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Abstract
Despite innovative advances in molecular targeted therapy, treatment strategies using immune checkpoint 
inhibitors (ICIs) for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) 
have not progressed significantly. Accumulating evidence suggests that ICI chemotherapy is inadequate in 
this population. Biomarkers of ICI therapy, such as programmed cell death ligand 1 (PD-L1) and tumor-
infiltrating lymphocytes (TILs), are not biomarkers in patients with EGFR mutations, and the specificity of 
the tumor microenvironment has been suggested as the reason for this. Combination therapy with PD-L1 
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors is a concern because of its severe 
toxicity and limited efficacy. However, early-stage NSCLC may differ from advanced-stage NSCLC. In this 
review, we comprehensively review the current evidence and summarize the potential of ICI therapy in 
patients with EGFR mutations after acquiring resistance to treatment with EGFR-tyrosine kinase inhibitors 
(TKIs) with no T790M mutation or whose disease has progressed on osimertinib.
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Introduction
Epidermal growth factor receptor (EGFR) mutations are major genetic variants reported in lung 
adenocarcinomas, with reported incidences of approximately 50% in Asians and 10–15% in Caucasians [1, 
2]. Lung cancer patients with EGFR mutations tend to have little or no smoking history. EGFR-tyrosine 
kinase inhibitors (TKIs) have been successfully developed for EGFR-mutated non-small cell lung cancer 
(NSCLC) and continue to stand as robust first-line treatments for advanced NSCLC harboring EGFR 
mutations [3–6]. Despite their efficacy, resistance to EGFR-TKIs occurs in almost all patients [7]. However, 
optimal treatment strategies have not yet been established.
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For patients who have developed resistance to EGFR-TKIs, treatment strategies based on resistance 
mechanisms are currently under investigation. However, at present, for patients with any EGFR mutation 
who have progressed on EGFR-TKIs with no T790M mutation or whose disease has progressed on 
osimertinib, treatment based on the nondriver mutation guideline may be offered [8].

Unlike cytotoxic anticancer drugs, immune checkpoint inhibitor (ICI) therapy is an attractive option 
due to its potential for a durable response. However, EGFR-mutated NSCLC may be at a disadvantage for 
immunotherapy because of the lack of smoking history and low tumor mutation burden (TMB). 
Nevertheless, programmed cell death ligand 1 (PD-L1) expression has been reported to be increased in 
EGFR-mutant NSCLC [9–11]. Furthermore, in preclinical models, programmed death 1 (PD-1) antibody 
blockade improved survival in mice with EGFR-driven adenocarcinoma by enhancing effector T cell 
function and reducing the levels of tumor-promoting cytokines [12], suggesting that ICI treatment for 
EGFR-mutated cases may be beneficial. Therefore, many clinical trials have been conducted to investigate 
the efficacy of ICI therapy in patients with NSCLC with EGFR mutations.

However, several clinical trials have shown that the efficacy of ICI therapy in patients with EGFR 
mutations is limited, and there are concerns regarding its toxicity. Pneumonitis has been reported to be 
enhanced by the concomitant or sequential use of ICIs [13–15]. Therefore, ICI therapy for patients with 
EGFR mutations is challenging. Recent data show a trend toward the addition of vascular endothelial 
growth factor (VEGF) being effective in EGFR-mutated cases; however, this is not conclusive.

In addition, ICIs have recently been introduced for locally advanced NSCLC and advanced stages [16–
18]. However, whether immune-oncology (IO) should be administered to patients with EGFR mutations at 
this stage needs to be considered. Thus, summarizing and discussing the findings regarding ICI treatment 
for patients with EGFR mutations may help us to consider whether patients with EGFR-mutated locally 
advanced NSCLC should be treated with ICI. In this review, we summarize the treatments, including ICI, and 
consider whether they are necessary for patients or not.

