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Abstract
The realization that the composition and functionality of gut microbiota have an impact on the outcome of 
immune checkpoint inhibition (ICI) therapy of cancer has initiated research into the potential of microbiota 
management as adjunctive therapy. Fecal microbiota transplantation can improve the outcome of ICI, but 
for optimal donor selection, safety, and large-scale implementation, there remain bottlenecks. Alternative 
strategies, such as the use of selected bacterial species, require fundamental knowledge of the underlying 
mechanisms governing the interaction between (intestinal) microbiota and the immune system. Gut 
microbiota also appears to be able to colonize the tumor microenvironment. Some bacterial species directly 
or indirectly promote tumor growth. Other defined species have tumoricidal properties. These findings and 
insights are now being used to further optimize the functionality of the immune system and shape the 
tumor microenvironment in order to improve the outcome of ICI.
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Introduction
Tumor cells can evade the immune system in many different ways. One of the most important is the 
expression of checkpoint inhibition molecules such as PD-ligand 1 (PD-L1). The realization of the crucial 
role of checkpoint inhibition, and thus the potential for new ways of therapy of cancer, has sparked 
research into in vivo application of monoclonal antibodies against PD-L1 and other checkpoint inhibitors, 
either on the tumor cells or on cytotoxic T lymphocytes [1–3]. This novel form of cancer immunotherapy, 
immune checkpoint inhibition (ICI) therapy, turned out to be a breakthrough for which James Allison and 
Tasuku Honjo, because of their fundamental discoveries of checkpoint molecules, received the Nobel prize 
in 2018 [4, 5]. For a number of cancers, even when metastasized, ICI therapy has been effective, but 
unfortunately, not in all patients. The actual eradication of the tumor depends on the functionality of the 
cellular immune system of the patient, which is likely the reason for the qualified success.
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The cover story of Science magazine of January 5, 2018, was on Gut Microbes and Cancer, with the 
subheading “Intestinal microbiota influence cancer patient responses to immunotherapy” [6]. The evolving 
understanding of the mechanism underlying this effect is that gut microbiota, either residing in the 
intestine or having translocated to the tumor microenvironment, modulate the immune system of the 
patient, enabling a successful anti-tumor immune response. A full understanding of the cellular and 
molecular interactions could ultimately lead to precise microbiota management and thus further 
improvement of ICI therapy of cancer.

Immune checkpoint inhibition therapy and microbiota
The first indication that (gut) microbiota can have an impact on the outcome of ICI therapy came from the 
seminal study by Routy et al. [7] in 2018. These authors found that the outcome of ICI therapy in patients 
with non-small cell lung carcinoma (NSCLC), who were treated with antibiotics in the period directly before 
programmed death 1 (PD-1)/PD-L1 targeted ICI therapy, was significantly poorer than in patients not 
treated with antibiotics [7]. Moreover, analysis of the gut microbiota composition of the patients showed a 
significant association between the clinical responses to ICIs and the relative abundance of a specific 
bacterium, Akkermansia muciniphila (A. muciniphila). In germ-free mice, inoculated with a fibrosarcoma cell 
line, tumor growth could be inhibited with PD-1 blockade only when the mice were given a fecal microbiota 
transplantation (FMT) with fecal material from patients who previously had responded (R) to ICI therapy, 
but not with an FMT from non-responder (NR) patients. Remarkably, the addition of A. muciniphila to FMT 
from NR patients also restored the ability of the mice to respond to the ICI treatment. Unfortunately, later 
studies, discussed below, showed that A. muciniphila is not the “magic bacterial bullet” that renders ICI 
therapy successful in every patient [7, 8].

Within 5 years after the above-described human studies and animal experiments, Routy et al. [9] 
published a new study expanding on their previous findings. This study used FMT plus anti-PD-1 ICI in a 
phase 1 trial in patients with advanced melanoma. Of the 20 patients included in the study, none were 
previously treated with anti-PD-1, and the fecal material for the FMT was taken from three healthy male 
donors. After a follow-up of over 20 months, the median progression-free survival had not been reached, 
with 16 patients surviving. These data showed that FMT, using fecal matter from healthy donors, is safe for 
patients in the first-line setting.

