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Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. Due to the lack of effective 
screening and early detection strategies, many patients with OC are diagnosed with advanced disease, 
where treatment is rarely curative. Moreover, OC is characterized by high intratumor heterogeneity, which 
represents a major barrier to the development of effective treatments. Conventional tumor biopsy and 
blood-based biomarkers, such as cancer antigen 125 (CA125), have different limitations. Liquid biopsy has 
recently emerged as an attractive and promising area of investigation in oncology, due to its minimally 
invasive, safe, comprehensive, and real-time dynamic nature. Preliminary evidence suggests a potential role 
of liquid biopsy to refine OC management, by improving screening, early diagnosis, assessment of response 
to treatment, detection, and profiling of drug resistance. The current knowledge and the potential clinical 
value of liquid biopsy in OC is discussed in this review to provide an overview of the clinical settings in 
which its use might support and improve diagnosis and treatment.
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Introduction
Ovarian cancer (OC) is the fifth most common cause of cancer mortality in women worldwide and the main 
cause of cancer-related death for gynecological malignancies [1]. Among the different histological subtypes, 
high-grade serous OC (HGSOC) is the most prevalent [2]. Unfortunately, due to the lack of an effective 
screening strategy and specific symptoms, the majority of patients are diagnosed with advanced disease [3]. 
Advanced-stage OC is managed with debulking surgery with the aim of optimal cytoreduction and 
platinum-based systemic therapy administered after surgery or in the neoadjuvant setting [2–5]. More 
recently, the use of the antiangiogenic agent bevacizumab and poly-ADP ribose polymerase (PARP) 
inhibitors as maintenance in the front line has been shown to improve patients’ outcomes [6–8]. However, 
despite the initial chemosensitivity, many patients relapse and ultimately develop platinum resistance. This 
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is strictly related both to the high intratumoral heterogeneity in the primary tumor and to the spatial-
temporal genomic evolution under the selective pressure of systemic treatments.

Understanding the complex genomic background of OC could guide the use of targeted therapies, which 
will pave the way for the implementation of precision medicine. To date, the only molecular characteristics 
routinely used for decision-making are breast cancer gene 1 and 2 (BRCA1/2) mutations and homologous 
recombination (HR) deficiency, which have been demonstrated and validated as predictive biomarkers of 
response to platinum therapy and PARP inhibitors in the frontline setting [7–10]. Thus, there is an urgent 
need to identify disease-specific biomarkers, which could improve the detection rate of OC and be 
implemented in treatment algorithms.

Liquid biopsy as a new tool in oncology
The use of prognostic and predictive biomarkers to inform clinical decisions has become increasingly 
important and the majority are based on tumor tissue analysis. However, although it represents the gold 
standard for tumor molecular sequencing, tissue biopsy is associated with technical and safety issues. 
Indeed, it is an invasive procedure that may cause discomfort as well as complications for the patient, and it 
is not always feasible [11]. Moreover, cancer is a dynamic process characterized by space-time 
heterogeneity and evolution, which are often not fully captured by tumor biopsy samples [12–14]. These 
limitations highlight the need for more innovative and comprehensive methods to decipher the complexity 
of cancer. The most promising alternative to traditional tissue biopsy is the so-called “liquid biopsy”, a 
procedure involving the study of biological fluids such as blood, urine, saliva, stool, ascites, etc. from which 
cancer material can be isolated [15–17]. Compared with tissue-based sampling liquid biopsy is easier, safer, 
and definitely more convenient for both patients and health providers (Figure 1). Furthermore, liquid 
biopsy can be repeated over time due to its minimally invasive nature, thus making easier “real-time” 
disease monitoring [15]. Liquid biopsy based on the analysis of circulating tumor DNA (ctDNA) is currently 
the most attractive and investigated tool. ctDNA is the fraction of cell-free DNA (cfDNA) that is released 
from the tumor in the plasma. ctDNA is shed by the tumor cells as a result of apoptosis, necrosis, and active 
secretion, and it can be detected and quantified in cfDNA by tumor-specific genetic alterations [18].