Mechanisms and subsequent strategies for EGFR-TKI resistance
Although EGFR-TKIs are the first-line treatment for EGFR-mutated NSCLC, due to their impressive clinical 
efficacy, almost all patients develop resistance to EGFR-TKIs [7, 19]. Several mechanisms have been 
reported for the acquired resistance to EGFR-TKIs. One example is the T790M second mutation, which is a 
resistance mechanism against first- and second-generation EGFR-TKIs. T790M is reported in approximately 
50% of patients who acquire resistance to first-/second-generation EGFR-TKIs [20, 21]. Osimertinib, a 
third-generation EGFR-TKI developed to overcome this resistance, has shown efficacy against T790M-
positive EGFR-mutated NSCLC and has been approved as a second-line treatment [22]. However, 
osimertinib was superior to first-generation EGFR-TKIs in the FLAURA trial and has been approved as a 
first-line therapy in many countries (in certain countries, only as second-line therapy). The mechanisms 
underlying osimertinib resistance are more diverse than those of the first or second generation [23–25]. 
Typical examples include MET amplification, C797S mutations, and signaling pathways other than EGFR, 
such as RET [23, 26]. Many attempts have been made to overcome these mutations as a strategy for 
osimertinib resistance, including the ORCHARD trial, which used an adaptation strategy for each resistance 
mutation, and patritumab deruxtecan (HER3-Dxd) and amivantamab plus lasertinib combination therapies, 
which target broad resistance [27–29]. Prolonged overall survival (OS) has been reported in patients who 
received platinum-doublet chemotherapy and EGFR-TKIs [30, 31]. As resistance to targeted therapy is 
expected to develop at a certain point, cytotoxic chemotherapy will continue to hold a prominent position 
in the treatment of EGFR-mutated NSCLC.

Furthermore, it has been reported that cancers generally become more heterogeneous during the 
disease [32, 33]. Therefore, the need for broader strategies, such as cytotoxic chemotherapy or 
immunotherapy, may strengthen after the first and second treatments fail.
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ICI monotherapy for EGFR-mutated NSCLC
The KEYNOTE-001 study was the first attempt to investigate the efficacy of ICIs as a first-line treatment for 
patients with EGFR-mutated NSCLC. The objective response rate (ORR) to pembrolizumab in four EGFR-
TKI-naive patients was 50%, with a median progression free survival (mPFS) of 157.5 days and a median 
OS (mOS) of 559 days. By contrast, the efficacy was limited in 26 patients previously treated with EGFR-
TKIs (ORR, 4%; mPFS, 56 days; mOS, 120 days) [34]. These results led to a phase II trial of pembrolizumab 
in TKI-naive patients expressing PD-L1. However, the interim analysis did not show the efficacy of 
pembrolizumab in this population; the ORR in the first 10 patients was 0% and the study was terminated 
early and considered invalid [35]. CheckMate012 reported that nivolumab monotherapy was less effective 
in patients with EGFR mutations than those with EGFR wild-type (ORR: 14% vs. 30%; mPFS: 1.8 months vs. 
8.8 months; mOS: 18.8 months vs. not reached) [36]. Furthermore, in a meta-analysis of phase II/III trials 
comparing ICIs (nivolumab, pembrolizumab, and, atezolizumab) with docetaxel in the second-line 
treatment of NSCLC, the OS of ICIs vs. digital therapeutics (DTX) in patients with EGFR mutations was 
hazard ratio (HR) 1.11 [95% confidence intervals (CI): 0.80–1.53, P = 0.54], indicating that although efficacy 
has been demonstrated in the overall population, treatment with ICIs is not superior in patients with EGFR 
mutation-positive [37].

Compared to platinum doublet, in a phase II study (WJOG8515L) comparing carboplatin (CBDCA) plus 
pemetrexed and nivolumab as second-line therapy after EGFR-TKI failure, nivolumab showed a shorter PFS 
than CBDCA plus pemetrexed and did not show a survival benefit [38]. In a retrospective analysis (an 
immunotarget study) investigating the efficacy of ICI monotherapy for each driver gene mutation, the ORR 
of ICI was 12.0% and the PFS was only 2.1 months (95% CI: 1.8–2.7) in patients with EGFR mutations [39]. 
The BIRCH and ATRANTIC trials investigated ICI monotherapy in patients with EGFR-mutated PD-L1. In 
both trials, ICI monotherapy was less effective in EGFR-mutated cases than in wild-type NSCLC [40, 41].

