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Abstract
Neoantigen-based immunotherapy has emerged as a transformative approach in cancer treatment, offering 
precision medicine strategies that target tumor-specific antigens derived from genetic, transcriptomic, and 
proteomic alterations unique to cancer cells. These neoantigens serve as highly specific targets for 
personalized therapies, promising more effective and tailored treatments. The aim of this article is to 
explore the advances in neoantigen-based therapies, highlighting successful treatments such as vaccines, 
tumor-infiltrating lymphocyte (TIL) therapy, T-cell receptor-engineered T cells therapy (TCR-T), and 
chimeric antigen receptor T cells therapy (CAR-T), particularly in cancer types like glioblastoma (GBM). 
Advances in technologies such as next-generation sequencing, RNA-based platforms, and CRISPR gene 
editing have accelerated the identification and validation of neoantigens, moving them closer to clinical 
application. Despite promising results, challenges such as tumor heterogeneity, immune evasion, and 
resistance mechanisms persist. The integration of AI-driven tools and multi-omic data has refined 
neoantigen discovery, while combination therapies are being developed to address issues like immune 
suppression and scalability. Additionally, the article discusses the ongoing development of personalized 
immunotherapies targeting tumor mutations, emphasizing the need for continued collaboration between 
computational and experimental approaches. Ultimately, the integration of cutting-edge technologies in 
neoantigen research holds the potential to revolutionize cancer care, offering hope for more effective and 
targeted treatments.

Keywords
Neoantigen-based immunotherapy, precision medicine, cancer, glioblastoma, CAR-T, tumor-infiltrating 
lymphocyte therapy, tumor microenvironment, AI-driven tools

https://orcid.org/0000-0003-0451-5901
https://orcid.org/0000-0001-6438-7855
https://orcid.org/0000-0002-7744-5089
https://orcid.org/0009-0003-0221-589X
mailto:Moawiah.naffaa@duke.edu
https://doi.org/10.37349/etat.2025.1002313
http://crossmark.crossref.org/dialog/?doi=10.37349/etat.2025.1002313&domain=pdf&date_stamp=2025-04-27


Explor Target Antitumor Ther. 2025;6:1002313 | https://doi.org/10.37349/etat.2025.1002313 Page 2

Introduction
The discovery of eukaryotic split genes, with non-coding intronic sequences interspersed within protein-
coding regions, revolutionized our understanding of gene structure and regulation. This breakthrough 
illuminated the process of RNA splicing, where introns are excised from pre-messenger RNA (pre-mRNA) 
by the spliceosome, a ribonucleoprotein complex that ensures the correct ligation of exons to form mature 
mRNA for translation [1, 2]. Splicing, which occurs in approximately 94% of human genes, is a ubiquitous 
and essential process in higher eukaryotes, playing a pivotal role in gene expression. Notably, a significant 
portion of these genes undergoes alternative splicing, generating diverse mRNA isoforms that enable a 
single gene to produce multiple protein variants [3–5]. This diversification is essential for cellular 
differentiation, development, and homeostasis. Aberrant splicing, however, can lead to the production of 
dysfunctional protein isoforms, contributing to various pathological conditions, including cancer and 
neurodegenerative diseases [6–8]. Furthermore, alternative splicing plays a crucial role in the presentation 
of neoantigens, which are tumor-specific antigens (TSAs) formed due to genetic mutations and splicing 
alterations. These neoantigens have emerged as key targets for cancer immunotherapies, highlighting the 
significance of understanding splicing mechanisms in the development of novel therapeutic strategies.

In cancer biology, the concept of TSAs, or neoantigens, has emerged as a transformative approach in 
immunotherapy [9, 10]. Neoantigens arise from somatic mutations and are presented on tumor cell 
surfaces by major histocompatibility complex (MHC) molecules, enabling cytotoxic T lymphocytes (CTLs) to 
target and eliminate tumor cells [9, 11, 12]. The identification of neoantigens has catalyzed the 
development of cancer vaccines and adoptive T cell therapies, all of which amplify tumor-specific immune 
responses [9, 13, 14]. Notably, neoantigens are exclusive to tumor cells, minimizing off-target effects and 
enabling personalized therapeutic approaches.

While most neoantigen research has focused on mutations, recent studies have highlighted a novel 
source: aberrant RNA splicing. Dysregulated splicing can produce cryptic exons or exon-skipping events, 
leading to the generation of tumor-specific splicing isoforms that may serve as immunotherapeutic targets 
[3]. Advances in next-generation sequencing (NGS) and RNA-seq technologies have facilitated the profiling 
of cancer-specific splicing landscapes, uncovering new neoepitopes [15, 16]. Additionally, predictive 
bioinformatics tools that assess MHC-binding affinity and immunogenicity further expand the potential 
pool of actionable targets [17, 18].

Glioblastomas (GBMs) exemplify the need for innovative therapies. Despite multimodal treatments, 
including surgery, radiotherapy, and chemotherapy with temozolomide, median survival remains limited to 
15 months [19, 20]. FDA-approved therapies such as bevacizumab and tumor-treating fields (TTF) offer 
minimal survival benefits, and immunotherapeutic agents like nivolumab and EGFRvIII vaccines have failed 
to achieve efficacy in phase 3 trials. GBM’s inherent heterogeneity, infiltrative growth, and 
immunosuppressive microenvironment contribute to its resistance to conventional treatments [21, 22].

Neoantigen-based personalized peptide vaccines offer a promising avenue for GBM treatment [9, 23]. 
By utilizing NGS to identify tumor-specific mutations and splicing variants, these vaccines target unique 
neoepitopes, generating robust and specific immune responses. Clinical trials targeting the H3K27M 
mutation in diffuse midline gliomas have demonstrated safety and immunogenicity, underscoring the 
potential of personalized immunotherapy for GBM management [24, 25]. This strategy represents a critical 
step in addressing the challenges posed by this devastating malignancy.

This article explores the transformative potential of neoantigen-based immunotherapy, a precision 
oncology approach that targets TSAs arising from genetic, transcriptomic, and proteomic alterations. It 
examines various therapeutic modalities, including neoantigen vaccines, tumor-infiltrating lymphocyte 
(TIL) therapy, T-cell receptor-engineered T cells therapy (TCR-T), and chimeric antigen receptor T cells 
therapy (CAR-T), all of which show promise in treating GBM. The article also highlights how advances in 
NGS, RNA-based platforms, and CRISPR gene-editing technologies have accelerated neoantigen discovery, 
facilitating the development of highly personalized treatments. However, clinical application remains 
challenging due to factors such as tumor heterogeneity, immune evasion, and therapeutic resistance. To 
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overcome these obstacles, the article underscores the need for an integrated approach that combines multi-
omic data analysis, AI-driven predictive modeling, and collaborative efforts between researchers and 
clinicians to optimize neoantigen-based immunotherapies, paving the way for more effective and durable 
cancer treatments.

Advances in neoantigen research: from early insights to clinical 
applications in targeted cancer immunotherapy
Neoantigen research has significantly advanced our understanding of tumor immunology and has been 
crucial in the development of targeted cancer therapies. Neoantigens are tumor-specific proteins that arise 
from somatic mutations in cancer cells, making them highly specific and effective targets for immune 
system recognition. The identification and validation of these neoantigens have revolutionized cancer 
immunotherapy by opening up new possibilities for personalized treatments [10, 26].

The exploration of neoantigens dates back to foundational studies in the mid-20th century, which 
demonstrated the immune system’s ability to recognize tumor cells as foreign [27, 28]. These early insights 
set the stage for further discoveries, including the recognition of T cell-mediated immune responses against 
neoantigens in both murine and human tumor models, validating their immunogenic potential [13, 29].

The technological breakthroughs of the early 2000s, such as NGS and flow cytometry, played a pivotal 
role in advancing neoantigen research. These tools allowed for high-throughput identification and 
validation of neoantigens, deepening our understanding of tumor immunology and T cell responses [30, 
31].

Key milestones in neoantigen research are summarized in Table 1, highlighting how the field has 
evolved from initial discoveries to the application of personalized neoantigen vaccines and adoptive cell 
therapies (ACTs). The progress made in identifying and targeting TSAs demonstrates the transformative 
potential of these.