Many more clinical studies on the effect of FMT on the outcome of ICI therapy have subsequently been 
initiated. Baruch et al. [10] found that 3 out of 10 patients, previously unresponsive to anti-PD-1 ICI, had 
partial and complete responses after having had FMT. Notably, two different fecal donors, who had 
previously been treated with anti-PD-1 monotherapy and had achieved a complete response of at least 
1 year, were used of which only one donor was responsible for the 3 patients gaining a response. This effect 
indicates the importance of the composition of the fecal microbiota, but the reason for the dissonance 
between donor 1 and donor 2 is unclear. Donor group 1 showed a higher relative abundance of taxa like 
Bifidobacterium adolescentis, whereas donor group 2 had a high relative abundance of taxa like 
Ruminococcus bromii. Moreover, a higher relative abundance of Enterococcaceae, Enterococcus, and 
Streptococcus australis, and a lower relative abundance of Veillonella atypica in both donor groups [10]. 
However, the analysis of these specific taxa across the entire patient cohort revealed that some NRs and 
pretreatment samples displayed similar microbial dynamics. As a result, no definitive association between 
these bacterial classes and clinical response to therapy could be established from this study. The 
heterogeneity of FMT efficacy is therefore not fully understood yet, but must include both donor-specific 
effects, such as microbiota composition, as well as host factors.

Moreover, another phase 1 trial showed that 6 out of 15 patients, with an immunological ability to 
respond to the treatment and an unfavorable microbiota composition, responded to responder-derived 
FMT with anti-PD-1 treatment [11]. Some discussion worthy findings were that in this study the microbiota 
of complete responding donors displayed greater alpha diversity compared to partial responding donors. 
Additionally, gut bacterial commensals previously associated with enhanced responses to anti-PD-1 
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therapy, such as Faecalibacterium prausnitzii and A. muciniphila, exhibited a negative correlation with 
CXCL8 (IL-8). In contrast, members of the Bacteroides genus, which have been linked to reduced responses 
to anti-PD-1 treatment, showed a positive correlation with CXCL8 (IL-8).

Mechanisms underlying the improvement of the outcome of ICI therapy by gut microbiota

While the studies highlighted above have shown an association between gut microbiota composition and 
the outcome of ICI therapy, they do not suggest potential mechanisms. The remodeling of gut microbiota via 
FMT improves the outcome of ICI, but not in all patients. FMT, even when using fecal material from super 
donors, does not guarantee success in every patient. To improve the outcome of ICI therapy, a better 
understanding of the interactions between microbiota and the immune system is needed. Based on 
previous gut microbiota and probiotic studies, it is known that gut microbiota can modulate the 
functionality of the immune system.

Immune modulation by gut microbiota

Fermentation of dietary fibers and indigestible carbohydrates by gut microbiota leads to the production of 
short-chain fatty acids (SCFAs). The main SCFAs are butyrate, acetate, and propionate. An important target 
cell is the regulatory T cell (Treg), a cell characterized by expression of CD25 and the transcription factor 
forkhead box P3 (FOXP3). Tregs maintain and restore the balance between Th1, Th2, Th17, and Tfh cells 
[12]. It has been extensively demonstrated that the induction of Tregs is mediated by butyrate, produced by 
gut microbiota. Butyrate enhances histone H3 acetylation in the promoter region of the (FOXP3) locus [13]. 
FMT leads to an increase in CD25+FOXP3+ Treg and concomitantly reduces the number and activity of Th17 
cells and related cytokines IL-6 and IL-17 [14].

The induction of Tregs and repression of Th17 cells is the preferred type of immunomodulation in the 
case of inflammatory diseases as well as allergic diseases [15]. In the case of tumor immunology, activation 
of Tregs would be undesired [16]. Tumor tissue consists of the tumor cells but also an array of non-tumor 
cells, including invading cells of the innate and acquired immune system. Collectively, this is defined as the 
tumor microenvironment (TME). Within the TME, activation of Tregs can best be avoided. The TME 
contains different subsets of Tregs, including thymic-derived Tregs (tTregs), peripheral induced Tregs 
(pTregs), tissue-resident Tregs (tr-Tregs), and follicular Tregs (Tfr), but they all have immunosuppressive 
effects, therefore promoting tumor immune evasion. Indeed, it was found that patients with multiple 
myeloma or metastatic prostate carcinoma treated with anti-CTLA-4 responded significantly poorer to 
therapy than patients with high serum butyrate levels and higher numbers of blood Tregs [17].