These results indicate that treatment with ICIs is effective in the overall population, but not in patients 
with EGFR mutations.

The data from these trials (Table 1) suggests that EGFR-mutant NSCLC is less effective than ICI 
monotherapy. In addition, in a retrospective study, we showed that high PD-L1 expression might not be a 
predictor of response in patients with EGFR/anaplastic lymphoma kinase (ALK) mutations [42]. A few 
reports indicate that EGFR is immunologically “cold”, and that the tumor microenvironment (TME) is 
unfavorable to ICI therapy. Tumors that do not elicit a strong immune response and do not usually respond 
to immunotherapy are called “cold” tumors. These tumors tend to be surrounded by cells that can suppress 
the immune response, making it difficult for T cells to attack the tumor cells. Therefore, these TMEs may be 
responsible for the poor efficacy of ICI monotherapy in EGFR-mutated NSCLC. These trials are summarized 
in Table 1.

Table 1. Immune checkpoint inhibitors monotherapy for EGFR-mutated NSCLC

Treatment Study 
name

Setting Drugs Phase Efficacy AEs Reference

KEYNOTE
-001

Pretreated Pembrolizumab I ORR 50%, mPFS of 
157.5 days in four EGFR-
TKI-naive patients; ORR 
4%, mPFS 56 days in 
EGFR-TKI treated patients.

No report for EGFR 
patients.

[34]

NCT02879
994

1st Pembrolizumab II ORR 0%. TRAE: 46%, no grade 
4–5 (38%). 6/7 
patients had a TRAE 
on second-line EGFR-
TKI.

[35]

Checkmat
e012

2nd Nivolumab I ORR: 14% vs. 30%; mPFS: 
1.8 months vs. 8.8 months.

Grade 3–4 in 14 
(37%), no G5, in the 
ITT population.

[36]

WJOG851
5L

2nd Nivolumab vs. Cb 
+ pemetrexed

II Nivolumab/Cb + 
pemetrexed, ORR 9.6% vs. 
36.0%, mPFS 1.7 months 
vs. 5.6 months.

Serious AEs: 25.5% in 
nivolumab and 16.0% 
in chemotherapy.

[39]

IO 
monotherapy
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Treatment Study 
name

Setting Drugs Phase Efficacy AEs Reference

BIRCH 1st to 3rd Atezolizumab II ORRs for mutant/wild-type 
in cohorts 1, 2, and 3 were 
23%/19%, 0%/21%, and 
7%/18%, respectively.

Grade 3 to 4 AEs 
occurred in 42% of 
patients (12% 
treatment-related).

[40]

ATRANTI
C

Less than 
3rd

Durvalumab II ORR was 12%. Treatment-related 
serious adverse 
events occurred in 
5%.

[41]

NCT03091
491

2nd Nivolumab vs. 
nivolumab + 
ipillimumab

I ORR 3.2%, PFS 
1.22 months in overall 
cohort.

2/31 of grade 3 TRAE 
in the overall cohort

[43]Dual-IO

KEYNOTE 
021

Less than 
2nd

Pembrolizumab 
plus ipilimumab

I/II One of the 12 patients 
showed an objective 
response.

- [44]

IO: immune-oncology; ORR: objective response rate; EGFR: epidermal growth factor receptor; TKIs: tyrosine kinase inhibitors; 
TRAE: treatment related adverse event; mPFS: median progression free survival; ITT: intent-to-treat; AEs: adverse events; ALK: 
anaplastic lymphoma kinase. -: no data