Table 1. Timeline of key milestones and technological advances in neoantigen-based cancer immunotherapy

Year Milestone Impact on cancer research Key technologies Therapeutic 
applications

References

1950s Immune recognition of 
carcinogen-induced tumors

Role of immune system in 
tumor detection

None Early understanding [32, 33]

1980s T cell recognition of neoantigens 
in mice

Cellular immune 
mechanisms

Murine models None [14, 34]

1990s Confirmed neoantigen reactivity 
in mice

Evidence for tumor-specific 
immune responses

Murine models None [35, 36]

1990s Neoantigen reactivity in human 
cancers

Broadened immune 
detection

Human tumor 
models

None [13]

2000s Neoantigen reactivity in CD4+ T 
cells

Identified immune cell 
responses

Flow cytometry None [37]

2000s Identified neoantigen-reactive T 
cells in melanoma patients

Enhanced clinical 
relevance

Flow cytometry None [38, 39]

2000s Neoantigen reactivity over shared 
antigens

Clarified neoantigen 
advantage

Human tumor 
models

None [40]

2010s NGS for immunogenic 
neoantigen identification

Accelerated antigen 
discovery

NGS None [41, 42]

2010s NGS for neoantigen-reactive T 
cells in melanoma

Mapped T cell specificity NGS, flow 
cytometry

None [43, 44]

2010s Neoantigen-based adoptive cell 
therapy in GI cancer

First clinical application NGS, adoptive cell 
therapy

GI cancer treatment [45, 46]

2010s Personalized neoantigen 
vaccines for melanoma

Pioneered patient-specific 
vaccines

NGS, peptide 
synthesis

Melanoma 
treatment

[47, 48]

2010s KRAS neoantigen adoptive cell 
therapy in colorectal cancer

Targeted oncogene 
mutations

NGS, adoptive cell 
therapy

Colorectal cancer 
treatment

[49, 50]

2010s Personalized neoantigen peptide 
and RNA vaccines

Advanced specificity and 
delivery methods

NGS, RNA 
technology

Multiple tumor types [51, 52]

NGS: next-generation sequencing; GI: gastrointestinal
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Recent advancements in technologies, such as NGS and RNA-based platforms, have greatly accelerated 
the clinical translation of neoantigen research, enhancing the specificity and efficacy of therapeutic 
strategies [31, 53]. Ongoing innovations continue to refine neoantigen-based immunotherapies by 
improving immune responses while reducing off-target effects.

Looking ahead, the integration of cutting-edge technologies like CRISPR and AI may revolutionize the 
discovery and validation of neoantigens. These advancements promise to further enhance the effectiveness 
of cancer treatments, broadening the applicability of neoantigen-based therapies across various cancer 
types.

Mechanisms driving neoantigen diversity: genetic, transcriptomic, and 
proteomic contributions
Neoantigen generation results from a multifaceted interplay of genetic, transcriptomic, and proteomic 
mechanisms, all of which contribute to the diversity of the antigenic landscape. These molecular alterations 
can profoundly affect the immune system’s ability to recognize cancer cells by presenting novel peptide 
sequences that are not found in normal, healthy tissues [54, 55].

At the genomic level, various mutations, such as single nucleotide variants (SNVs), insertions and 
deletions (INDELs), and gene fusions, disrupt the normal coding sequences of genes (Table 2). These 
alterations can lead to the creation of novel open reading frames (ORFs) and chimeric proteins that may 
possess antigenic properties, making them recognizable by the immune system [56, 57]. Additionally, the 
integration of viral sequences or the reactivation of endogenous retroviruses (ERVs) further contributes to 
the diversity of the neoantigen repertoire by introducing foreign protein-coding regions into the genome 
[58, 59]. These changes can be particularly impactful in cancer, where such genomic alterations can create 
unique targets for immune recognition.

Table 2. Classification of neoantigen sources in cancer: genomic, transcriptomic, and proteomic alterations

Category Mechanism Description Neoantigen impact References

Single nucleotide variants 
(SNVs)

A single-base substitution 
causes amino acid changes.

Alters the coding sequence, 
generating novel peptides.

[60]

Insertions and deletions 
(INDELs)

Small insertions or deletions 
lead to frameshift mutations.

Frameshift mutations alter amino 
acid sequences and generate 
novel open reading frames 
(ORFs).

[61, 62]

Gene fusions Fusion of two genes creating a 
chimeric protein.

Generates unique antigenic 
epitopes due to the formation of 
hybrid peptides.

[63]

Genomic 
mutations

Viral sequences and 
endogenous retroviruses 
(ERVs)

Integration/reactivation of viral 
sequences in the genome.

Introduces foreign protein-coding 
sequences, producing 
immunogenic peptides.

[64, 65]

Constitutive splicing Standard intron removal and 
exon joining.

Preserves the normal coding 
sequence, minimal neoantigen 
impact.

[66, 67]

Exon skipping/inclusion Variable inclusion or exclusion 
of exons.

Modifies the protein structure, 
potentially generating novel 
peptide regions.

[68, 69]

Alternative 5' and 3' 
splice sites

Variations in donor and acceptor 
splice site selection.

Shifts exon boundaries, altering 
peptide sequence diversity.

[70, 71]

Intron retention Failure to remove an intron 
during splicing.

The translation of non-coding 
regions can introduce premature 
stop codons and novel antigenic 
sites.

[72, 73]

Mutually exclusive exons Expression of one exon while 
excluding another.

Generates diverse protein 
isoforms with unique antigenic 
determinants.

[74, 75]

Exitrons Hybrid exonic-intronic regions 
where introns are partially 
retained.

Alters the final protein product, 
increasing peptide diversity.

[76, 77]

Transcriptomic 
variants
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Table 2. Classification of neoantigen sources in cancer: genomic, transcriptomic, and proteomic alterations (continued)

Category Mechanism Description Neoantigen impact References

Adenosine-to-inosine (A-
to-I) RNA editing

Post-transcriptional modification 
converting adenosine to inosine.

Alters codons without changing 
the underlying genomic 
sequence, leading to novel 
peptide generation.

[78, 79]

ORFs Translation initiated from 
previously untranslated regions.

Produces peptides not expressed 
under normal conditions, 
expanding neoantigen diversity.

[80, 81]

Coding long non-coding 
RNAs (lncRNAs)

Some lncRNAs can generate 
small peptides.

Generates small immunogenic 
peptides despite being non-
coding.

[82, 83]

Defective translation Translational errors such as 
frameshifts or premature 
termination.

Produces aberrant protein 
fragments, expanding the 
neoantigen repertoire.

[84]

Alternative start sites Translation initiated from non-
canonical codons (CUG, AGG, 
AUA).

Generates alternative protein 
isoforms with novel N-terminal 
sequences.

[85, 86]

Proteomic 
variants

Post-translational 
modifications

Modifications like 
phosphorylation, glycosylation, 
ubiquitination.

Alters peptide structure and may 
expose hidden epitopes for 
immune recognition.

[87, 88]

The transcriptomic landscape also plays a crucial role in expanding neoantigen diversity. Alternative 
mRNA processing events, such as exon skipping, alternative splice site selection, and intron retention, can 
modify the protein-coding potential of genes (Table 2). These variations can lead to the translation of 
modified or truncated protein products, which may differ significantly from the normal protein isoform 
[89–91]. In addition, mechanisms like mutually exclusive exon expression and the partial retention of 
exitrons further contribute to the diversity of protein isoforms that can be produced from a single gene 
[75]. Moreover, post-transcriptional modifications, such as adenosine-to-inosine (A-to-I) RNA editing, 
introduce codon changes that alter the sequence of the resulting peptides without modifying the underlying 
DNA sequence. This adds another layer of potential neoantigen generation from modified RNA transcripts 
[92, 93].

At the proteomic level, the generation of neoantigens is further enhanced by variations in translation 
and post-translational modifications (Table 2). ORFs can emerge from untranslated regions of the genome, 
and small peptides derived from long non-coding RNAs (lncRNAs) may also generate unique antigenic 
peptides [94, 95]. Translation defects, such as premature termination, frameshift mutations, or the use of 
non-canonical start sites, also contribute to antigenic diversity by producing altered peptide sequences that 
are not present in healthy tissues [96]. Additionally, post-translational modifications, such as 
phosphorylation, glycosylation, and ubiquitination, can expose previously hidden epitopes or alter peptide 
structures in ways that make them more immunologically recognizable [97, 98].

A comprehensive summary of the genetic, transcriptomic, and proteomic mechanisms that contribute 
to neoantigen diversity is provided in Table 2.

Neoantigen generation and treatment modalities in cancer 
immunotherapy
The development of effective cancer immunotherapies relies heavily on the identification and targeting of 
tumor-specific neoantigens. Neoantigens, which arise from genetic and molecular alterations unique to 
cancer cells, play a critical role in immune recognition and the design of personalized treatments [26, 42, 
99]. Understanding how various therapeutic strategies influence neoantigen generation and presentation is 
essential for optimizing immunotherapy efficacy.

A comprehensive overview of various treatment modalities and their roles in neoantigen generation 
within the context of cancer immunotherapy are discussed in Figure 1. Each therapeutic approach affects 
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neoantigen formation through distinct biological mechanisms, with implications for immune response 
modulation, clinical application, and combination therapy potential.

Figure 1. Treatment modalities and their role in neoantigen generation for cancer immunotherapy

Chemotherapy, particularly alkylating agents such as temozolomide and cyclophosphamide, induces 
DNA alkylation that causes direct strand damage, leading to point mutations and small insertions or 
deletions [100–102]. These genetic alterations give rise to novel antigenic peptides presented on MHC 
molecules, making tumor cells more immunogenic. For example, temozolomide treatment has been 
associated with enhanced neoantigen expression in GBM, particularly when paired with cancer vaccines 
[23]. However, chemotherapy poses challenges in predicting the extent of neoantigen generation and may 
cause immunosuppression, complicating its standalone efficacy [103, 104].