Figure 1. Comparison of the advantages and limitations of liquid versus tissue biopsy

Two different approaches were developed to investigate ctDNA. The first strategy involves querying a 
single or few tumor-specific mutations known from the primary tumor (“targeted strategy”). This approach 
is based on the use of polymerase chain reaction (PCR)-based assays, next generation sequencing (NGS)-
based methods or Safe-sequencing system (Safe-SeqS), cancer personalized profile (CAPP-Seq), tagged 
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amplicon deep sequencings (Tam-Seq). PCR-based methods detect a limited number of known mutations, 
while NGS can identify a broad spectrum of somatic aberrations, including single nucleotide variants 
(SNVs), copy number variations (CNVs), and chromosomal rearrangements. Overall, this strategy requires 
prior detailed knowledge of the tumor genome, but it is very sensitive and specific [19, 20]. The second 
approach to investigate ctDNA is through an “untargeted strategy” using whole exome sequencing (WES) or 
whole genome sequencing (WGS). This approach has the advantage of being independent of the mutational 
profile of the tumor tissue and can identify novel alterations occurring during treatment, but has the 
disadvantage of being more expensive and less sensitive [19, 20].

Given the limitations of tissue-based analysis, liquid biopsy has been actively pursued as a potential 
tool to refine cancer patients’ care [21, 22]. We provide an overview of the potential role of liquid biopsy in 
OC.

Potential roles of liquid biopsy in OC
Potential applications of liquid biopsy include, among others, cancer screening and early diagnosis, 
detection of minimal residual disease after curative treatment, monitoring of disease status during follow-
up, drug selection, dynamic assessment of tumor response to treatment, detection and profiling of 
treatment resistance (Figure 2).

Figure 2. Timelines of potential clinical applications of blood-based liquid biopsy in OC. Created with BioRender.com

Screening and early diagnosis

The high mortality rate of OC can be largely attributed to the difficulties encountered in early detection 
[23]. Thus, the majority of patients with HGSOC are diagnosed at an advanced stage where the possibility of 
a cure is limited [24]. As a result, the early detection of OC appears critical in reducing mortality and 
morbidity. In clinical practice, serum cancer antigen 125 (CA125) and ultrasonography (US) are widely 
employed as diagnostic tools for OC but are not useful as screening tests [25]. Last, the UK Collaborative 
Trial of OC Screening (UKCTOCS) trial did not demonstrate a survival benefit using US and/or CA125 
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assessments for the early diagnosis of OC [26, 27]. OC is relatively rare with a prevalence of approximately 
1% in the population. For this reason, an effective and acceptable screening test should achieve a high 
sensitivity (> 75%) and very high specificity (99.6%) for early-stage disease [28].

In recent years, liquid biopsy has been investigated as a strategy for early detection of OC. The idea of 
exploiting liquid biopsy as a non-invasive screening tool is attractive and is based on the observation that 
cancer patients display higher levels of plasma cfDNA compared to healthy controls [29]. Some authors 
showed higher cfDNA concentration in patients with OC than in healthy women, and that the quantitative 
detection of cfDNA could help to discriminate malignant OC from benign ovarian disease [30–33]. While 
some studies have suggested that the quantitative detection of cfDNA may be more sensitive and specific 
than conventional tumor markers, a meta-analysis of nine studies showed an acceptable specificity (90%) 
but an unsatisfactory sensitivity (70%) for the diagnosis of OC [34]. This finding can be explained by the 
low sensitivity of cfDNA for the detection of early-stage malignancies, which are supposed to be a relevant 
target of screening programs.

Other studies focused on qualitative changes in ctDNA, including somatic mutations, methylation, and 
chromosomal aberrations that can be detected with NGS or PCR-based assays. TP53 mutation is highly 
prevalent in HGSOC, accounting for more than 95% of somatic mutations [35]. Data from several studies 
indicate a high level of concordance between the detection of TP53 mutation in blood and tissue samples, 
suggesting its potential role in the diagnosis of OC [36–39]. Calapre et al. [40] demonstrated a concordance 
rate varying from 60% to 100% depending on the type of NGS panel used.

Several studies have suggested the diagnostic potential of promoter methylation that leads to 
epigenetic inactivation of tumor suppressor genes [e.g., opioid binding protein/cell adhesion molecule-like 
(OPCML), slit homologue 2 (SLIT2)] as an early event during OC pathogenesis [41, 42]. Assessment of ctDNA 
methylation status in plasma samples from OC patients before surgery reported a significant association 
with abnormal methylation of tumor suppressor genes compared to healthy controls [43–45]. 
Widschwendter et al. [46] analyzed the methylation status of three epigenetic markers [collagen type XXIII 
alpha 1 chain (COL23A1), c2 calcium-dependent domain-containing protein 4D (C2CD4D), and wingless-
type MMTV integration site family, member 6 (WNT6)] in the early screening setting. This analysis was able 
to identify OC up to two years before clinical diagnosis with a sensitivity of 58% and a specificity of 88% 
[46].

