonstrate these effects. In this group, 29 
patients were given a probiotic powder containing 1 × 108 CFU of Bifidobacterium animalis subsp. lactis 
(HY8002), 5 × 107 CFU of Lactobacillus casei (HY2782), and 5 × 107 CFU of Lactobacillus plantarum 
(HY7712) for four weeks, beginning one week prior to surgery, while the remaining 31 patients were given 
a placebo. Beneficial bacteria like Bifidobacterium, Akkermansia, Parabacteroides, Veillonella, and 
Lactobacillus were more prevalent in the therapy group. At the same time, there was a noticeable decrease 
in CRC-associated bacteria, such as Porphyromonas, Fusobacterium, Alloprevotella, and Prevotella [37].

This change in the gut microbiota composition suggests that probiotic supplements can improve the 
gut environment and potentially lower the CRC risk. Probiotics help maintain gut health by enhancing gut 
barrier function, mainly by upregulating or normalizing tight junction expression. This prevents the 
leakiness commonly found in CRC patients, which allows for microbial translocation [38]. Additionally, 
probiotics can induce apoptosis in CRC cells, eliminating malignant cells and halting further tumor growth. 
Furthermore, probiotics have anti-inflammatory qualities that help reduce gut inflammation [39]. 
Probiotics, therefore, form one of the many dietary strategies targeted at reducing CRC risk due to their 
capacity to modify the immune response, underpinning their role in cancer prevention [40]. Probiotics are 
helpful in maintaining gut health and offer protection from inflammation and carcinogenesis through their 
interactions that result in an increased number of good bacteria and a reduced amount of dangerous 
bacteria [37].

Prebiotics, or non-digestible food elements, selectively stimulate the growth and activity of beneficial 
intestinal bacteria, hence promoting gut health and reducing CRC risk in the host [41]. While not all dietary 
fiber may be considered a prebiotic, all prebiotics derive from dietary fiber [42]. To be labelled as a 
prebiotic, three criteria must be met: resistance to stomach acidity, hydrolysis by digestive enzymes, and 
resistance to upper gastrointestinal system absorption. It must also be fermented by intestinal microflora 
and specifically increase the growth and activity of beneficial gut bacteria [43]. Many foods, including soy 
beans, chicory root, oats, wheat, and cornstarch, naturally contain prebiotics [44]. These foods support the 
growth and nutrition of beneficial bacteria like Lactobacillus and Bifidobacterium, which are essential for a 
balanced gut microbiota [45]. One significant outcome of prebiotic fermentation is the synthesis of SCFAs, 
particularly butyrate. Apart from providing primary energy to colonocytes and maintaining the integrity of 
the colonic epithelium, butyrate also reduced colonic mucosal damage by decreasing certain serum 
inflammatory cytokines, including IL-6 and TNF-α [46].

The term “synbiotics” refers to the advantageous effects of combining the actions of both probiotics 
and prebiotics, offering the potential to significantly enhance gut health [47]. Prebiotics nourish probiotics, 
fostering a more robust and resilient gut microbiota. By enhancing the ratio of helpful bacteria and boosting 
the synthesis of SCFAs like butyrate, this combination improves the balance of beneficial bacteria, controls 
immune responses, and reduces inflammation [48]. Chronic inflammation increases the levels of IL-6, 
STAT3, NF-κB, PGE-2, COX-2, and TNF-α, promoting a pro-carcinogenic environment and CRC progression 
[49]. Synbiotics have been shown to reduce these inflammatory markers, mitigating their harmful effects. 
By decreasing IL-6, STAT3, NF-κB, PGE-2, COX-2, and TNF-α levels, combining the effects of prebiotics and 
probiotics helps lower inflammation and inhibit cancer-promoting pathways, offering a promising strategy 
for CRC prevention and treatment [50]. Using probiotics and prebiotics in tandem provides a 
comprehensive approach to preserving gut health and reducing CRC risk. Table 1 helps to summarize the 
status of prebiotics, probiotics, and synbiotics along with their potential contributions in CRC prevention.
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Table 1. Effects of probiotics, prebiotics, and synbiotics on gut health.