Radiation therapy also contributes significantly to neoantigen generation by causing DNA damage 
through direct ionization and reactive oxygen species (ROS) production. This damage induces genomic 
instability, leading to the formation of neoantigens from fragmented or mutated tumor DNA [105–107]. 
Preclinical studies in triple-negative breast cancer and non-small cell lung cancer (NSCLC) have 
demonstrated that radiation, when combined with immune checkpoint inhibitors such as anti-programmed 
death-1 (PD-1) inhibitors, enhances antitumor immunity by increasing immune cell infiltration [108, 109]. 
Nonetheless, radiation therapy carries the risk of localized tissue damage and immune-related adverse 
effects [110].

Microbial activity, specifically genotoxic microbial metabolites such as colibactin produced by 
Escherichia coli, can lead to tumor-specific mutations. Strains like pks+ E. coli induce double-strand breaks 
in host DNA, contributing to neoantigen formation in colorectal cancer [111, 112]. Similarly, Fusobacterium 
nucleatum and Bacteroides fragilis have been linked to mutagenic effects in colorectal and oral cancers [113, 
114]. These microbial-induced neoantigens can promote tumor-specific immune responses, yet challenges 
remain in targeting specific microbial strains without disrupting the broader microbiome [115].
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Targeted therapies, such as tyrosine kinase inhibitors (e.g., imatinib and erlotinib), interfere with 
signaling pathways involved in tumor growth and survival. These agents can induce mutations or unmask 
cryptic antigens within the tumor microenvironment (TME) [116, 117]. For instance, imatinib has been 
associated with increased mutation rates in chronic myelogenous leukemia, contributing to antigenic 
diversity [118]. However, the emergence of resistance and limited efficacy in tumors with low mutation 
rates restricts the widespread impact of targeted therapies on neoantigen generation [119].

Immunotherapy, particularly immune checkpoint inhibitors (e.g., pembrolizumab and nivolumab), 
plays a central role in restoring immune surveillance by blocking inhibitory proteins like PD-1 and CTLA-4 
[120, 121]. These inhibitors amplify T-cell activity against tumor-specific neoantigens, especially in tumors 
with high mutational burdens. However, immune-related adverse events, such as colitis and pneumonitis 
[11, 122], pose clinical management challenges, necessitating careful patient selection.

Emerging therapeutic modalities, including oncolytic virus therapy and gene therapy, further expand 
the landscape of neoantigen generation. Oncolytic viruses like T-VEC and Reolysin selectively infect tumor 
cells, inducing direct lysis and the release of neoantigens [123, 124]. Additionally, viral infection can trigger 
immunogenic cell death, promoting immune system activation [125]. Gene therapy approaches, such as 
CAR-T cell therapy and oncolytic virus gene modification, enhance neoantigen presentation through 
engineered genetic alterations that promote novel antigen expression [126]. However, these advanced 
therapies face challenges like delivery efficiency, off-target effects, and high costs.

Epigenetic modifiers, including DNA methylation inhibitors and histone deacetylase inhibitors like 
vorinostat and azacitidine, represent another innovative strategy for neoantigen generation [127, 128]. By 
altering the epigenetic landscape, these agents can reactivate silenced tumor antigens and promote immune 
recognition [129, 130]. Nonetheless, concerns regarding off-target epigenetic changes and unpredictable 
long-term effects remain significant hurdles.

Advancing cancer immunotherapy: the role of neoantigen-based 
approaches
Neoantigen-based immunotherapies—personalized approaches and synergistic strategies in cancer 
treatment

Neoantigen-based immunotherapies represent a promising frontier in cancer treatment, leveraging the 
body’s immune system to target TSAs [131]. These therapies encompass a variety of approaches, including 
vaccines, TIL therapy, TCR-T therapy, and CAR-T cells, each designed to stimulate or enhance immune 
responses against tumor neoantigens [132] (Figure 2). The breadth of neoantigen-targeted strategies 
underscores the potential for personalized cancer treatments [133, 134], emphasizing the importance of 
tailoring interventions to the unique antigenic landscape of individual tumors.

Neoantigen vaccines, for instance, aim to stimulate T cells by presenting neoantigen peptides or mRNA 
to the immune system, primarily targeting tumors such as melanoma, glioma, and lung cancer [131]. These 
vaccines offer advantages like non-toxicity and the ability to customize treatment for individual patients. 
However, challenges remain, including limited neoantigen identification and immune evasion by tumors. 
Despite these hurdles, studies have demonstrated the high therapeutic potential of neoantigen vaccines, 
particularly when combined with immune checkpoint inhibitors, leading to improved survival rates and 
tumor shrinkage [135, 136].

TIL therapy involves isolation, expansion, and reinfusion of TILs from the patient’s tumor to enhance 
antitumor activity. This approach has shown effectiveness in cancers with high TIL burden, such as 
melanoma and NSCLC [137, 138]. TIL therapy’s advantages include its ability to target multiple tumor 
mutations simultaneously and its direct engagement with the TME. However, invasive procedures for TIL 
harvesting and challenges related to tumor heterogeneity pose significant limitations [138]. Nonetheless, 
TIL therapy remains a powerful option, especially in immune-permissive tumors, with notable results in 
metastatic colorectal cancer [139, 140].
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Figure 2. Comparative analysis of neoantigen-based immunotherapies: mechanisms, targeted tumors, and clinical 
potential

Combination therapies, including the use of neoantigen vaccines with TILs or immune checkpoint 
inhibitors, have gained attention for their synergistic effects in overcoming immune resistance [141]. As 
shown in Figure 2, combining these therapies can enhance the immune response by targeting multiple 
pathways simultaneously, particularly in cancers with high mutational burdens like melanoma and NSCLC 
[142, 143]. However, complex logistics, regulatory hurdles, and the risk of excessive immune activation 
remain barriers to widespread clinical adoption [144]. Still, the potential for achieving complete remission 
in refractory cancers underscores the promise of these multimodal strategies in advancing cancer 
immunotherapy.

Comparative analysis of neoantigen-based therapeutic strategies in cancer immunotherapy

Neoantigen-based therapeutic strategies represent a transformative advancement in cancer 
immunotherapy. These neoantigens are absent in normal tissues, allowing for precise tumor targeting with 
minimal risk to healthy cells [133, 145]. By focusing on these highly specific antigens, neoantigen therapies 
aim to harness and amplify the immune system’s natural ability to recognize and destroy malignant cells, 
thereby reducing the likelihood of off-target cytotoxicity and enhancing the therapeutic index [146, 147]. 
This precision is particularly advantageous in cancers with high mutational burdens, where the diversity of 
neoantigens increases the likelihood of effective immune responses [11, 148].

The principal neoantigen-based strategies include TCR-T therapy, CAR-T cell therapy, bispecific 
antibodies, neoantigen vaccines, TIL therapy, oncolytic virus therapies, cancer peptide vaccines, dendritic 
cell (DC) vaccines, and personalized multi-epitope vaccines [149]. TCR-T therapy involves the genetic 
engineering of autologous T cells to express TCRs capable of recognizing neoantigens presented by MHC-I 
molecules on the tumor cell surface [150]. CAR-T therapy modifies T cells to express synthetic antigen-
binding receptors that can directly recognize tumor surface antigens without the need for MHC 
presentation, broadening their applicability to tumors with low MHC expression [151]. Bispecific 
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antibodies act as immune engagers by simultaneously binding TSAs and CD3 on T cells, physically linking 
effector cells to tumor cells for targeted cytotoxicity [152, 153]. Neoantigen vaccines, including RNA, DNA, 
peptide, and DC-based platforms, work by introducing TSAs into the host to prime and expand tumor-
reactive T cells [131, 154]. TIL therapy involves isolating and expanding TILs directly from the patient’s 
tumor, which are then reinfused into the patient to boost anti-tumor immunity [140, 155, 156]. Oncolytic 
virus therapies use genetically modified viruses that selectively infect and lyse tumor cells while also 
stimulating a systemic immune response against neoantigens released during tumor cell lysis [126]. Cancer 
peptide vaccines use synthetic peptides corresponding to TSAs to stimulate T cell responses, while DC 
vaccines involve loading patient-derived DCs with tumor neoantigens ex vivo before reinfusion [157–159]. 
Personalized multi-epitope vaccines combine multiple tumor neoantigens tailored to an individual’s tumor 
mutation profile, maximizing immune coverage [160, 161].