Chromosomal instability is another hallmark of OC, linked at least in part, by the early onset of TP53 
mutations [35]. Vanderstichele et al. [47] used WGS with low coverage to identify chromosomal instability 
in cfDNA and differentiated patients with OC from healthy controls with 84% sensitivity and 91% 
specificity.

An approach involving the analysis of body fluids other than blood might help by increasing the 
sensitivity of tumor DNA detection. For instance, a tumor-specific liquid biopsy as uterine cavity lavage 
could provide higher fractions of tumor material [48, 49].

Cohen et al. [50] analyzed circulating protein biomarkers and mutations in cfDNA using a multiomics 
strategy with a commercial blood test called CancerSEEK. This test used 61 amplicons for massively parallel 
sequencing to increase sensitivity while maintaining specificity. The sensitivity was 98% in patients with 
OC, but the detection rate was only 38% in the early stages [50].

Despite the potential application of liquid biopsy in the early diagnosis of OC, it’s far too early to claim 
its prime time in the clinic. Data currently available in this setting show highly divergent detection rates, 
small series of patients, significant variability in terminology, timing of sampling, and methodology of 
analyses, as well as in the histological subtypes of OC detected.

Prognosis and early detection of recurrence

Although most OC patients achieve complete remission after first-line treatment, up to 70% of patients 
relapse within two years. CA125 and computed tomography (CT) scans are usually used during follow-up. 
Although CA125 is routinely applied in clinical practice as an OC biomarker, its clinical value is uncertain 
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due to low sensitivity and specificity. In fact, half of the patients with normal CA125 have persistent disease. 
Additionally, CA125 might be elevated in benign conditions (e.g., endometriosis or pelvic inflammatory 
disease), limiting its utility in OC follow-up [51–53].

Increasing evidence from other malignancies supports the clinical application of liquid biopsy to define 
the risk of recurrence and its earlier detection. ctDNA analysis may serve these purposes by identifying the 
presence of persisting occult disease after initial treatment, likely responsible for disease relapse and poor 
prognosis [54–56]. Furthermore, a longitudinal collection of liquid biopsies during follow-up would identify 
early ctDNA changes resulting in therapeutic anticipation compared to traditional imaging-based follow-up.

In OC evidence suggested that ctDNA analysis could anticipate the detection of relapse in comparison 
to CA125 and radiological images such as CT and positron emission tomography (PET) scans [57–60].

Pereira et al. [57] used PCR and targeted sequencing to quantify ctDNA levels following surgery in 22 
patients with HGSOC. Undetectable levels of ctDNA after adjuvant treatment were associated with 
significantly improved survival outcomes. The authors also showed that the detection of ctDNA anticipated 
the diagnosis of recurrence by approximately 7 months compared to CT imaging [57]. Similarly, in a cohort 
of 48 patients with HGSOC, approximately 80% of patients without residual disease after surgery had 
detectable ctDNA. Despite being not statistically significant, patients with detectable ctDNA had shorter 
overall survival [61]. Minato et al. [58] detected ctDNA in all patients (6/11) with recurrent OC using 
droplet digital PCR, while no ctDNA was detected in the plasma of recurrence-free patients (5/11). In 5/6 
cases, the appearance of the ctDNA preceded the increase of the CA125 [58]. Paracchini et al. [59] recently 
used shallow WGS to calculate the percentage of tumor fraction (TF) in samples from 46 HGSOC patients. In 
this study, TF calculated at the time of diagnosis was an independent prognostic marker of relapse. 
Moreover, in longitudinal monitoring, the increase of TF preceded the CA125 by almost 8 months in the 
detection of disease progression [59].

These studies, although limited by their retrospective nature, small sample sizes, and lack of an 
independent validation cohort, suggest a potential utility of ctDNA as a predictor of OC recurrence [57–60]. 
Nevertheless, therapeutic options for recurrent disease are currently limited, and early detection of 
recurrence may not always impact survival [62]. The clinical value of an early detection of tumor relapse 
and the earlier start of treatment should be evaluated in well-designed prospective studies using ctDNA 
detection as a marker of disease recurrence.