ICIs + EGFR-TKI therapy
The CheckMate012 trial evaluated the combination of nivolumab and erlotinib in 21 patients with EGFR-
mutant NSCLC. The PFS of patients previously treated with EGFR-TKIs (n = 20) was 5.1 months. Responders 
were PD-L1 positive or PD-L1 status unknown. No grade 4 or 5 treatment related adverse events (TRAEs) 
were reported, and 2/21 patients discontinued the study due to toxicity [45]. In contrast, the TATTON trial, 
which evaluated a combination of osimertinib and durvalumab, raised serious safety concerns. In this trial, 
48% of the patients developed at least one grade 3 TRAE, 5/23 developed interstitial lung disease, and all 
patients discontinued the trial [14]. Furthermore, the CAURAL trial comparing osimertinib with 
durvalumab as second-line treatment was stopped early due to the early discontinuation of the TATTON 
trial reported at the same time, and one patient developed pneumonitis [46]. In addition, the combination 
of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and EGFR-TKI for previously treated EGFR-
mutant NSCLC was investigated, but most studies were discontinued in the early phase because of low 
efficacy and toxicity (e.g., tremelimumab and gefitinib [47], ipilimumab and EGFR-TKI or ALK-TKI [44], 
erlotinib and atezolizumab [48], and pembrolizumab plus gefitinib or erlotinib [49]). These trials are 
summarized in Table 2.

Table 2. Immune checkpoint inhibitors + EGFR-TKI therapy

Study name Setting Drugs Phase Efficacy AEs References

CheckMate012 ≥ 2nd Nivolumab and erlotinib Ib ORR 15%, DCR 
65%, PFS: 5.1 
months

G3: 24%, no G4 or G5 
TRAEs

[49]

TATTON ≥ 2nd Durvalumab + osimertinib Ib ORR 43% ≥ G3: 48%; ILD occurred 
in 22% (≥ G3, 8.7%)

[14]

CAURAL ≥ 2nd Durvalumab + osimertinib III ORR 64% in the 
combination arm

Not sufficient data, grade 
2 interstitial lung disease 
occurred in 1 patient.

[46]

NCT02040064 2nd Tremelimumab and gefitinib I PFS of 2.2 months G3 TRAE 81% [50]
NCT01998126 1st Ipilimumab and erlotinib I PFS 27.8 months Four of the 11 patients 

had G3 colitis.
[51]

NCT02013219 1st and 
any

Atezolizumab + erlotinib Ib PFS 15.4 months G3 46%, no G4 or G5 
TRAE.

[52]

KEYNOTE 021 1st Pembrrolizumab + gefitinib 
(cohort F), Pembrrolizumab + 
erlotinib (cohort E)

Phase 
I/II

ORR 41.7% in 
cohort F and 14.3% 
in cohort E

G3: 33.3% in cohort F, 
G3–4: 71.4% in cohort E

[44]

ORR: objective response rate; DCR: dacryocystorhinostomy; PFS: progression free survival; TRAEs: treatment related adverse 
event; ILD: interstitial lung disease; EGFR: epidermal growth factor receptor; TKI: tyrosine kinase inhibitor
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Dual ICI therapy for EGFR-mutated NSCLC
The KEYNOTE 021 phase I/II study evaluated pembrolizumab plus ipilimumab as second-line or later 
therapy. In this study, 27% (12/44) of the patients harbored EGFR or ALK, of whom only one showed an 
objective response [44]. Although several trials have been conducted [43], severe toxicity concerns and 
limited efficacy were shown.

ICIs + chemotherapy for EGFR-mutated NSCLC

As a subgroup analysis of patients with EGFR mutations, in the CheckMate012 study evaluating the efficacy 
of nivolumab in combination with chemotherapy, mPFS and OS were shorter in the EGFR mutation arm 
than those in the wild-type arm (mPFS: 4.8 months vs. 7.5 months; mOS: 20.5 months vs. 24.5 months) [50]. 
Additionally, in the IMpower130 trial, CBDCA + nanoparticle albumin-bound paclitaxel (nab-PTX) + 
atezolizumab did not show superiority compared to chemotherapy in EGFR HR (mPFS: 7.0 months vs. 
6.0 months, HR 0.75; 95% CI: 0.36–1.54; mOS: 14.4 months vs. 10.0 months, HR 0.98, 95% CI: 0.41–2.31) 
[51].