A comparative analysis of these neoantigen-based therapeutic strategies, evaluating critical parameters 
such as immune response potency, manufacturing complexity, scalability, and antigen breadth, is presented 
in Figure 3. TCR-T and CAR-T therapies exhibit robust immune responses but face challenges due to high 
manufacturing complexity and limited scalability, as they require patient-specific modifications [162, 163]. 
Bispecific antibodies provide a balance of moderate potency and manageable manufacturing demands, 
making them versatile, though still constrained by limited antigen breadth [164]. Neoantigen vaccines, 
while highly scalable and capable of broad antigen coverage, often elicit weaker immune responses and 
struggle to overcome immune suppression in advanced malignancies [146]. TIL therapy offers a potent and 
personalized response but relies on the availability of tumor-infiltrating cells and involves complex ex vivo 
expansion protocols [156]. Oncolytic viruses provide a dual mechanism of direct tumor lysis and immune 
activation but are often limited by pre-existing immunity against the viral vector [165, 166]. Peptide and DC 
vaccines offer moderate scalability and are less complex to produce but face challenges in generating 
sustained immune responses [167, 168]. Personalized multi-epitope vaccines maximize antigen breadth 
but require highly individualized tumor profiling, increasing complexity and cost [134, 141]. This 
comparative framework aids in selecting the optimal strategy based on clinical context and disease stage.

Figure 3. Comparative evaluation of neoantigen-targeted immunotherapies: key features, advantages, and clinical 
feasibility
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Revolutionizing cancer treatment through neoantigen-based therapeutics

The development of neoantigen-based therapeutic strategies has heralded a transformative era in cancer 
immunotherapy, capitalizing on TSAs derived from somatic mutations [99, 169]. These neoantigens, 
exclusive to malignant cells and absent in normal tissues, facilitate precise tumor targeting while 
minimizing collateral damage to healthy tissues [11, 131, 170]. The convergence of precision medicine and 
immunotherapeutic innovations positions neoantigen-based therapies as a cornerstone of personalized 
cancer treatment [103, 169]. Their potential is particularly compelling in patients with high mutational 
burdens, where the presence of diverse neoantigens drives robust immune responses [171].

Technological advancements have significantly enhanced neoantigen identification and engineering, 
ensuring higher precision and efficacy in therapeutic development. The integration of AI and high-
throughput sequencing has revolutionized neoantigen discovery [172, 173]. AI-driven algorithms analyze 
extensive genomic and proteomic datasets, expediting the identification of TSAs and enabling tailored 
treatments for individual tumor profiles [174]. Simultaneously, CRISPR/Cas9 gene-editing technology has 
expanded the therapeutic horizon by optimizing immune cells to improve neoantigen recognition [175]. 
The engineering of potent TCR-T and CAR-T cell therapies using CRISPR has been particularly impactful, 
overcoming challenges such as immune evasion and resistance and broadening the applicability of 
neoantigen-based strategies across diverse cancer types [175].

A pivotal milestone in advancing neoantigen-based immunotherapies lies in the integration of multi-
omic data, including genomics, transcriptomics, proteomics, and metabolomics [176]. This comprehensive 
approach deepens our understanding of tumor biology, enabling the identification of a personalized, 
exhaustive set of neoantigens [177, 178]. Multi-omic profiling facilitates the design of immunotherapies 
that address both well-characterized and novel neoantigens [179, 180]. The advent of personalized multi-
epitope vaccines, enriched by insights from multi-omic analyses, has demonstrated enhanced antigen 
selection and broadened immune coverage [181, 182]. These precision-driven vaccines underscore the 
transformative potential of combining molecular-level insights with immunotherapeutic strategies.

Despite their transformative promise, neoantigen-based therapies must overcome challenges such as 
immune evasion and tumor-mediated immunosuppression [147]. TMEs often suppress T-cell activation 
and proliferation, undermining therapeutic efficacy [183]. Innovative combination therapies that pair 
neoantigen-targeting strategies with immune checkpoint inhibitors, such as PD-1/PD-L1 or CTLA-4 
blockers, show significant promise in mitigating these barriers [120, 184]. These synergistic approaches 
enhance immune persistence and activity, yielding improved therapeutic outcomes [185, 186]. 
Additionally, the use of personalized adjuvants targeting immunosuppressive pathways represents a 
strategic advancement. These adjuvants, when combined with neoantigen vaccines or adoptive T-cell 
therapies, amplify immune recognition and response, fostering a more effective anti-tumor immunity [134, 
173, 187].

Emerging hybrid strategies that integrate multiple therapeutic modalities are gaining traction, 
addressing the inherent limitations of individual approaches. For example, combining CAR-T cell therapy 
with bispecific antibody treatments can overcome the antigen breadth constraints of standalone methods, 
providing broader tumor coverage and enhancing immune activation [188, 189]. Oncolytic viruses deliver 
dual benefits by directly targeting tumors and augmenting neoantigen presentation through tumor cell 
death and systemic immune stimulation [126]. Advances in stealth viral vectors and genetically modified 
oncolytic viruses address pre-existing immunity challenges, ensuring sustained therapeutic efficacy.

The scalability and accessibility of neoantigen-based therapies are critical for their global adoption. 
Automated, large-scale manufacturing processes are being developed to reduce production costs and 
streamline therapy distribution [131, 190]. These efforts aim to democratize access to advanced cancer 
treatments, ensuring that the benefits of precision immunotherapy reach diverse populations worldwide.

The integration of cutting-edge technologies, multi-omic approaches, and scalable production systems 
is driving the evolution of neoantigen-based cancer therapies [13, 191, 192]. By addressing existing 
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challenges and harnessing emerging opportunities, the field is on the cusp of delivering highly personalized, 
effective, and accessible cancer treatments. These advancements mark a paradigm shift in cancer 
immunotherapy, offering renewed hope for improved patient outcomes across a broad spectrum of 
malignancies.

Advanced methodologies and tools for neoantigen prediction in 
personalized cancer immunotherapy
The role of neoantigen prediction in personalized cancer immunotherapy

In personalized cancer immunotherapy, the identification and targeting of neoantigens are critical for 
developing tailored therapeutic strategies [13, 193]. The process begins with mutation calling, which 
involves the detection of genetic alterations, such as SNVs, INDELs, gene fusions, and alternative splice 
variants, all of which are potential sources of neoantigens [84]. Tools like INTEGRATE-neo, PAVIS, and 
Cancer Genome Interpreter leverage NGS data and machine learning integration to identify these mutations 
with high sensitivity [194–196] (Figure 4). However, challenges such as false positives from sequencing 
errors or low variant allele frequencies can complicate mutation detection, highlighting the need for robust 
validation methods in the neoantigen discovery pipeline [197].

Figure 4. Overview of computational and experimental tools for neoantigen discovery and immunogenicity 
assessment. HLA: human leukocyte antigen; TCR: T-cell receptor; MHC: major histocompatibility complex

Once mutations are identified, the next crucial step is human leukocyte antigen (HLA) typing, which 
determines the MHC alleles expressed by the individual. This is vital for predicting the potential 
presentation of peptides on the surface of tumor cells [198–200]. High-resolution genotyping tools like 
Polysolver and OptiType use sequence-based typing and Bayesian inference to accurately determine an 
individual’s HLA haplotype [201–203] (Figure 4). The accurate matching of peptides to specific MHCs is 
essential for the subsequent prediction of antigen presentation [17, 204, 205]. However, challenges arise in 
cases of low-coverage sequencing data, where the performance of HLA typing tools may be limited, 
necessitating further refinement of these methods for clinical applications.
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HLA binding prediction is the next step, focusing on the prediction of peptide-MHC binding affinity and 
stability. The ability of peptides derived from mutations to bind to MHC molecules plays a pivotal role in 
eliciting a T-cell-mediated immune response [206, 207]. Tools such as NetMHCpan and pVAC-Seq employ 
advanced algorithms, including neural networks and position-specific scoring matrices, to predict the 
binding of peptides to MHC class I molecules (for CD8+ T cells) and class II molecules (for CD4+ T cells) [57, 
172, 208] (Figure 4). These tools provide reliable predictions for peptide-MHC affinity, although they may 
overlook complex, non-linear binding patterns or peptide stability, which could affect the immune 
response. As a result, the integration of multiple prediction tools and experimental validation becomes 
necessary for optimizing neoantigen identification and ensuring effective immunogenicity [209].

To further refine neoantigen candidates, T cell recognition analysis assesses the likelihood of TCR 
binding to peptide-MHC complexes. Tools such as NetCTL and TCRMatch utilize structural modeling and 
TCR-peptide docking models to predict TCR interaction and immune activation [210, 211]. Despite their 
usefulness, these models are often complex and face challenges due to limited experimental validation data. 
Additionally, neoantigen ranking and prioritization tools like Neopepsee and MuPeXI evaluate 
immunogenicity and expression levels to prioritize the most promising neoantigens for therapeutic 
development [172, 212, 213]. Finally, the validation of computational predictions through experimental 
tools like ELISpot and MHC Tetramer assays is essential to confirm the immunogenicity of neoantigens [41, 
214, 215]. While these experimental methods provide the gold standard for validation, they are labor-
intensive and require specialized expertise and reagents. The integration of computational tools with 
experimental validation creates a comprehensive approach to neoantigen prediction, ultimately enabling 
the development of personalized cancer immunotherapies that target specific tumor mutations.