Assessment of response to treatment

Currently, radiological imaging remains the gold-standard to evaluate response to treatment. OC is often 
associated with peritoneal disease, which is usually non-measurable or hardly measurable by CT scan [63]. 
The serum marker CA125 has also been used to monitor treatment response, with some disadvantages, 
such as long half-life and poor tumor-specificity.

To date, evidence of a potential utility of serial ctDNA monitoring to predict response to anticancer 
treatment in OC is far preliminary. In a retrospective study of 40 patients with relapsed OC, the TP53 
mutant allele frequency (TP53MAF) has been qctDNA before, during, and after chemotherapy. Pre-
treatment ctDNA TP53MAF concentration correlated with initial tumor volume better than the CA125 
value. Of note, patients with a > 60% decrease in TP53MAF after one cycle of chemotherapy had a longer 
time to progression compared to those with a decrease of less than 60% [41]. Similarly, a study showed 
that TP53MAF in ctDNA was significantly reduced in 28 patients with OC treated with chemotherapy, but 
the correlation with clinical outcomes was not reported [39]. These studies also indicate that changes in 
ctDNA TP53MAF could provide some indications when monitoring treatment response.

Noguchi et al. [64] retrospectively compared the tumor mutation burden in plasma samples utilizing 
CAPP-seq for plasma ctDNA in 10 patients with OC treated with neoadjuvant chemotherapy (6 chemo-
sensitive and 4 chemo-resistant). They found that in 5 responder patients, the variant allele frequency 
(VAF) of non-synonymous mutations decreased after chemotherapy while it increased in 2 resistant cases, 
and new mutations emerged following chemotherapy [64]. In a prospective study with cfDNA samples 
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collected from 12 HGSOC patients before, during, and after platinum-based chemotherapy, clinically 
actionable mutations were detected in 7 (58%) patients. Consistently with previously described studies, the 
authors observed that responders had a higher number of mutations with decreasing VAF when compared 
with poor responders. Furthermore, the authors emphasize that in a patient with platinum-resistant 
disease, trastuzumab was used as treatment following the detection of Erb-B2 Receptor Tyrosine Kinase 2 
(ERBB2)amplification in ctDNA, leading to a radiological and biochemical response [65].

Rusan et al. [66] assessed the potential role as a biomarker of homeobox A9 (HOXA9) promoter 
methylation in ctDNA (meth-ctDNA) in patients with platinum-resistant BRCA-mutated OC, treated with a 
PARP inhibitor. The best clinical outcome was observed in patients with detectable HOXA9 meth-ctDNA at 
baseline, but subsequent undetectable levels [66].

While further studies are necessary to define the optimal timing of sample collection and the most 
suitable and cost-effective assay for ctDNA measurement, serial ctDNA monitoring has the potential to 
complement the information available from routine imaging-based disease assessments. Identifying 
progression prior to the development of clinically evident disease might justify to discontinue treatments 
that are not providing benefit to the patients, sparing them from clinical and financial toxicity. Moreover, 
serial monitoring of ctDNA could be used as an early predictor of treatment efficacy to facilitate adaptive 
clinical trial strategies.

Early detection and profiling of treatment resistance

The emergence of platinum-resistant disease is one of the major challenges in the management of OC.

Intratumor heterogeneity and adaptability of the OC genome under the selective pressure of 
chemotherapy represent one of the main reasons for drug resistance and treatment failure [67, 68]. While a 
“real-time” molecular characterization of recurrent disease would be crucial for intercepting actionable 
genetic vulnerabilities or drug resistance mechanisms, longitudinal acquisition of multiple tissue biopsies is 
clinically impracticable and too invasive for often heavily pre-treated patients. In this scenario, the use of 
liquid biopsy is a promising option to overcome this issue, allowing for monitoring of tumor evolution over 
time. Indeed, serial profiling of ctDNA can provide a more comprehensive picture of the tumor 
heterogeneity, by capturing the dynamic changes in the mutational landscape that may occur under the 
selective pressure of anticancer treatments [69].

In addition to blood, tumor material can also be searched in ascites [70]. In fact, many patients with 
recurrent OC present with malignant ascites, and it is not unusual in the clinic that large volumes need to be 
drained, often repeatedly, to relieve abdominal distension. Sampling ascites might allow for a more 
comprehensive assessment of the mutational profile at the time of each recurrence or progression [71, 72].

Nearly half of HGSOCs harbor defects in HR, which is a biomarker of platinum-based chemotherapies 
and PARP inhibitors sensitivity [73]. In the last decade, the introduction of PARP inhibitors has 
revolutionized the treatment landscape of OC in both first line and relapsed settings [7, 8, 74, 75]. However, 
acquired mutations that confer resistance to PARP inhibitors have been reported in some patients after 
long-term exposure to treatment [76, 77].