In addition, the CheckMate722 and KEYNOTE789 trials validated chemotherapy + ICI treatment in 
patients with EGFR mutations. The CheckMate722 trial included 294 patients with EGFR-mutated NSCLC 
who had progressed with first- or second-generation EGFR-TKIs and did not have the T790M mutation and 
patients who had progressed with osimertinib with or without the T790M mutation. Nivolumab and 
chemotherapy could not show superiority in PFS and OS [52].

The KEYNOTE789 study evaluated CBDCA + pemetrexed + pembrolizumab as a treatment after EGFR-
TKI failure in NSCLC harboring EGFR-sensitive mutations (19del or L858R). Similar to the Checkmate722 
study, patients who progressed to osimertinib and those who progressed to first- or second-generation 
EGFR-TKIs without T790M mutations were included in this study. The PFS was set to be achieved if HR was 
0.70 or less, but resulting in HR 0.80 (95% CI: 0.65–0.97), and OS was set to be achieved if HR was 0.72 or 
less, but resulting in HR 0.84 (95% CI: 0.69–1.02), exceeding both primary endpoints could not be achieved. 
Subgroup analysis showed a slightly better OS in the PD-L1-positive group; however, none of the subgroups 
appeared particularly effective [53].

The ILLUMINATE phase II study evaluated the combination of durvalumab and tremelimumab plus 
platinum-pemetrexed in EGFR-mutated NSCLC who had experienced disease progression with EGFR-TKIs. 
The study included T790M-negative cohort 1 and T790M-positive cohort 2. The ORR was 42% in cohort 1 
and 35% in cohort 2, with mPFS of 6.5 months and 4.9 months, respectively, demonstrating modest efficacy 
for this population. In T790M-negative patients, high PD-L1 expression (PD-L1 ≥ 50%) was associated with 
greater efficacy compared with low expression [54]. These studies are summarized in Table 3.

Table 3. Immune checkpoint inhibitors + chemotherapy ± anti-VEGF antibodies for EGFR mutant NSCLC

Treatment Study name Setting Drugs Phase Efficacy AEs References

CheckMate012 2nd Nivolumab + platinum 
doublet

I EGFR mutated vs. wild 
type, ORR: 17% vs. 
47%, PFS: 4.8 months 
vs. 7.5 months, OS: 
20.5 months vs. 
24.5 months.

G3–4: 50%, G5: 
0%. (All patients, 
not only EGFR).

[50]

IMpower130 2nd Comparing CBDCA + 
nab-PTX + 
atezolizumab with 
CBDCA + nab-PTX

III In the subgroup of 
EGFR/ALK, the mPFS 
was 7.0 months vs. 
6.0 months (HR 0.75, 
95% CI: 0.36–1.54).

G3–4: 81% in the 
combination arm. 
(All patients, not 
only EGFR).

[51]

CheckMate722 2nd Nivolumab plus 
chemotherapy vs. 
chemotherapy

III PFS: 5.6 months in the 
nivolumab plus 
chemotherapy group 
and 5.4 months in the 
chemotherapy group.

G3–4: 45% in 
nivolumab-based 
therapy and 29% 
in chemotherapy.

[55]

Pembrolizumab plus PFS: 5.6 months in the G3 ≤ TRAE; 

Chemotherapy 
+ IO

KEYNOTE789 2nd III [56]
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Treatment Study name Setting Drugs Phase Efficacy AEs References

chemotherapy vs. 
chemotherapy

pembrolizumab plus 
chemotherapy group 
and 5.5 months in the 
chemotherapy group.

43.7%, irAE 4.5% 
in combination 
arm.

Chemotherapy 
+ dual-IO

ILLUMINATE 2nd Durvalumab and 
tremelimumab plus 
platinum-pemetrexed

II The ORR was 42% in 
cohort 1 and 35% in 
cohort 2, with mPFS of 
6.5 months and 
4.9 months.

G3–4 colitis 8%, 
hepatitis 4%, ILD 
1%.

[54]

Chemotherapy 
+ IO + anti-
VEGF

IMpower150 2nd Atezolizumab, 
bevacizumab, 
carboplatin-paclitaxel 
(CP). Control arm: BCP, 
study arm: ACP, ABCP

III ORR 70.6% for ABCP, 
35.6% for ACP, 41.9% 
for BCP.