Computational tools for neoantigen identification and immunogenicity prediction in cancer 
immunotherapy

In the rapidly advancing field of immunogenomics, computational tools have become indispensable for 
neoantigen identification and immunogenicity prediction. These tools assist in pinpointing potential 
therapeutic targets, especially in the context of cancer immunotherapy, by predicting the ability of tumor 
mutations to be presented on MHC molecules and recognized by the immune system [173, 216]. Table 3 
compares several prominent computational tools in this domain, each with specific functions, strengths, 
and limitations. These tools vary in their approach, from mutation calling and HLA typing to peptide 
binding prediction and T-cell recognition [217]. Despite their distinct methodologies, all these tools aim to 
provide accurate predictions that can aid in the development of personalized vaccines or other 
immunotherapies.

Table 3. Comparison of computational tools for neoantigen identification and immunogenicity prediction

Tool Step Data input Algorithm type Key strength Limitations References

INTEGRATE-neo Mutation 
calling

Whole 
exome/Genome 
sequencing

Graph-based 
detection

High sensitivity for 
detecting insertions 
and complex 
mutations

Limited to specific 
mutation types; may 
miss small variants

[218–220]

Polysolver HLA typing Whole exome 
sequencing

Bayesian 
inference

Highly accurate 
even with low-
coverage data

Computationally 
intensive, requires 
high processing 
power

[201–203]

NetMHCpan HLA 
binding 
prediction

Peptide 
sequences

Neural network Broad coverage of 
MHC alleles across 
diverse populations

Sequence length 
constraints may not 
predict all peptides

[221–224]

NetMHCIIpan HLA 
binding 
prediction

Peptide 
sequences

Neural network High sensitivity for 
MHC class II 
binding predictions

Limited coverage of 
MHC class II alleles, 
not exhaustive

[225, 226]

NetCTL T cell 
recognition

Peptide-HLA 
binding data

Machine 
learning

Specific scoring for 
CD8+ T cell 
recognition

Does not model 
TCR structure or 
interactions well

[227]

HLA Peptide Machine Accurate binding Limited prediction MHCflurry [228, 229]
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Table 3. Comparison of computational tools for neoantigen identification and immunogenicity prediction (continued)

Tool Step Data input Algorithm type Key strength Limitations References

binding 
prediction

sequences learning/Deep 
learning

affinity predictions 
for class I peptides

capability for rare 
MHC alleles

VAXign Epitope 
validation

Peptide 
sequences

Statistical 
modeling

High throughput 
capability for large 
peptide datasets

Requires large 
amounts of 
experimental 
validation data

[230–232]

Immune Epitope 
Database (IEDB)

Epitope 
validation

Peptide 
sequences, HLA 
typing

Database query Extensive 
experimental data 
support, widely 
recognized 
database

Limited by available 
datasets, may lack 
specificity in certain 
cases

[233–235]

NeoepitopePred T cell 
recognition

Peptide-HLA 
binding data

Hybrid model 
(SVM, neural 
networks)

Comprehensive T-
cell response 
prediction model

Requires large 
training datasets, 
may overestimate 
some responses

[172, 236, 
237]

MHC-I Binding 
Prediction Tool

HLA 
binding 
prediction

Peptide 
sequences

Weighted 
scoring system

Effective for a wide 
range of peptide 
sequences

Limited by scoring 
system, may not 
capture all binding 
interactions

[238–240]

HLA: human leukocyte antigen; TCR: T-cell receptor; SVM: support vector machines; MHC: major histocompatibility complex

One of the most prominent tools is INTEGRATE-neo, which focuses on mutation calling through whole 
exome/genome sequencing. It employs graph-based detection, offering high sensitivity for detecting 
complex mutations and insertions [219]. However, its major limitation is that it is confined to specific types 
of mutation and may miss smaller variants. Similarly, Polysolver is a robust tool for HLA typing using 
Bayesian inference, which is known for its high accuracy, even with low-coverage data [201–203]. Despite 
its effectiveness, it is computationally intensive and demands significant processing power.

Tools such as NetMHCpan and NetMHCIIpan, which focus on HLA binding prediction, rely on neural 
network algorithms to predict peptide binding across various MHC alleles. While NetMHCpan offers broad 
allele coverage, it is constrained by sequence length limitations and may fail to predict certain peptides 
[221, 222]. Meanwhile, NetMHCIIpan is highly sensitive for MHC class II binding predictions, but its 
coverage is limited, particularly for rare alleles [241–243].

In addition to mutation calling and peptide binding prediction, several tools aim to predict T-cell 
recognition. NetCTL, based on machine learning, provides specific scoring for CD8+ T-cell recognition; 
however, it does not account for TCR structure or interactions, which can be a critical factor in immune 
response [41, 221, 244]. Similarly, NeoepitopePred integrates a hybrid model using support vector 
machines (SVM) and neural networks to predict T-cell responses, but it requires large training datasets and 
may overestimate some immune responses [236, 237, 245]. VAXign, a statistical modeling tool for epitope 
validation, can handle large peptide datasets efficiently but necessitates substantial experimental validation 
[230–232]. Meanwhile, the Immune Epitope Database (IEDB) is a widely recognized and extensively 
supported database query tool for epitope validation, although its performance may be hindered by the 
availability and specificity of datasets [233–235].

Together, these tools provide complementary insights into the complex process of neoantigen 
identification, each offering unique advantages but also facing significant challenges in terms of data 
coverage, computational power, and the need for experimental validation.

Comparative analysis of current therapies for GBM and personalized 
neoantigen vaccines
GBM is a highly aggressive and treatment-resistant brain cancer, presenting significant challenges in clinical 
management [246, 247]. Current and emerging therapeutic strategies for GBM encompass a broad 
spectrum of approaches, each characterized by distinct mechanisms of action, varying levels of efficacy, 
inherent limitations, and impacts on patient outcomes and quality of life [20, 248, 249]. A thorough 
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evaluation of these therapies highlights the complexity of GBM treatment and underscores the urgent need 
for innovative and multimodal strategies to achieve meaningful improvements in patient survival and 
overall well-being.

Conventional treatment options, including surgical resection, temozolomide chemotherapy, and 
radiation therapy, remain the standard of care for GBM patients. While these modalities collectively offer 
modest survival benefits, with a median overall survival of approximately 15 months, their limitations are 
pronounced [250]. Tumor heterogeneity and the emergence of therapeutic resistance contribute to 
inevitable disease recurrence (Figure 5). Moreover, adverse effects, such as cognitive decline, fatigue, and 
immunosuppression, significantly compromise the quality of life. These challenges underscore the 
importance of integrating advanced therapeutic approaches to enhance efficacy and address the long-term 
limitations of these foundational treatments [251, 252].

Figure 5. Comparative analysis of treatment approaches for glioblastoma (GBM)

Emerging therapies, such as bevacizumab, TTF, immune checkpoint inhibitors, and targeted therapies, 
provide novel avenues for GBM management (Figure 5) [253, 254]. Bevacizumab, an anti-angiogenic 
monoclonal antibody, has demonstrated promise in improving progression-free survival (PFS) in recurrent 
GBM cases but has not shown a significant extension of overall survival, particularly in newly diagnosed 
patients [255, 256]. Similarly, TTF, a non-invasive therapeutic modality that disrupts mitotic processes, 
achieves only limited survival benefits [257]. Immune checkpoint inhibitors and targeted therapies face 
significant challenges, including tumor immune evasion and heterogeneity, which limit their standalone 
efficacy [258, 259]. However, the potential for combination therapies to overcome these obstacles 
represents a critical area for further research and optimization.

Personalized neoantigen-derived peptide vaccines represent a promising advancement in precision 
medicine for GBM (Figure 5) [23, 260]. These vaccines leverage patient-specific tumor antigens to elicit 
robust T-cell responses, offering the potential for extended survival and improved quality of life [23]. 
Despite their promise, challenges such as the time-intensive production process and the 
immunosuppressive TME hinder their broad applicability [41, 103]. When combined with complementary 
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therapies like checkpoint inhibitors, these vaccines demonstrate synergistic potential, paving the way for 
transformative developments in GBM treatment [261, 262].

By critically analyzing the strengths and limitations of these therapeutic modalities, researchers and 
clinicians can navigate the evolving landscape of GBM management more effectively and identify innovative 
strategies to enhance patient outcomes. The next section will explore the role of personalized neoantigen-
derived peptide vaccines in greater detail.

Targeting tumor-specific neoantigens in GBM: innovations in 
immunotherapy, personalized vaccines, and overcoming 
immunosuppressive barriers
Therapeutic strategies targeting neoantigens in GBM

Neoantigens have catalyzed the development of advanced immunotherapeutic strategies for GBM. These 
strategies encompass a spectrum of approaches aimed at enhancing the immune system’s ability to 
recognize and destroy tumor cells. Personalized cancer vaccines, for instance, utilize patient-specific 
neoantigens to activate CD8+ and helper T cells, initiating a robust immune response [141]. However, 
tumor heterogeneity and immune evasion mechanisms remain significant barriers to efficacy (Table 4). To 
address these challenges, research has integrated vaccines with checkpoint inhibitors, demonstrating 
improved immune activation in GBM [263]. Future directions involve expanding vaccine applications to 
other tumor types and refining neoantigen identification processes to enhance immunogenicity.