Butyrate, apart from inducing Tregs, also stimulates the activation of cytotoxic T cells (CTLs), leading to 
increased production and release of γ-interferon and granzyme, thus contributing to tumor eradication 
(Figure 1A) [18, 19]. Acetate is also active in this respect [20]. In addition to their effect on Tregs and CTLs, 
SCFAs impact natural killer (NK) cells and macrophages within the TME [21]. On the other hand, butyrate 
and propionate promote an anti-inflammatory environment, which may, under certain conditions, favor 
tumor progression [22]. These different and sometimes opposing effects of SCFAs underscore the 
complexity of immune modulation in the TME by the gut microbiota.

Two different bacterial metabolites of tryptophan (Trp) have profound immune-modulating effects 
relevant for tumor eradication. The first one is indole-3-aldehyde (I3A), generated by Lactobacillus reuteri 
(L. reuteri) (Figure 1B), which activates CTL, leading to increased γ-interferon production. In preclinical 
melanoma models, L. reuteri produced I3A improves the efficacy of ICI therapy [24]. Suggestive of the 
clinical relevance is the observation that the overall survival of melanoma patients on ICI therapy is better 
in patients with high serum levels of I3A [24].

Other gut bacterial Trp metabolites like indole-3-propionic acid (IPA), produced in tandem by 
Lactobacillus johnsonii (L. johnsonii) and Clostridium sporogenes (C. sporogenes) (Figure 1B), have 
demonstrated the ability to alter the epigenetic states of immune cells through mechanisms such as H3K27 
acetylation [21, 25, 26]. In this context, the effect of IPA on so-called precursor exhausted T cells (Tpex) is 
relevant. Within TME, CD8+ CTLs are crucial mediators of antitumor immunity. However, after prolonged 
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Figure 1. Bacterial metabolites involved in the anti-tumor response. (A) Butyrate stimulates the tumor-killing capacity of 
CD8+ cytotoxic T cells (CTL). (B) The bacterial metabolites are generated from tryptophan (Trp) metabolism. Lactobacillus 
reuteri (L. reuteri) converts Trp into indole-3-aldehyde (I3A), which has a stimulatory effect on CTLs. Lactobacillus johnsonii (L. 
johnsonii), along with Clostridium sporogenes (C. sporogenes), converts Trp into indole-3-propionic acid (IPA). This molecule 
activates the transcription factor gene Tcf7, which contributes to the generation of precursor exhausted T cells (Tpex), 
precursors of effector CTLs. HDAC: histone deacetylase. Adapted from [23]. ©2025 The authors. Licensed under a CC BY (
https://creativecommons.org/licenses/by/4.0/).

and persistent T cell receptor stimulation, they may differentiate into a dysfunctional state, termed 
exhausted T cells (Tex). However, Tpex cells can be rejuvenated to effector CTLs [27]. IPA can activate the 
transcription factor T cell factor 1 (TCF-1) by H3K27 acetylation at the super enhancer region of the Tcf7 
gene. TCF-1 induces Tpex activation and thus potentially enhances the effectiveness of ICI (Figure 1B). In an 
animal model, IPA is unable to enhance the efficacy of ICI therapy in Tcf7-/- mice [26].

Gut bacteria have other direct or indirect effects (via metabolites) on the tumor cells and/or the TME, 
rendering tumors more susceptible to ICI therapy. Polyphenol-derived microbial metabolites, including 
hydroxyphenyl-γ-valerolactones (PVLs), can suppress the Wnt/β-catenin signaling pathway, a pathway 
commonly dysregulated in colorectal cancer (CRC) [22]. By altering cancer-associated fibroblasts (CAFs) 
and reducing tumor proliferation, polyphenol metabolites show promise as therapeutic agents that 
modulate the metabolic profile of the TME [28]. Gut bacteria can alter the metabolism of chemotherapeutic 
drugs such as irinotecan, affecting their efficacy and toxicity [29–31]. Organoid studies have revealed that 
microbiome manipulation induces phenotypic changes in tumor cells. These include altered expression of 
drug efflux pumps and anti-apoptotic pathways, which may lead to chemoresistance or chemosensitivity 
[32, 33]. Such findings emphasize the need for microbiome-targeted strategies to improve treatment 
outcomes. While L. johnsonii and similar microbes enhance immune therapies, identifying additional 
beneficial strains remains crucial [26] along with a better understanding of the mechanisms through which 
microbial metabolites enhance CTL activation, so that these attributes can be harnessed to improve 
immunotherapy responses across various cancer types.