G3–4: 64% of 
ABCP, 68% of 
ACP, and 64% of 
BCP.

[57, 58]

Chemotherapy 
+ IO + anti-
VEGF

ORIENT 2nd Scintilimab, IBI305 
(bevacizumab 
biosimilar), pemetrexed 
+ cisplatin (PC). Arm A: 
SIPC, arm B: SPC, arm 
C: PC→S

III Confirmed ORR were 
43.9%, 33.1%, and 
25.2% in arm A, B, and 
C, PFS 6.9 months for 
arm A, 5.5 months for 
arm B, 4.3 months for 
arm C.

Grade ≥ 3 
treatment-
emergent AEs 
were 54.7% (arm 
A), 39.3% (arm 
B), and 51.0% 
(arm C).

[55]

Chemotherapy 
+ IO + anti-
VEGF

IMpower151 2nd Atezolizumab, 
bevacizumab, 
carboplatin-pemetrexed. 
Control arm: 
bevacizumab + 
carboplatin-pemetrexed, 
study arm: 
atezolizumab + 
carboplatin-pemetrexed, 
atezolizumab + 
bevacizumab + 
carboplatin-pemetrexed. 
Over half of the patients 
had EGFR/ALK

III In the subgroup of 
EGFR/ALK, the mPFS 
was 8.5 months (95% 
CI: 6.9–10.3) for 
atezolizumab + 
bevacizumab + 
carboplatin-pemetrexed 
and 8.3 months (95% 
CI: 6.9–10.1) for 
bevacizumab + 
carboplatin-pemetrexed 
(HR 0.86, 95% CI: 
0.55–1.19).

G3–4: 67.1% of 
ABCP, G5 5.9% 
in ABCP.

[59]

irAE: immune-related adverse events; CP: carboplatin-paclitaxel; BCP: bevacizumab carboplatin-paclitaxel; ACP: atezolizumab 
carboplatin-paclitaxel; PC: pemetrexed + cisplatin; SIPC: scintilimab + IBI305 + pemetrexed + cisplatin; SPC: scintilimab + 
pemetrexed + cisplatin; EGFR: epidermal growth factor receptor; TRAE: treatment related adverse event; mPFS: median 
progression free survival; ORR: objective response rate; IO: immune-oncology; OS: overall survival; CBDCA: carboplatin; nab-
PTX: nanoparticle albumin-bound paclitaxel; VEGF: vascular endothelial growth factor; NSCLC: non-small cell lung cancer; HR: 
hazard ratio; CI: confidence intervals; TRAE: treatment related adverse event; ILD: interstitial lung disease; ALK: anaplastic 
lymphoma kinase. PC→S: pemetrexed + cisplatin → sincilimab

ICIs + chemotherapy + anti-VEGF antibodies for EGFR-mutated NSCLC

In a subgroup analysis of patients with EGFR mutation in a phase III trial (IMpower150) comparing CBDCA 
+ PTX + bevacizumab + atezolizumab (ABCP) with CBDCA + PTX + bevacizumab (BCP) in the first-line 
treatment of non-squamous NSCLC, mOS was not reached vs. 18.7 months (HR 0.61, 95% CI: 0.29–1.28) and 
mPFS was 10.2 months vs. 6.9 months (HR 0.61, 95% CI: 0.36–1.28), showing a trend towards better 
treatment response in the atezolizumab combination group [60]. Furthermore, OS improvements were 
sustained with ABCP vs. BCP in sensitizing EGFR mutations in updated analysis (mOS 29.4 months vs. 
18.1 months, HR 0.74, 95% CI: 0.38–1.46) [61]. However, this subgroup analysis was not planned in the 
protocol, and the presence of EGFR mutations was not set as a pre-planned stratification factor, which 
should be cautioned.