Table 4. Neoantigen-driven immunotherapeutic strategies for glioblastoma

Therapeutic 
strategy

Mechanism Application in 
GBM

Key challenges Recent 
advances

Future directions References

Personalized 
cancer vaccines

Prime the immune 
system with 
patient-specific 
neoantigens.

Induces 
tumor-
specific 
immune 
responses by 
presenting 
identified 
neoantigens, 
activating 
both CD8+ T 
cells and 
helper T 
cells.

Limited immune 
response due to 
tumor heterogeneity 
and immune 
evasion 
mechanisms (e.g., 
checkpoint 
inhibition).

Development 
of 
combinatory 
approaches 
with 
checkpoint 
inhibitors to 
boost efficacy 
in GBM.

Expansion to other 
tumor types 
beyond GBM and 
improvement in 
neoantigen 
identification for 
higher 
immunogenicity.

[134]

Adoptive T cell 
therapies

Infuse patients with 
expanded T cells 
specifically 
targeting 
neoantigens.

Increases the 
quantity of 
tumor-
specific T 
cells, 
improving 
tumor cell 
recognition 
and 
destruction 
through 
cytotoxic 
mechanisms.

Difficulty in 
maintaining T cell 
persistence and 
activity within the 
immunosuppressive 
GBM tumor 
microenvironment.

Use of IL-2 or 
other 
cytokines to 
support T cell 
expansion 
and 
persistence in 
vivo.

Optimizing T cell 
expansion 
methods and 
improving the 
persistence of T 
cells within the 
GBM 
microenvironment.

[264]

TCR-engineered 
lymphocytes

Modify T cells ex 
vivo to express 
receptors targeting 
specific 
neoantigens on 
tumor cells, then 
reinfuse them into 
the patient.

Improves T 
cell specificity 
and efficacy 
in targeting 
neoantigen-
expressing 
tumor cells, 
enhancing 
tumor cell 
recognition 
and killing.

Off-target effects 
and T cell 
exhaustion in the 
hostile tumor 
environment can 
reduce efficacy.

Advances in 
TCR 
optimization 
to avoid off-
target effects 
and increase 
the 
recognition of 
a broader 
range of 
neoantigens 
in GBM.

Developing next-
generation TCR 
engineering 
techniques for 
targeting 
neoantigens more 
effectively, along 
with immune 
checkpoint 
blockers.

[149]
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Table 4. Neoantigen-driven immunotherapeutic strategies for glioblastoma (continued)

Therapeutic 
strategy

Mechanism Application in 
GBM

Key challenges Recent 
advances

Future directions References

Immunotherapy 
combination 
therapy

Combine 
personalized 
vaccines, adoptive 
T cells, or TCR-
engineered 
lymphocytes with 
other 
immunomodulatory 
agents (e.g., 
checkpoint 
inhibitors).

Provides 
synergistic 
effects, 
improving 
immune 
response and 
overcoming 
GBM’s 
immune 
evasion 
mechanisms 
(e.g., PD-
1/PD-L1 
axis).

Combination 
therapy may lead to 
increased toxicity, 
requiring careful 
patient monitoring 
and dosing.

Promising 
results 
combining 
anti-PD-1/PD-
L1 with TCR-
engineered T 
cells or 
vaccines to 
overcome 
immune 
suppression.

Expanding 
personalized 
combination 
therapies to 
include other 
immune 
modulators and 
identifying the 
most effective 
pairings.

[261]

Chimeric antigen 
receptor (CAR)-T 
cells

Engineer T cells 
with a CAR that 
targets a specific 
antigen on GBM 
cells, enhancing 
their ability to 
recognize and 
attack tumors.

Enhances 
tumor cell 
recognition 
and 
cytotoxicity 
against 
neoantigen-
expressing 
GBM cells.

Limited by antigen 
escape, GBM’s 
heterogeneous 
nature, and CAR-T 
cell exhaustion in 
the tumor 
microenvironment.

Development 
of CAR-T 
cells targeting 
novel 
neoantigens 
and 
improving 
persistence 
through 
advanced 
cytokine 
support and 
genetic 
engineering.

Exploring multi-
antigen CAR T 
cells targeting 
diverse 
neoantigens in 
GBM, along with 
methods to sustain 
CAR-T cell activity.

[265]

Oncolytic virus 
therapy

Use modified 
viruses that 
selectively infect 
and kill tumor cells 
while stimulating 
anti-tumor immune 
responses.

Induces 
tumor cell 
death and 
enhances 
immune 
responses to 
tumor 
neoantigens, 
potentially 
increasing 
efficacy of 
vaccines or T 
cell therapies.

Potential for 
oncolytic virus 
resistance and 
insufficient targeting 
specificity in the 
heterogeneous 
GBM tumor 
environment.

Oncolytic 
virus 
therapies 
combined 
with 
checkpoint 
inhibitors 
have shown 
early promise 
in preclinical 
models.

Investigating 
improved viral 
vectors that can 
better target GBM 
cells and enhance 
immune activation.

[123]

CRISPR-Cas9 
gene editing

Modify the genome 
of T cells or tumor 
cells to enhance 
neoantigen 
targeting or create 
new therapeutic 
pathways for 
immune evasion.

Potential to 
enhance the 
precision and 
efficiency of T 
cell therapies 
or alter 
GBM’s 
immune 
evasion 
mechanisms 
to increase 
treatment 
efficacy.

Risks of off-target 
mutations, ethical 
concerns with gene-
editing, and long-
term effects of 
genetic 
modifications.

Successful 
use of 
CRISPR-
Cas9 to 
engineer T 
cells for 
better 
targeting of 
neoantigens, 
with 
promising 
results in 
early-phase 
trials.

Expansion of 
CRISPR-based 
approaches to 
more effectively 
engineer immune 
cells and GBM 
cells for 
personalized 
therapies.

[175]

Peptide-based 
immunotherapies

Use synthetic 
peptides derived 
from identified 
neoantigens to 
activate immune 
cells in the tumor 
microenvironment.

Can 
specifically 
activate 
immune 
responses 
targeting 
neoantigens 
in GBM, 
enhancing 
tumor-
specific 
immunity.

Limited by peptide 
delivery and the 
complexity of 
ensuring effective 
immune activation 
against 
heterogenous tumor 
populations.

Nanoparticle-
mediated 
peptide 
delivery 
systems have 
enhanced 
peptide 
efficacy in 
preclinical 
models.

Optimizing delivery 
methods for 
peptide-based 
therapies to 
ensure efficient 
and targeted 
immune activation 
within GBM 
tumors.

[52]
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Table 4. Neoantigen-driven immunotherapeutic strategies for glioblastoma (continued)

Therapeutic 
strategy

Mechanism Application in 
GBM

Key challenges Recent 
advances

Future directions References

Neoantigen-
based 
biomarkers

Utilize identified 
neoantigens as 
biomarkers to 
predict treatment 
response and 
monitor therapy 
efficacy.

Can guide 
personalized 
therapy 
choices, 
monitor 
immune 
response, 
and track 
disease 
progression 
in GBM 
patients.

The complexity of 
tracking neoantigen 
responses in vivo, 
and the need for 
accurate biomarkers 
to predict treatment 
outcomes.

Development 
of liquid 
biopsy 
approaches 
using 
neoantigen 
biomarkers 
for non-
invasive 
tracking of 
tumor 
progression 
and therapy 
response.

Continued 
refinement of non-
invasive 
biomarkers for 
GBM treatment 
monitoring, 
including early 
detection of 
resistance.

[266]

TCR: T-cell receptor; GBM: glioblastoma

Adoptive T cell therapies and TCR-engineered lymphocytes represent another pivotal class of 
neoantigen-focused therapies. Adoptive T cell therapies bolster tumor-specific cytotoxicity by infusing 
patients with expanded T cells targeting GBM-specific neoantigens (Table 4) [149]. However, sustaining T 
cell activity in GBM’s immunosuppressive environment is challenging [267]. Advances in cytokine 
supplementation, such as interleukin-2 (IL-2), have shown promise in enhancing T cell persistence and 
efficacy [268, 269]. Similarly, TCR-engineered lymphocytes improve tumor targeting by expressing 
receptors specific to neoantigens. Innovations in TCR optimization have minimized off-target effects and 
expanded the range of neoantigens targeted in GBM [150]. Emerging techniques aim to refine TCR 
engineering, leveraging combination therapies to further enhance treatment efficacy [270, 271].