Detailed investigations into specific microbial interactions with immune checkpoint molecules such as 
PD-1/PD-L1 could uncover novel ways to augment ICI therapies. Routy et al. [7] found that the 
effectiveness of ICI therapy, such as those targeting the PD-1/PD-L1 pathway, is influenced by the gut 
microbiome composition. For instance, the abundance of Clostridioides was found to be higher in melanoma 
patients who responded to ICIs, aligning with similar observations in the gut microbiome of responders. 
Conversely, Gardnerella vaginalis was more abundant in NRs [34]. Furthermore, the presence of certain 
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bacteria, such as Saccharopolyspora, Pseudoxanthomonas, and Streptomyces, in pancreatic adenocarcinoma 
tissues has been linked to enhanced recruitment and activation of CD8+ T cells, a crucial component of the 
adaptive immune response against tumors [25, 35, 36]. This further supports the idea that specific bacterial 
taxa within the TME might modulate the efficacy of ICIs.

Optimizing and personalizing FMT

Originally, it was hypothesized that screening of the gut microbiota of patients who have responded 
favorably to ICI therapy could lead to the identification of universal FMT donors. Developing personalized 
FMT protocols tailored to individual microbiome profiles could optimize inflammation reduction, immune 
activation, and drug efficacy [37]. FMT, utilizing feces from a healthy donor, has demonstrated high success 
rates in treating recurrent Clostridioides difficile infection, with cure rates reaching up to 90%. This success 
stems from Clostridial infections being more responsive to microbial restoration via FMT. However, the 
efficacy of FMT in other (chronic) diseases such as inflammatory bowel diseases (IBD; ulcerative colitis and 
Crohn’s disease), irritable bowel syndrome, and metabolic disease has been less consistent, with clinical 
remission rates ranging from 24% to 50%. This variability has been attributed to IBD’s complex nature as a 
microbiome-driven immunological disorder influenced by host genetics and environmental factors [38, 39].

Dietary interventions could be an additional venue to optimize the effects of FMT. Dietary 
interventions aimed at promoting the production of beneficial microbial metabolites, such as polyphenols 
that modulate Wnt/β-catenin signaling, hold significant potential for CRC and other cancers [40]. Long-
term dietary changes or supplementation with fibers and polyphenols could reshape gut microbiota 
composition, supporting anti-cancer metabolite production. Clinical trials assessing these interventions in 
combination with standard therapies are a critical next step. The first studies on the potential improvement 
of FMT success rate by dietary intervention showed mixed results. In patients with metabolic syndrome, 
the Mediterranean diet, neither for the donor nor the recipient, had no effect on the outcome of the FMT 
[41]. On the other hand, in ulcerative colitis patients, an anti-inflammatory diet did improve the outcome of 
FMT intervention on induction and maintenance of remission of the disease [42]. In an animal model of 
colitis-associated cancer (CAC), a high-fat diet was associated with reduced butyrate and accelerated CAC 
progression [43]. A number of studies on the effects of dietary intervention, either as a single intervention 
or combined with FMT, on the outcome of ICI therapy for cancer are ongoing [44].

Local effects of bacteria in the tumor microenvironment

As already indicated above, the TME consists of both malignant and non-malignant cells (including immune 
cells), the extracellular matrix (ECM), and soluble factors surrounding a tumor (Figure 2). Altogether, the 
TME influences the growth (either positive or negative) of the tumor and the outcome of treatment. 
Although these environments have classically been viewed as sterile sites, recent findings have uncovered 
the presence of certain bacteria residing within them (Figure 2). These bacteria can be distinguished from 
the microbiota on mucosal surfaces and have demonstrated important roles in the modulation of immune 
responses, behavior of tumors, and efficacy of therapies, including ICI.