Germline or somatic pathogenic mutations in BRCA1 or BRCA2 are the best described mechanism of HR 
deficiency [78]. Accordingly, the most readily conceivable mechanism of PARP inhibitor resistance is the 
acquisition of reversion mutations, that restore HR function [79–81].

Recent studies have shown the feasibility to detect reversion mutations by cfDNA analysis suggesting 
its potential clinical use [81–83]. Christie et al. [82] conducted a prospective study in 30 patients with 
HGSOC carrying a germline BRCA1/2 mutation and detected BRCA1/2 reversion mutations in the tumor in 
31.3% of patients treated in the recurrent setting, among which 18.8% also had detectable BRCA1/2 
reversions in cfDNA [82].

In a recent larger study, NGS analysis was performed on cfDNA from plasma collected prior to 
rucaparib treatment in 112 patients with germline or somatic BRCA-mutant HGSOC enrolled in the ARIEL2 
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trial [81]. BRCA reversion mutations in cfDNA were found in 18% (2/11) of platinum-refractory and 13% 
(5/38) of platinum-resistant patients, compared with 2% (1/48) of platinum-sensitive patients. 
Furthermore, patients without BRCA reversion mutations detected in the pre-treatment cfDNA had 
significantly longer progression-ree survival (PFS) on rucaparib than those with reversion mutations. In 
addition, the authors also sequenced 78 post-progression cfDNA samples to examine acquired resistance 
and identified an additional 8 patients with novel BRCA reversion mutations not found in pre-treatment 
cfDNA, suggesting the ability of cfDNA to monitor dynamic changes in BRCA mutational status over time 
[81].

Based on these studies, cfDNA sequencing was able to detect reversion mutations, but it was a 
relatively rare event and thus, liquid biopsy could also be used to identify unknown mechanisms of 
treatment resistance.

To explore the mutation profile associated with PARP inhibitor resistance, Hu et al. [84] analyzed the 
cfDNA pre- and post-treatment in 25 patients with platinum-sensitive HGSOC receiving maintenance with 
olaparib. An increased somatic mutation load in post-treatment samples was detected and it was predictive 
of poor prognosis. Additionally, patients with MRE11A (a gene involved in the DNA damage repair 
response) mutations in post-treatment samples had shorter PFS compared to patients without this 
mutation. Newly acquired mutations in MRE11A were associated with disease progression or resistance to 
ongoing treatment in more than 90% (12/13) of cases [84].

Understanding the mechanism of treatment resistance is warranted to develop novel therapeutic 
agents and combination, and to improve patient’s outcomes. Even though the level of evidence in OC is 
rather preliminary, routine monitoring through liquid biopsy could lead to earlier detection and 
characterization of drug resistance that may potentially create the opportunity for therapeutic 
interventions before clinical evident progression. Future clinical trials should implement trial designs that 
include longitudinal blood sampling at diagnosis, during-treatment, and at the time of each recurrence or 
progression.

Current limitations for the application of liquid biopsy in OC
Despite the clinical advantages of liquid biopsy, its integration in oncology practice requires first to 
overcome relevant technical and biological challenges. For instance, routine adoption of liquid biopsy in 
clinical practice is limited by the lack of standardization in the procedures for ctDNA isolation and analysis 
[20]. Given the low concentration of ctDNA and its relatively short half-life, preanalytical procedures need 
to be well optimized in order to preserve DNA integrity [85]. Notably, it is crucial to avoid white blood cell 
lysis which further dilutes the amount of ctDNA. Other preanalytical variables can impact the accuracy and 
reproducibility of ctDNA analysis. For istance, ctDNA levels can be affected by oncological treatments or a 
patient’s physiological conditions such as intense physical exercise or inflammation, and these factors 
should be considered when selecting the timing of blood collection [85].