CAR-T cells and oncolytic virus therapies highlight the potential of engineered and biologically driven 
approaches to target neoantigens (Table 4) [272]. CAR-T cells are equipped with receptors that specifically 
recognize GBM antigens, significantly enhancing tumor cell recognition and destruction [273, 274]. 
However, antigen escape and tumor heterogeneity present significant obstacles. Advanced CAR designs 
targeting multiple neoantigens and incorporating genetic modifications to sustain T cell activity are under 
investigation [275, 276]. Oncolytic virus therapies, meanwhile, employ modified viruses to selectively kill 
tumor cells and stimulate immune responses [123, 165]. Recent advancements in viral engineering and 
combinatory use with checkpoint inhibitors have demonstrated enhanced efficacy, particularly in 
preclinical models, underscoring the potential of synergistic therapeutic combinations [277, 278].

Emerging technologies such as CRISPR-Cas9 gene editing and peptide-based immunotherapies provide 
further avenues for innovation in neoantigen-targeted strategies [175, 279]. CRISPR-Cas9 has enabled 
precise modifications in T cells, enhancing neoantigen recognition and therapeutic outcomes in early-phase 
studies (Table 4) [175, 280]. Future research aims to expand its applications while addressing concerns 
about off-target effects and long-term safety. Peptide-based immunotherapies utilize synthetic peptides to 
activate immune cells against GBM-specific neoantigens. However, effective delivery remains a challenge 
[281, 282]. Nanoparticle-mediated delivery systems have improved peptide stability and target preclinical 
models, paving the way for clinical translation. Additionally, neoantigen-based biomarkers emerge as tools 
for monitoring therapy efficacy and guiding personalized treatments (Table 4) [134]. Non-invasive liquid 
biopsy techniques show potential for tracking tumor progression and detecting resistance, signaling a 
paradigm shift in GBM management [283].

Challenges and prospects in advancing neoantigen-based immunotherapies for GBM

Neoantigen-based immunotherapies represent a promising frontier in the treatment of GBM, but their 
clinical application faces several significant challenges [131, 261]. Among the most formidable obstacles is 
tumor heterogeneity, a hallmark of GBM that manifests as profound genetic and phenotypic diversity [284, 
285]. This heterogeneity enables tumors to adapt swiftly to therapeutic pressures, often leading to immune 
escape [286]. For instance, tumor cells may lose the expression of targeted neoantigens or develop 
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resistance mechanisms that diminish immune surveillance, ultimately limiting the efficacy of neoantigen-
targeted treatments [11, 133]. Such adaptability underscores the need for strategies that can address the 
dynamic and heterogeneous nature of GBM [287].

The immunosuppressive TME further complicates the application of neoantigen-based 
immunotherapies [11, 149]. Regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and 
immunosuppressive cytokines like TGF-β collectively create a microenvironment that inhibits immune cell 
activity [288, 289]. This suppression prevents immune cells from fully engaging with and eliminating tumor 
cells, thereby significantly reducing the effectiveness of therapeutic interventions [290, 291]. In addition, 
immune evasion mechanisms, such as those mediated by the PD-1/PD-L1 and CTLA-4 pathways, further 
enable tumors to escape immune detection and suppression [292, 293], presenting yet another barrier to 
successful treatment.

To overcome these challenges, researchers are exploring combination therapies designed to enhance 
the efficacy of neoantigen-based immunotherapies [294]. One promising approach involves the use of 
immune checkpoint inhibitors, such as anti-PD-1 or anti-CTLA-4 antibodies, which block tumor-mediated 
immune suppression [120, 295]. These inhibitors enhance the immune system’s ability to recognize and 
target neoantigen-expressing cells, thereby improving therapeutic outcomes [11, 296]. Concurrently, 
efforts to reprogram the immunosuppressive TME by targeting Tregs, MDSCs, and immunosuppressive 
cytokines aim to create a more supportive environment for immune-mediated tumor destruction [288, 
297].

Personalized neoantigen vaccines have emerged as a particularly compelling therapeutic strategy. 
These vaccines, which focus on tumor-specific neoantigens, have demonstrated the ability to elicit robust T 
cell responses in GBM patients, providing evidence of their potential to stimulate tailored immune 
responses while sparing healthy tissues [131, 161, 261]. However, several critical aspects must be 
optimized to fully realize their therapeutic potential, including the selection of immunogenic neoantigens, 
the development of efficient vaccine delivery platforms, and the refinement of dosing strategies [173]. 
Ensuring that the selected neoantigens are both specific to the patient’s tumor and capable of eliciting 
strong immune responses is paramount for the success of these therapies.

TCR-engineered lymphocytes offer another promising avenue for advancing neoantigen-based 
immunotherapy. These modified T cells are engineered to exhibit enhanced specificity and potency, 
allowing them to selectively target and eliminate neoantigen-expressing GBM cells [149]. To further 
enhance their effectiveness, researchers are investigating the combination of TCR-engineered lymphocytes 
with immune checkpoint inhibitors [270, 298]. By blocking tumor-induced immune suppression, these 
combinations may sustain immune responses and reduce the likelihood of tumor immune escape [299, 
300].

Clinical trials investigating neoantigen-targeted therapies in GBM have provided encouraging, though 
preliminary, results [260, 261]. Personalized neoantigen vaccines have demonstrated their ability to 
activate immune responses, offering valuable insights into their therapeutic potential [134, 136, 301]. 
However, long-term clinical outcomes, such as survival benefits, remain to be thoroughly evaluated. Early 
successes in integrating neoantigen vaccines with other immunotherapeutic approaches highlight the 
potential of combination strategies, but additional research is needed to refine these approaches and 
address the immunosuppressive elements of the TME [103, 302]. Overcoming the inhibitory effects of 
Tregs, MDSCs, and immunosuppressive cytokines like TGF-β will be critical for improving the efficacy of 
neoantigen-based therapies [303, 304].

By addressing these challenges and leveraging innovative combination strategies, neoantigen-based 
immunotherapies have the potential to transform GBM treatment and improve patient outcomes. 
Continued research and clinical investigation will be essential to unlock the full therapeutic promise of 
these approaches.
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Clinical strategies in neoantigen-based immunotherapies for cancer 
treatment
Neoantigen-based immunotherapies have emerged as a promising approach for personalized cancer 
treatment, leveraging TSAs to provoke robust immune responses. Currently, a variety of therapeutic 
strategies—such as cancer vaccines, ACT, CAR-T therapy, and immune checkpoint blockade (ICB)—are 
undergoing clinical evaluation (Table 5). These therapies are being assessed for their ability to enhance 
immune responses, reduce tumor burden, and improve patient outcomes. Clinical trials are closely 
monitoring the safety, efficacy, and overall clinical impact of these therapies across various cancer types, 
highlighting the ongoing evolution of neoantigen-targeted immunotherapies (Table 5).

Table 5. Clinical trials investigating neoantigen-based immunotherapies

Therapy type Cancer type(s) Trial identifier(s) Therapy 
combinations

Key outcomes/endpoints

Neoantigen-directed cancer vaccines
Dendritic cell (DC) vaccine Melanoma NCT00683670 Induction of neoantigen-specific 

T cells
Synthetic long peptide (SLP) 
vaccine

Melanoma NCT01970358, 
NCT02035956

No evidence of disease (NED) 
in some patients, recurrence in 
others; response to PD-1 
therapy

SLP vaccine (GAPVAC) Glioblastoma NCT02149225, 
NCT02287428

Increased neoantigen-specific 
T cell response

Ribonucleic acid (RNA) 
vaccine (IVAC MUTANOME)

Melanoma NCT02035956 Induction of neoantigen-specific 
T cells

SLP vaccine (NEO-PV-01) NSCLC NCT03380871 Anti-PD-1 & 
Chemotherapy

Induction of neoantigen-specific 
T cells

Adenoviral & self-amplifying 
messenger RNA (samRNA) 
vectors

Microsatellite-Stable 
colorectal cancer 
(MSS-CRC), 
gastroesophageal 
adenocarcinoma 
(GEAC), NSCLC

NCT03639714 Anti-PD-1 One complete response (CR) 
(GEAC); neoantigen-specific T 
cell induction

Neoantigen-directed adoptive cell transfer (ACT)
Cholangiocarcinoma NCT01174121 Anti-PD-1 Durable response (~9 years) 

after retreatment with TIL-ACT
MSS-CRC NCT01174121 Regression of all metastases

Tumor-infiltrating lymphocyte 
adoptive cell transfer (TIL-
ACT)

Breast cancer NCT01174121 One CR (>5 years), partial 
response (PR) in others

T cell receptor-engineered 
adoptive cell transfer (TCR-
ACT)

Pancreatic cancer NCT04146298 PR, metastasis regression at 6 
months

T cell receptor-engineered T cell therapy (TCR-T)
Multiple solid tumors NCT05194735, 

NCT05105815, 
NCT04625205, 
NCT03171220, 
NCT05020119

Safety, overall response rate 
(ORR), disease-free survival 
(DFS) endpoints

Various cancers NCT04102436, 
NCT04596033, 
NCT02280811, 
NCT02858310

Chemotherapy Response rate, adverse events 
(AEs), dose-limiting toxicities 
(DLTs)