Many studies have already established that bacteria can be found in different types of tumors, 
including those in the breast, lung, colon, and pancreas. With the use of 16S ribosomal RNA sequencing and 
microscopy, Nejman and co-workers [34] were able to profile over 1,500 tumors and found that most of 
them harbored bacteria, with the microbial compositions varying between the seven types of cancer that 
were investigated, and the microbial diversity being generally limited except for in breast cancer. 
Interestingly, bacteria were also found to be present intracellularly within both cancer and immune cells.

Recent research has also highlighted differences in bacterial composition and metabolism in tumor 
tissues compared to healthy tissues. In CRC, certain bacterial families, such as Lachnospiraceae, are found 
less in adenomatous polyps, while metabolites like acetoacetate and beta-hydroxybutyric acid accumulate. 
In cancerous tissues, an increase in bacteria such as Fusobacterium nucleatum subsp. animalis has been 
observed, along with the buildup of fumarate, a metabolite linked to altered cancer metabolism [45]. These 
findings suggest that specific bacterial populations and their metabolites may actively reshape the TME, 
potentially influencing tumor progression.
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Figure 2. Effect of bacteria and bacterial metabolites on the status (tumor suppression; green semicircle, or tumor 
promoting; red semicircle) of the tumor microenvironment (TME). Cell types or differentiation states indicated in red have 
tumor promoting effects. Microbiota depicted in green have tumor suppressing effects; microbiota in red are tumor-promoting or 
-inducing (see text for further explanation). CAF: cancer-associated fibroblast; CTL: cytotoxic T cell; DC: dendritic cell; ILC: 
innate lymphoid cell; MDSC: myeloid-derived suppressor cells; NK: natural killer; TAM: tumor-associated macrophage; TAN: 
tumor-associated neutrophil; Treg: regulatory T cell.

The location of a tumor is a significant factor that determines the likelihood of bacterial presence. 
Mucosal tumors, such as those in the lung or gastrointestinal tract, are directly exposed to external 
microbiota, increasing their likelihood of harboring bacteria [46]. In contrast, tumors found in otherwise 
sterile sites like the brain or pancreas may acquire bacteria through systemic circulation or transport by 
cells of the immune system. One mechanism by which bacteria translocate from the gut into the 
bloodstream is through disruptions of the intestinal barrier, making it more permeable, allowing bacteria to 
enter the systemic circulation and reach more distal sites. This can be caused by several factors, such as 
stress-induced ileopathy, chemotherapy, and high-salt diets [47–49]. Immune cells can also serve as 
vehicles for microbial transport. Dendritic cells (DCs) from the gut can capture bacteria and migrate to 
lymph nodes and distant organs, particularly when two ICIs are combined. Anti-PD-1 and anti-CTLA-4 
therapy have been shown to activate the immune system and induce gut inflammation, disrupting normal 
barriers. This facilitates the translocation of specific gut bacteria, as DCs transport them into secondary 
lymphoid organs such as mesenteric lymph nodes and even tumors [50, 51]. Furthermore, the hypoxic 
conditions and leaky blood vessels typical of TMEs provide ideal conditions for the growth and colonization 
of anaerobic bacteria [52]. However, methodological challenges to accurately distinguish true intratumor 
bacteria from contamination, as well as the determination of the actual viability of detected bacteria, 
remain a challenge [34].
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Systemic effects of bacteria on tumor cells and the TME

Bacteria can influence tumors not only through local interactions but also through systemic effects that are 
mediated by microbial metabolites. As discussed above, SCFAs and other bacterial metabolites that are 
produced in the gut can circulate throughout the body and modulate immune responses in distal tumors 
[53]. Additionally, the gut microbiome plays an important role in regulating systemic immune activation, 
which could impact the efficacy of ICIs in cancers outside of the gastrointestinal tract [54, 55].

Recent findings indicate that bacteria may also systemically influence metastatic potential by altering 
tumor cell metabolism. Bacillus thermoamylovorans was found to promote metastatic disease through the 
activation of enhanced glycolytic and nucleotide synthesis pathways, both of which have been associated 
with increased tumor aggressiveness [56]. In contrast, a related species, B. subterraneus, did not induce 
these changes. This highlights how functional bacterial genes, rather than bacterial presence alone, may 
drive disease progression. These findings suggest that systemic bacterial metabolites could selectively fuel 
metastatic dissemination and shape tumor evolution beyond the primary site.