The ORIENT-31 trial is the first prospective phase III trial to show the benefit of anti-PD-1 antibody 
plus chemotherapy in patients with EGFR-mutated NSCLC who have progressed after treatment with 
tyrosine kinase inhibitors. In this study, sintilimumab (PD-1 inhibitor) + IBI305 (anti-VEGF) + cisplatin + 
pemetrexed showed superiority in terms of PFS over chemotherapy and was well tolerated [55]. VEGF is 
involved in angiogenesis and the formation of a broad immunosuppressive environment. VEGF promotes 
Treg differentiation and proliferation and inhibits dendritic cell maturation [56]. The combination of PD-
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1/L1 inhibition and VEGF blockade enhances antigen-specific T-cell migration and modulates the 
expression of the CD8+ T-cell inhibitory checkpoint in tumors [57, 58, 62]. Therefore, the role of VEGF as an 
immunomodulator is expected, and elevated VEGF levels have been reported in EGFR-mutant NSCLC [63]. 
These associations between VEGF and the TME in EGFR-mutated NSCLC support the combined strategy of 
PD-1 and VEGF inhibition in EGFR cases. However, contradictory results have recently been reported. The 
IMpower151 trial was presented at the 2023 IASLC World Lung Cancer for the Study of ABCP, or BCP. In the 
subgroup of patients with EGFR/ALK-positive (n = 163), the mPFS was 8.5 months (95% CI: 6.9–10.3) in 
the ABCP group vs. 8.3 months (95% CI: 6.9–10.1) in the BCP group (non-statistical HR, 0.86; 95% CI: 
0.55–1.19) [59]. These results are inconsistent with the improvements in PFS and OS with ABCP observed 
in the IMpower150 trial. Therefore, the strategy for combination with VEGF blockade remains unknown. 
However, this is currently the only regimen with promising efficacy.

ICI therapy for locally advanced NSCLC harboring an EGFR mutation

As mentioned above, the efficacy of ICI treatment in EGFR-mutated cases is limited to advanced stages. 
However, this does not appear to be the case in early-stage EGFR-mutated NSCLC. The IMpower010 study 
was a phase III open-label study comparing atezolizumab with placebo after postoperative adjuvant 
platinum-based chemotherapy for completely resected NSCLC. Disease-free survival (DFS) in stages II–III 
was significantly longer in the atezolizumab group than in the best supportive care group. In this study, the 
DFS in the EGFR mutation subgroup in the overall population was HR 0.99 (0.60–1.62), while PD-L1 
positive cases showed that the DFS in the EGFR mutation subgroup was HR 0.57 (0.26–1.24), similar to 
cases without EGFR mutations [17].

In the EGFR mutation subgroup of the KEYNOTE091 trial evaluating postoperative adjuvant 
pembrolizumab for similar populations, the HR was 0.44 (0.23–0.84), suggesting that it may be better than 
in non-EGFR mutation cases [64].

KEYNOTE671 is a randomized, double-blind, phase III study that compared pembrolizumab with a 
placebo after postoperative adjuvant platinum-based chemotherapy for completely resected NSCLC. The 
primary endpoint, event-free survival, was better in the subgroup of patients with EGFR mutations [HR 
0.09 (0.01–0.74)] than in those without EGFR mutations [65].

The AEGEAN study included EGFR mutation cases, but only the results from subjects excluding EGFR 
mutation cases are available [66].

Thus, unlike patients with advanced disease, patients with EGFR mutations do not seem to be 
particularly less affected by perioperative treatment than wild-type patients. However, the number of 
patients with EGFR mutations was small in both studies, which were subgroup analyses. In resectable 
NSCLC, the levels of CD8+ cytotoxic T cells and CD20+ B cells are associated with OS and DFS, and it has 
been reported that the higher the number of Tregs, the shorter the OS [67]. In contrast, although PD-L1 
expression reflects the presence of tumor-infiltrating lymphocytes (TILs), there are reports that PD-L1 
expression is a prognostic marker for resectable NSCLC harboring an EGFR mutation [68]. Therefore, there 
is no consensus regarding the TME of resectable EGFR-mutated NSCLC. However, osimertinib as a 
postoperative adjuvant showed a remarkable increase in DFS. Although it is necessary to compare the long-
term prognosis, EGFR-TKIs currently have greater benefits as adjuvant treatments. Although 
immunotherapy for resectable EGFR-mutated NSCLC has DFS benefits, it is less effective than EGFR-TKIs, 
and there is little need for immunotherapy in clinical practice.