Solid tumors NCT05349890, 
NCT04520711, 
NCT03970382

Immune checkpoint 
blockade (ICB)

Safety, tolerability, DLTs

Multiple tumors NCT03412877, 
NCT04536922

ICB & 
Chemotherapy

Response rate, treatment effect

TCR-T

Hepatocellular 
carcinoma

NCT03199807 Radiotherapy AEs
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Table 5. Clinical trials investigating neoantigen-based immunotherapies (continued)

Therapy type Cancer type(s) Trial identifier(s) Therapy 
combinations

Key outcomes/endpoints

Tumor-infiltrating lymphocytes (TILs)
TIL therapy Solid tumors NCT05141474 AEs, serious adverse events 

(SAEs), treatment-limiting 
toxicity (TLT)

TILs Gastrointestinal 
(GI) & pancreatic 
cancers

NCT04426669, 
NCT03658785, 
NCT02959905

Chemotherapy Maximum tolerated dose 
(MTD), ORR, AEs

TILs Melanoma, NSCLC NCT03997474, 
NCT04032847

ICB AEs

TILs NSCLC, squamous 
cell carcinoma 
(SCC), 
adenosquamous 
carcinoma

NCT03215810 ICB & chemotherapy DLTs

Chimeric antigen receptor t cell therapy (CAR-T)
CAR-T Glioblastoma 

multiforme
NCT02844062 Chemotherapy Safety

Immune checkpoint blockade (ICB) therapy
ICB monotherapy Various cancers NCT03600155, 

NCT02553642, 
NCT03827044, 
NCT03718767, 
NCT03925246, 
NCT03082534, 
NCT03357757, 
NCT03813394, 
NCT02437279, 
NCT04825990, 
NCT03130764, 
NCT03653052, 
NCT02113657, 
NCT03040791, 
NCT04019964, 
NCT04293419, 
NCT04262089

Clinical response, safety, DFS, 
ORR, progression-free survival 
(PFS)

ICB Various cancers NCT04214249, 
NCT03978624, 
NCT02990845, 
NCT02453620, 
NCT03409198, 
NCT05456165, 
NCT05201612, 
NCT03832621, 
NCT03186326, 
NCT04659382, 
NCT04262687, 
NCT05141721, 
NCT04014530, 
NCT03918499, 
NCT03655002, 
NCT03126812, 
NCT03554317, 
NCT04336943, 
NCT04068194, 
NCT05317000, 
NCT02883062

Chemotherapy Clinical response, MTD, AEs, 
PFS, ORR

ICB Cutaneous T-cell 
lymphoma

NCT03385226 Radiotherapy ORR

ICB Colorectal cancer, 
meningioma, rectal 
cancer

NCT03854799, 
NCT03604978, 
NCT04340401

Chemotherapy & 
radiotherapy

Pathologic response, MTD, 
ORR, AEs

The clinical trials focus on five primary therapeutic categories: neoantigen-directed cancer vaccines, 
adoptive cell transfer, TIL therapy, CAR-T therapy, and ICB therapy. Each approach seeks to harness the 
body’s immune system to more effectively target cancer, either by stimulating immune responses against 
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neoantigens or by genetically engineering immune cells to recognize and eliminate cancer cells (Table 5). 
For example, vaccines utilizing DCs, synthetic long peptides (SLPs), and RNA aim to prime the immune 
system to identify and attack tumors expressing neoantigens [305, 306]. ACT and TCR-engineered adoptive 
cell transfer (TCR-ACT) approaches involve modifying and expanding T cells to enhance their ability to 
recognize and kill cancer cells [150]. CAR-T therapy involves engineering T cells to express chimeric 
receptors that specifically target cancer cells [307], while ICB therapy aims to lift immune system inhibitory 
signals, enabling immune cells to attack tumor cells more effectively [308].

These clinical trials encompass a wide range of cancer types, including melanoma, GBM, NSCLC, and 
colorectal cancer, among others (Table 5). The studies also explore various combinations of these therapies 
with other treatments, such as PD-1 inhibitors, chemotherapy, radiotherapy, and ICB, to further enhance 
therapeutic efficacy. Clinical outcomes, such as overall response rate (ORR), disease-free survival (DFS), 
and PFS, are being used to evaluate the success of these therapies.

Discussion
The increasing focus on neoantigen-based cancer immunotherapies—encompassing vaccines, ACTs, and 
immune checkpoint inhibitors—highlights their transformative potential in revolutionizing cancer 
treatment [10, 103]. Neoantigens, by being tumor-specific, allow for precise targeting of malignancies while 
sparing healthy tissues, offering a more personalized alternative to traditional therapies [133, 145, 301]. 
However, while promising, several obstacles need to be addressed to maximize the efficacy and 
applicability of these treatments.

One primary challenge lies in the identification of immunogenic neoantigens and their corresponding 
TCRs [30, 309]. Current methods, such as NGS and immunopeptidomics, have made strides in identifying 
neoantigens [9]. Despite these advancements, the accuracy of epitope prediction remains suboptimal, 
necessitating the refinement of computational workflows [36, 41]. The experimental validation of these 
antigens is resource-intensive and time-consuming, further complicating progress. Emerging technologies, 
such as T-Scan, which assess T cell-mediated killing, hold promise for scaling these processes, but a more 
efficient approach to TCR mapping, high-throughput platforms, and enhanced algorithms is vital for 
advancing personalized therapies [310, 311].

The financial and time-related constraints associated with personalized neoantigen therapies 
represent another significant hurdle. While these therapies promise tailored treatments, the high costs and 
lengthy timelines associated with producing custom vaccines and identifying TCRs hinder their widespread 
implementation. A promising alternative lies in the development of off-the-shelf therapies targeting public 
neoantigens, which arise from common mutations across different tumor types [84, 312]. Although such 
therapies could alleviate cost and time challenges, targeting shared neoantigens across diverse patient 
populations and creating effective vaccines for these antigens remains a major scientific hurdle [131, 147]. 
Future research should focus on the development of public neoantigen-based vaccines, bispecific 
antibodies, and TCR-based therapies to overcome these limitations.

Combination therapies, particularly pairing neoantigen-based vaccines with ICIs, are emerging as a 
potential solution to improve treatment efficacy. These combination strategies, which may also include 
chemotherapy or radiation to boost neoantigen presentation, have shown promise in overcoming immune 
evasion in solid tumors, especially epithelial cancers [12, 131, 145, 313]. However, combining therapies 
introduces its own set of challenges, particularly with respect to balancing immune activation and 
managing immune-related adverse effects [122, 314, 315]. Further exploration is needed into immune-
modulating agents such as interferons and TLR agonists to determine optimal dosing schedules and 
improve their therapeutic impact.

Despite the challenges, the future of neoantigen-based immunotherapies is promising. Future research 
must focus on optimizing the screening and production processes to enhance scalability and reduce costs. 
Advances in bioinformatics, machine learning, and AI could significantly improve the accuracy of 
neoantigen prediction and streamline the process of identifying optimal therapeutic targets. Moreover, 
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novel delivery systems, such as nanoparticles and tumor-derived extracellular vesicles (EVs), hold great 
potential in augmenting immune responses and improving overall therapeutic outcomes [316, 317]. As 
clinical trials continue, the integration of neoantigen-based therapies into personalized treatment regimens 
for specific patient populations, such as the elderly, could further improve treatment efficacy, considering 
distinct disease progression patterns in these individuals.

In conclusion, neoantigen-based immunotherapies hold significant promise as a frontier in cancer 
treatment, yet several challenges must be addressed to fully realize their potential. Key obstacles include 
the efficient identification of neoantigens, cost reduction, and the scalability of therapies. Overcoming these 
hurdles will require continued advancements in bioinformatics, high-throughput technologies, and 
combination therapeutic strategies. While the future of neoantigen-based cancer immunotherapy appears 
promising, achieving its full impact will require overcoming technical, logistical, and financial barriers.

To unlock the potential of personalized therapies, substantial investments in infrastructure, 
computational tools, and collaborative efforts across disciplines are essential. Collaboration between 
industry partners, academic institutions, and regulatory bodies will play a pivotal role in translating 
research findings into clinical applications. The challenge of ensuring cost-effectiveness remains critical to 
providing equitable access to these therapies for all patients.

Looking forward, enhancing the precision of neoantigen identification through improved 
bioinformatics models and high-throughput technologies represents a promising direction. Additionally, 
exploring the use of combination therapies—integrating immune checkpoint inhibitors with other immune 
modulators—could offer a more comprehensive approach to overcoming tumor resistance mechanisms. 
Expanding the focus to investigate common neoantigens across various cancers could also lead to the 
development of more broadly applicable therapies. However, challenges related to computational 
prediction, resource constraints, and the complexity of immune responses must be addressed through 
continuous innovation and rigorous clinical testing. Ultimately, while substantial work remains, the future 
of neoantigen-based immunotherapy is bright, with the potential to revolutionize cancer treatment, 
particularly in the realm of personalized medicine.
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