Tumor suppression and tumor-promoting effects of microbiota in the TME

One of the key mechanisms through which bacteria within tumors exert local effects on the TME is immune 
modulation. Bacterial ligands can alter the behavior of tumor-associated macrophages (TAMs) to become 
more pro-tumorigenic, supporting the growth of tumors and suppressing immune responses [34, 57]. This 
is achieved through the activation of cell signaling pathways like NF-κB by the bacteria, which then activate 
the transcription of genes that drive inflammation and aid in tumor development [46]. However, not all 
intratumor bacteria promote cancer progression (Table 1). The oral administration of S. mitis isolated from 
gastric cancer tumors has been found to inhibit tumor growth, reducing tumor volume and extending 
survival in tumor-bearing mice [58]. This effect was mediated through the suppression of M2 macrophage 
polarization and infiltration, which reduced pro-tumor immune signaling.

Table 1. Tumor suppression and tumor promoting effects of microbiota.

Bacterial species Tumor suppressing Tumor promoting Reference

Akkermansia municiphilia - PA [59]
Bacteroides fragilis - PA, TP [60]
Bifidobacterium spp. TS - [61]
Clostridium butyricum TS - [62]
Enterococcus faecalis - PA [63]
Escherichia coli (pks+ strains) - TP [55]
Fusobacterium nucleatum - PA, TP [64]
Lactobacillus johnsonii TS - [21]
Lactobacillus reuteri TS - [24]
Lactobacillus rhamnosus - PA [65]
Prevotella spp. - EM [52]
Salmonella typhi - TP [58]
Salmonella spp. TC - [66]
Streptococcus mitis TS - [58]
EM: degradation of extracellular matrix; PA: promotion of angiogenesis; TC: tumoricidal; TP: tumor promoting; TS: tumor 
suppressing.

Beyond the modulation of the immune system, certain bacteria actively modify important components 
of the TME to promote anti-tumor immune responses. Salmonella species have been demonstrated to exert 
varying effects on immune cells, tumor cells, and stromal components that promote tumor regression [66]. 
Salmonella can directly kill tumor cells by apoptosis, autophagy, pyroptosis, and ferroptosis. Through 
immunomodulation, Salmonella aids in recruiting and activating CTLs and NK cells and in reducing 
immunosuppressive Tregs and myeloid-derived suppressor cells. Additionally, the interaction of Salmonella 
with tumor stroma can lead to the remodeling of the ECM. This potentially impedes tumor invasion and 



Explor Target Antitumor Ther. 2025;6:1002348 | https://doi.org/10.37349/etat.2025.1002348 Page 8

metastasis. These findings suggest that besides playing a role in the modification of the immune landscape, 
Salmonella is also able to create a hostile environment that promotes tumor progression through the 
disruption of key structural and metabolic components of the TME.

Apart from Salmonella, other bacterial species also affect the structure and metabolism of the TME, 
facilitating tumor progression. Prevotella bacteria can change the composition of the ECM in such a way that 
it better facilitates tumor invasion and metastasis [52]. Other bacteria can also secrete angiogenic factors 
that alter the behavior of endothelial cells, which leads to the formation of new blood vessels that help 
sustain the growth of tumors [53, 57, 60]. These bacterial species include A. muciniphila, B. fragilis, E. 
faecalis, F. nucleatum, and Lactobacillus. rhamnosus GG (LGG) [59, 60, 63–65]. The angiogenic effects of A. 
muciniphilia, B. fragilis, and LGG are of interest because these species are either widely used probiotic 
bacteria (LGG) or otherwise associated with beneficial effects.

Certain bacteria have also been shown to directly interact with and stimulate oncogenic pathways. 
Certain strains of Escherichia coli, carrying the polyketide synthase (pks) operon, produce colibactin. This 
metabolite causes DNA damage and mutagenesis, thus contributing to the progression of CRC [55, 67]. In 
contrast, a direct reduction in tumor cell proliferation has been observed in mice treated with S. mitis, as 
indicated by a lowered expression of proliferation markers such as PCNA and Ki-67 [58]. Changes in the 
microbial composition within mouse tumors were observed after oral administration of this bacterium. 
This suggests that S. mitis can translocate from the GI tract to the site of the tumor, influence the structure 
of the TME, and impact tumor progression.