Another major issue to the clinical implementation of liquid biopsy is represented by the low 
sensitivity of many current ctDNA assays. It is well known that the ctDNA concentration is influenced by 
tumor stage, disease burden, and anatomical site [17, 86, 87]. False negative results might occur as a 
consequence of the scarce amount of target material, particularly in early-stage diseases. In this regard, 
ultrasensitive assays (e.g., methylation pattern-based) could be particularly suitable for the screening or the 
early detection of the disease since they can be performed on small amounts of ctDNA While the biological 
issue of DNA shedding mainly affects the sensitivity of liquid biopsy, the presence of genetic aberrations in 
blood originating from noncancerous cells limits the specificity of circulating DNA analyses. Clonal 
hematopoiesis of indeterminate potential (CHIP) occurred as a consequence of the age-related 
accumulation of somatic alterations in hematopoietic cells. CHIP variants are detectable in plasma DNA 
leading to false-positive results [88]. A study in patients with advanced-stage prostate cancer, 
approximately 10% of men had cfDNA harboring CHIP mutations in genes involved in DNA repair [89].
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Lastly, another major limitation for the routine use of liquid biopsy in patients with OC is the lack of a 
prospective validation of its clinical utility. Only retrospective studies have been conducted so far (Table 1), 
and the results of those studies are difficult to interpret and compare mainly due to the small sample size 
and significant heterogeneity of the methods and outcomes. Therefore, well-designed prospective clinical 
trials in which ctDNA analysis results are used to inform treatment decisions and that demonstrate 
meaningful benefits to patients are necessary before the implementation of ctDNA assays in the clinic.

Table 1. An overview of main studies assessing liquid biopsy in OC

Reference Year N° pts Application Method Target Sensitivity Specificity
Kamat et al. [30] 2006 19 Diagnosis Real-time PCR Levels of cfDNA 87–91.5% 85–87%
Capizzi et al. [33] 2008 22 Diagnosis Real-time PCR Levels of cfDNA 77% 96%
Shao et al. [32] 2015 36 Diagnosis bDNA technique Levels of cfDNA 88.9% 89.5%
Widschwendter et al. 
[46]

2017 43 Diagnosis Bisulfite 
sequencing

Methylation in 3 
markers

90.7% 41.4%

Vanderstichele et al. 
[47]

2017 57 Diagnosis WGS CNA 74% 91%

Cohen et al. [50] 2018 32 Diagnosis CancerSEEK Genes panel & proteins 70% 99%
Pereira et al. [57] 2015 22 Prognosis ddPCR Levels of cfDNA 91% 60%
Akbari et al. [61] 2019 48 Prognosis NGS Levels of ctDNA NR NR
Paracchini et al. [59] 2020 46 Prognosis sWGS CNA NR NR
Minato et al. [58] 2021 11 Prognosis ddPCR Levels of ctDNA NR NR
Parkinson et al. [41] 2016 40 Therapy 

response
Digital PCR TP53 mutation 71% 88%

Kim et al. [39] 2019 28 Therapy 
response

ddPCR TP53 mutation NR NR

Oikkonen et al. [65] 2019 12 Therapy 
response

NGS CNV and genes panel NR NR

Noguchi et al. [64] 2020 10 Therapy 
response

CAPP-seq CNV NR NR

Rusan et al. [66] 2020 32 Therapy 
response

ddPCR HOXA9 methylation NR NR

Christie et al. [82] 2017 30 Resistance NGS BRCA1/2 reversion 60% 100%
Weigelt et al. [83] 2017 19 Resistance NGS BRCA1/2 reversion NR NR
Lin et al. [81] 2019 112 Resistance NGS BRCA1/2 reversion NR NR
Hu et al. [84] 2022 25 Resistance NGS Genes panel NR NR
N° pts: number of patients; bDNA: branched DNA; CAPP-seq: cancer personalized profile by deep sequencing; cfDNA: cell-free 
DNA; CNA: copy number alterations; CNV: copy number variations; ctDNA: circulating tumor DNA; PCR: polymerase chain 
reaction; ddPCR: droplet digital PCR; NGS: next-generation sequencing; sWGS: shallow whole genome sequencing; NR: not 
reported; HOXA9: homeobox A9; BRCA1/2: breast cancer gene 1 and 2

Conclusions
Liquid biopsy, and in particular ctDNA analysis, is gaining increasing popularity in oncology in several 
clinical settings. Liquid biopsy has the theoretical advantage of being minimal invasive, repeatable over 
time, and able to capture spatial and temporal tumor heterogeneity. While some retrospective studies 
suggest a potential role of liquid biopsy to refine OC management, the published data are not consistent 
enough to draw any firm conclusion about its clinical applicability. Further efforts to standardize blood-
based assays and incorporate liquid biopsies as a predictive biomarker in prospective trials are warranted 
with the goal of improving the outcome of patients with OC.
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