Intervention Mechanism of action Effect on gut microbiota Impact on CRC prevention

Probiotics Inactivate carcinogens and regulate 
apoptosis and cell differentiation. Helps 
restore the intestinal barrier and reduce 
inflammation

↑ Bifidobacterium, 
Akkermansia, 
Parabacteroides, Veillonella, 
Lactobacillus

↓ Porphyromonas, 
Fusobacterium, Alloprevotella, 
Prevotella

Improves gut environment, enhances 
barrier integrity, induces apoptosis in 
CRC cells, and reduces inflammation

Prebiotics Selectively helps to stimulate beneficial 
bacteria, and ferments to produce 
SCFAs (esp. butyrate)

↑ Lactobacillus, 
Bifidobacterium, SCFA 
production (butyrate)

Maintains colonic epithelium integrity, 
reduces IL-6 and TNF-α, lowers 
mucosal damage, improves immune 
balance

Synbiotics Synergistic effects: prebiotics nourish 
probiotics; ↑ SCFA (butyrate) 
production; regulate immune signaling

Enhanced balance of 
beneficial bacteria; ↑ SCFA 
synthesis

Decrease IL-6, STAT3, NF-κB, PGE-
2, COX-2, TNF-α; reduce chronic 
inflammation and inhibit cancer-
promoting pathways

The table summarizes the mechanisms and preventive effects of probiotics, prebiotics, along synbiotics in CRC. It is based on 
current evidence in this study. ↑: indicates an increase; ↓: indicates a decrease. CRC: colorectal cancer; SCFAs: short-chain 
fatty acids.

FMT involves the transfer of fecal matter from a healthy donor into a recipient’s gastrointestinal tract 
to reestablish a well-balanced microbiota [51]. This can be visualized in Figure 2. There are a variety of 
delivery methods for FMT, including upper gastrointestinal administration via upper esophagogastroduo-
denoscopy, nasogastric, nasojejunal, and nasoduodenal tubes, or oral capsules. It can also be administered 
through the lower gastrointestinal route via colonoscopy, sigmoidoscopy, or an enema [52]. Evidence from 
preclinical mouse studies has shown that the use of FMT has beneficial effects on CRC. This was done by de-
creasing the inflammation and reducing the abundance of cancer-promoting bacteria. A recent study has 
shown that treatment with anti-PD-1 (4 × 200 µg) and FMT (4 × 5 × 109 CFU) from healthy human donors 
improved survival and reduced tumor growth in CT26-tumor-bearing mice. This combined treatment in-
creased the abundance of Parabacteroides distasonis and other beneficial bacteria while reducing the 
abundance of harmful bacteria, such as Clostridium sp. HGF2, Enterococcus hirae, Dorea sp. 52, and Lacto-
bacillus murinus. Moreover, there was an increased abundance of particular Bacteroides species, such as B. 
thetaiotaomicron [53]. B. thetaiotaomicron maintains intestinal homeostasis by inducing dendritic cells 
through microbe-host crosstalk, ultimately suppressing CRC carcinogenesis via its metabolite, propionate 
[54, 55]. Increased levels of aspirin, a growth inhibitor of the CRC-associated bacterium Fusobacterium 
nucleatum, and higher levels of punicic acid, known for its antitumor activities, were also observed [53]. 
These results further support that combining FMT with immunotherapy could be a very promising 
approach for CRC treatment, although further clinical studies are needed to study the efficacy in humans.

Conclusions
In summary, CRC remains an important health challenge influenced by both genetic and environmental 
factors. The gut microbiota and its overall composition play an essential role during CRC initiation and 
progression, showing that an equilibrated microbial balance is essential in a healthy individual. This review 
highlights the specific organisms found in the gut microbiota, such as Fusobacterium nucleatum and 
Bacteroides fragilis, and how they strongly influence CRC risk and progression, with beneficial species and 
SCFAs providing protective effects. Some limitations, such as reliance on preclinical studies as well as 
incomplete human data, highlight the need for further investigation to validate such strategies. Various 
preventative measures, such as increased dietary fiber intake, probiotics, prebiotics, and their combined 
outcomes under synbiotics, show great promise in reducing CRC risk. Additionally, FMT represents a novel 
therapeutic intervention with the potential to restore gut microbiota balance and decrease inflammation. 
Further research is necessary to elucidate the mechanism of action by which gut microbiota influences CRC 
progression. Such results could be used to create new preventative strategies. Specifically, future research 
should focus on understanding the interactions of different bacterial species in the human GI system and 
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Figure 2. FMT in colorectal cancer. The FMT process collects fecal matter from a healthy donor. A process of mixing and 
filtering the material prepares a microbiota-rich suspension. The material is then delivered to the recipient either via lower or 
upper GI routes. This restores a balanced gut microbiota, reduces harmful bacteria, and increases beneficial species. FMT: 
fecal microbiota transplantation; GI: gastrointestinal.

the host immune response, the long-term effects of FMT and varying results based on administration 
routes, as well as developing personalized dietary interventions according to a person’s individual risk 
profile. Doing so will enhance our understanding of cancer prevention and CRC treatments, leading to 
better patient outcomes.
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