A recent study was able to identify distinct microbiomes and metabolomes in different stages of 
colorectal tissue transformation. This included bacterial families like Lachnospiraceae being depleted in 
adenomatous polyp environments and F. nucleatum subsp. animalis being more abundant in cancerous 
tissues [45]. These bacteria have been associated with the accumulation of beta-hydroxybutyric acid and 
fumarate within the TMEs, which may also contribute to the modification of the TME and colorectal tumor 
progression.

Implications for immune checkpoint inhibition therapy

The presence of tumor-associated bacteria significantly influences the efficacy of ICIs. In cases of 
esophageal squamous cell carcinoma (ESCC), enrichment of Streptococcus was associated with an increase 
in CD8+ T cell infiltration and a more favorable response to anti-PD-1 treatment [68]. Similarly, 
supplementation with L. johnsonii has been correlated with the upregulation of progenitor exhausted CD8+ 
T cells and enhanced effectiveness of anti-PD-1 immunotherapy in melanoma, breast cancer, and CRC [26]. 
In melanoma and lung cancer, a more diverse gut microbiome has been linked to better responses to ICI 
therapy [54]. However, some bacteria have also been found to reduce the efficacy of ICIs. F. nucleatum, a 
bacterial species commonly found in CRC and NSCLC, is associated with reduced survival and poor 
response to ICI therapy. This is potentially due to its role in promoting a more immunosuppressive TME 
through its inhibition of CTL activity [52]. Irrespective of ICI, Gammaproteobacteria and also F. nucleatum 
are able to breakdown gemcitabine, a common chemotherapy for pancreatic duct adenocarcinoma [29]. In 
those cases, antibiotic treatment prior to chemotherapy can improve the outcome and survival, but only 
from a median of 7 months to 14 months [69].

The growing insights into the roles of bacteria in the TME have paved the way for the development of 
more innovative combination therapies. Combining the targeting of the microbiota with ICIs could 
potentially optimize immune responses. Bacteria identified as immunosuppressive, such as Fusobacterium, 
could be eliminated with the use of antibiotics, while the abundance of bacteria identified as immunogenic, 
such as Streptococcus and L. johnsonii, could be increased by FMT from selected donors, by probiotics, or 
genetically engineered bacteria [34, 70]. It has been suggested that bacteria invading tumors at distal from 
the intestines are likely transported through systemic circulation via blood or lymph, or by immune cell 
transport. However, a therapeutic approach targeting these routes raises concerns about bacteria gaining 
access to other (healthy) tissues, which could lead to unintended side effects. A potential solution to this 
latter effect is engineering targeted delivery mechanisms that are capable of minimizing systemic side 
effects while optimizing the therapeutic effects of the tumor-associated bacteria.
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Certain bacteria colonize hypoxic regions of the TME. Clostridium novyi (C. novyi)-NT targets hypoxic 
tumor cores, releasing toxins that selectively kill tumor cells. This forms the basis of bacteriolytic therapy, a 
promising experimental approach [29, 71]. Combining bacteriolytic therapies, such as those using C. novyi-
NT, with chemotherapy, radiotherapy, or ICI therapy presents a promising avenue for treatment. Through 
genetic modification, other bacterial species could be created to preferentially target and colonize tumor 
tissues based on hypoxia.

Beyond influencing immune responses through microbiome composition, certain bacterial species may 
enhance the efficacy of ICIs by actively modifying the TME. Salmonella-based cancer therapies have been 
explored for their potential to synergize with ICIs [66]. By inducing pro-inflammatory signaling within the 
tumor, Salmonella enhances the infiltration and activation of cytotoxic immune cells, thereby increasing 
tumor sensitivity to checkpoint blockade. These effects suggest that Salmonella could serve as an adjuvant 
to ICI therapy, improving patient response rates while potentially overcoming resistance mechanisms. The 
ability of Fusobacetrium nucelatum to access human tumors has been demonstrated. This characteristic is 
also explored to be harnessed to use in cancer-targeting therapies [72]. One challenge is enhancing the 
specificity of the therapy to ensure that engineered bacteria target tumor tissue without affecting healthy 
organs.