For unresectable stage III NSCLC, durvalumab is the standard treatment after concurrent 
chemoradiotherapy (CCRT); however, it is reported to be less effective in patients with EGFR [69]. 
Osimertinib consolidation therapy after CCRT is currently being investigated in the LAURA study.

Biomarkers and TME of EGFR-mutated NSCLC
Several reports have indicated that the TME has a significant impact on the therapeutic effects of ICIs [70–
72].
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The most representative biomarker is PD-L1 expression, and it has been reported that PD-L1 
expression may be upregulated by multiple pathways in EGFR-mutated NSCLC [9]. However, there are no 
certain opinions on whether PD-L1 expression is high in EGFR-mutated cases, as a few indicate that PD-L1 
expression is high, whereas others indicate that it is low [10, 73]. Real-world studies have reported that PD-
L1 expression correlates with the response to first-line osimertinib therapy, and PD-L1 expression is 
associated with prognosis [74].

No consensus has been observed on the importance of PD-L1 expression in EGFR-mutated NSCLC. 
However, PD-L1 expression does not appear to be a biomarker for ICI treatment in advanced EGFR cases, 
and there have been few clinically significant results.

TMB was defined as the number of somatic mutations per megabase in the coding region of a tumor. In 
advanced NSCLC, there is a significant association between smoking history and genetic alterations and 
TMB [75], and patients with EGFR-mutated NSCLC are less affected by smoking and therefore have fewer 
somatic mutations and neoantigens [76]. However, it is reported that TMB is not associated with the 
therapeutic efficacy of PD-1/L1 blockade in patients with driver mutations [77].

In addition, lymphocyte infiltration into the tumor and surrounding stroma is associated with ICI 
efficacy, and a higher density of CD8+ TILs is associated with a better ICI response. In contrast, Treg 
infiltration was associated with poor ICI efficacy. Fewer CD8+ TILs and more Tregs were observed in EGFR-
mutated mutations. EGFR-mutated NSCLC is a cold tumor with a non-inflammatory microenvironment. 
However, the high prevalence of Treg infiltration, which is usually observed in inflammatory 
microenvironments, is unique. Tregs are induced by EGFR [78].

Various soluble molecules have been reported to interact with EGFR. For example, interleukin-6 (IL6) 
is reported to be overexpressed in EGFR-mutated mouse models [79], and transforming growth factor-beta 
(TGF-β) and tumor necrosis factor (TNF) are reported to be increased by EGFR expression [80, 81].

Another potential influence on the TME is the effect of previous EGFR-TKI treatment. Several studies 
have indicated that EGFR inhibition affects TMEs [73, 78, 79, 82]. Reports have shown that EGFR inhibition 
improves the TME [78, 82], but the combination of EGFR-TKIs and ICI has shown less clinical benefit in 
clinical trials.

Conclusions
Current evidence suggests that ICI therapy for EGFR-positive lung cancer remains inadequate, probably due 
to the EGFR-specific TME. Various attempts have been made to increase the efficacy of ICI in this 
population. Combination therapy with CTLA-4 has not shown good results in EGFR cases, whereas the 
combination of VEGF, chemotherapy, and ICI has shown good results. A better understanding of EGFR-
specific TME and consideration of suitable combinations is required to establish treatment strategies, 
including optimal ICI for this population. However, the evidence currently described is still insufficient for 
ICI to prolong the prognosis of EGFR-mutated NSCLC, and there is hope for the development of new agents 
such as ADC drugs and dual antibodies. In addition, adjuvant therapy with PD-L1 inhibitors has been 
introduced for resectable NSCLC and unresectable stage III NSCLC; however, EGFR-positive NSCLC is 
unlikely to benefit from ICI, even in these patients, and targeted therapy seems to be the most promising.
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