The bacterial and metabolite composition of the CRC TME presents an opportunity to refine 
immunotherapy approaches. While a healthy gut microbiome and metabolome can help prevent 
malignancies, emerging research suggests that bacterial and metabolite signatures in precancerous 
adenomatous polyps may serve as valuable diagnostic markers for early CRC detection [45]. Additionally, 
leveraging TME composition to predict cancer progression and therapeutic response could help in the 
development of novel treatments and improve patient prognosis. Tumor-associated bacteria could be used 
as predictive biomarkers for therapy response. For example, a favorable response to chemoimmunotherapy 
could be predicted from the presence of Streptococcus in ESCC and L. johnsonii in melanoma, breast cancer, 
and CRC, while a resistance to ICIs could be predicted from high levels of Fusobacterium in colorectal and 
lung cancers [26, 52, 68]. The incorporation of microbiota profiling through tumor biopsy into the pre-
treatment evaluation process for cancer patients could allow for personalized cancer treatment and 
improve the identification of patients more likely to benefit from ICIs. Depending on the tumor-associated 
bacterial species present, additional measures could also be taken to inhibit or enhance the patient’s 
microbiota.

Conclusions
Despite advancements, significant challenges remain in studying the effects and impact of tumor-associated 
bacteria. The very existence of a TME microbiota could be questioned. Contamination during the processing 
of samples and the difficulty of distinguishing viable bacteria from fragments or dead cells complicate data 
interpretation [34]. Current experimental models are insufficient for studying low-biomass bacterial 
communities. For example, traditional mouse models lack the complexity of human microbiota and TME, 
necessitating the development of “triple-humanized” systems integrating human cancer, immune, and 
microbiota components [46].

Future studies should focus on further delineating the mechanisms by which bacteria influence tumor 
initiation, progression, and therapy resistance. Investigating the stability and evolution of tumor microbiota 
over time and under treatment pressures is a necessary first step in revealing the underlying mechanisms 
that ultimately determine interactions occurring in the TME [52]. The identification of metastasis-
promoting bacterial genes could provide an opportunity to develop new therapeutic strategies that target 
bacterial metabolic pathways to disrupt pro-metastatic functions [56]. Therapeutic innovations, such as 
genetically engineered bacteria that could be targeted to the TME and release immune-stimulatory 
molecules or disrupt oncogenic pathways, have great potential for enhancing ICI efficacy [70].

It has been shown in controlled studies that modulation of gut microbiota composition and 
functionality by FMT can improve the outcome of ICI therapy. Large-scale implementation of this procedure 
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is hampered by a number of factors, but mostly because the success rate for an individual patient cannot be 
predicted. The selection of so-called super donors for FMT selected from cancer patients successfully 
treated with ICI therapy has been troublesome because fecal material from these super-donors does not 
overcome ICI non-responsiveness in every patient. It should also be realized that if and when a universal 
super donor could be identified, large-scale application would still be limited. It is fair to conclude that at 
present, the exact mechanisms of success or failure of FMT cannot be predicted. Podlesny et al. [39] have 
shown that the level of engraftment of the FMT does not differ between responder and NR melanoma 
patients. Just as the devil is in the details, maybe the angels are also in the details. One of the YB328 
bacterial strains could be the Hominenteromicrobium [73]. In a mouse model, this bacterium stimulates the 
migration of DC to the TME and promotes CTL function. Moreover, a favorable outcome of ICI therapy in 
patients carrying high numbers of YB328 has been observed [73]. These examples show that for future 
clinical practice, well-defined (consortia of) microbiota would be preferred in terms of safety, 
standardization, quality control, and ease of use. In a small phase 1 study of patients with metastatic renal 
cell carcinoma, progression-free survival was significantly longer in patients receiving ICI therapy with 
daily oral C. butyricum administration than without [62].

Pre-treatment microbiota profiling could also become a cornerstone of personalized cancer therapy, 
allowing for more precise patient stratification and treatment optimization [54]. Additionally, research into 
bacterial and metabolite signatures in precancerous adenomatous polyps could open new avenues for early 
CRC diagnosis. By identifying specific microbial and metabolic changes that precede malignancy, clinicians 
could implement screening tools for early detection and intervention, thereby improving patient outcomes 
and preventing cancer progression.
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