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Abstract
Long noncoding RNAs (lncRNAs) derived from noncoding regions in the human genome were once 
regarded as junks with no biological significance, but recent studies have shown that these molecules are 
highly functional, prompting an explosion of studies on their biology. However, these recent efforts have 
only begun to recognize the biological significance of a small fraction (< 1%) of the lncRNAs. The basic 
concept of these lncRNA functions remains controversial. This controversy arises primarily from 
conventional biased observations based on limited datasets. Fortunately, emerging big data provides a 
promising path to circumvent conventional bias to understand an unbiased big picture of lncRNA biology 
and advance the fundamental principles of lncRNA biology. This review focuses on big data studies that 
break through the critical concepts of the lncRNA functional system and its endogenous regulatory roles in 
all cancers. lncRNAs have unique functional systems distinct from proteins, such as transcriptional 
initiation and regulation, and they abundantly interact with mitochondria and consume less energy. 
lncRNAs, rather than proteins as traditionally thought, function as the most critical endogenous regulators 
of all cancers. lncRNAs regulate the cancer regulatory regime by governing the endogenous regulatory 
network of all cancers. This is accomplished by dominating the regulatory network module and serving as a 
key hub and top inducer. These critical conceptual breakthroughs lay a blueprint for a comprehensive 
functional picture of the human genome. They also lay a blueprint for combating human diseases that are 
regulated by lncRNAs.
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Introduction
Noncoding regions occupy more than 98% of the human genome, and almost all of them (> 93%) are 
actively transcribed [1–3]. These transcripts are dominated by long noncoding RNAs (lncRNAs), including 
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lncRNAs, antisense RNAs, and pseudogenes in the present review. The transcription of lncRNAs requires a 
large amount of energy in the human genome. Theoretically, energy consumption generates a function to fit 
the low-energy law in a stable physical system. Therefore, all energy-consuming lncRNAs hypothetically 
carry a certain degree of biological function under given conditions, although most of these functions 
remain unknown. Understanding the functions of these lncRNAs is critical to understanding their functions 
in the big picture of the human genome.

Recent evidence suggests that lncRNAs can function as functional molecules, but a real breakthrough 
came with the recognition that lncRNAs play an influential role in processes such as growth and 
metabolism [4–7]. Since the breakthrough discovery of lncRNA functions, studies on lncRNA functions have 
exponentially increased [4–13], attempting to address basic concepts of their biology, such as transcription 
initiation and regulatory systems [14]. These lncRNA functional studies have conventionally adopted the 
conceptual framework of protein-based functional systems, which has provided exciting data to provide a 
preliminary picture of lncRNA function [14]. For example, protein-based polymerase II (Pol II) has been 
recognized as a primary enzyme that initiates lncRNA transcription [14]. Identification of lncRNAs has also 
been based on the concept of protein identification, using promoters, start codons, poly(A) tails, Pol II, and 
DNA conservation [15]. The GENCODE project V35 combined both messenger RNA (mRNA) concepts and 
sequencing approaches to identify 40,702 lncRNAs, which merged long intergenic noncoding RNAs 
(lincRNAs) and antisense RNAs [16]. The Functional ANnoTation Of the Mammalian genome (FANTOM) 
project employed the 5’ strategy to capture 5’ mRNA caps and identify 19,175 lncRNAs [17]. However, these 
lncRNA functional studies were conducted using conventional approaches that rely on individual 
experiments and limited datasets. This leads to unavoidably biased observations specific to biological 
conditions such as tissue types and genetic and epigenetic backgrounds. For example, 78% of lncRNAs 
collected by the GENCODE project V35 [16] and FANTOM project [17] are condition-dependent [1]. These 
condition-specific studies are unlikely to generate endogenous lncRNA patterns for understanding the 
general principles of lncRNA biology.

The concept of condition-dependent lncRNA function has condition-specific implications. It is not 
surprising that the roles of lncRNAs in cancer are tissue-specific, and lncRNAs have been recognized as 
secondary factors in tumorigenesis. Proteins are considered the most critical factors that regulate cancer 
progression [18–26]. Intense studies on proteins have generated a wealth of useful data for clinical 
treatment to extend the life span of cancer patients; however, these conventional studies have failed to 
uncover the endogenous mechanism of a common regulatory regime shared across all cancer types. The 
mechanisms underlying specific cancer types and subtypes have been emphasized in cancer research and 
therapy.

Fortunately, recent big data studies have significantly advanced our understanding of lncRNA functions 
and created a conceptual breakthrough in the lncRNA functional system [1, 27]. Analysis of multiple large 
datasets has demonstrated that lncRNAs are evolutionary drivers of animal lifespan across the animal 
kingdom by lowering energy consumption [28]. This explains why the human genome requires 98% of 
noncoding regions that perform broader functions than previously thought with low energy. Big data 
studies have further developed novel computational algorithms that can find endogenous regulatory 
networks and patterns hidden in heterogeneous human genome data across various biological conditions 
[1, 27], and discovered that lncRNAs possess a distinctive functional system that is distinct from that of 
proteins and is endogenous in the human genome independent of conditions [1]. For example, lncRNA 
transcription initiation and regulation are distinct from the mRNA-protein-based Pol system, and they are 
endogenous in the human genome across various physiological states measured by experimental designs 
deposited in the Sequence Read Archive (SRA) [29] database, which will be discussed in detail in this 
review.

This conceptual breakthrough in endogenous lncRNA functional systems lays a fundamental 
foundation for understanding the endogenous roles of lncRNAs in various physiological states such as 
tumorigenesis. As expected, another big data study revealed that lncRNAs serve as critical regulators in 
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cancers and are endogenous in the cancerous region across all cancer types measured today by The Cancer 
Genome Atlas (TCGA) [30], whereas proteins only function under normal conditions [31].

This novel lncRNA functional system and its endogenous regulatory roles in the cancerous region have 
established a new conceptual framework for future functional studies of noncoding regions that occupy 
most of the human genome. Understanding these breakthrough concepts will help shorten the time frame 
required for hunting lncRNA functions. This review discusses the details of these discoveries and focuses on 
the conceptual breakthroughs. As this is not a comprehensive review, it does not contain basic information 
about lncRNAs. Readers interested in lncRNA comprehensive review of lncRNA function systems, please 
refer to recent excellent publications such as “Gene regulation by lncRNAs and its biological functions” by 
Statello et. al. [32], and “Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics” by 
Nojima and Proudfoot [14].

Big data approach
Before discussing biological concepts, it is necessary to briefly introduce the basic elements of big data 
studies. Massive data study relies on two key elements: (A) a massive, heterogeneous dataset that is large 
and heterogeneous enough to represent all conditions of a biological state and (B) a computational 
algorithm to generate unbiased results from a very large data set.

In contrast to conventional methods, which face challenges when dealing with heterogeneous data, the 
massive data approach welcomes heterogeneous data. Indeed, more heterogeneous data are better for big 
data analysis, in which more heterogeneous data help to generate more robust endogenous patterns. 
Therefore, the big data approach generally requires sufficiently large samples to represent all the 
conditions of a biological state [1]. For example, all human RNA sequencing (RNA-seq) samples from the 
SRA database that contains samples from almost all experimental conditions should be a substantial dataset 
representing all humans. In addition, all RNA-seq samples collected by TCGA from samples of the 36 most 
common types of cancer should constitute one massive dataset for all cancers. Other big data resources 
have been previously summarized [33].

On the other hand, big data studies require a computation algorithm capable of generating endogenous 
interactions from heterogeneous data after it has been collected. Although numerous algorithms and 
platforms have been applied to big biological data studies [34–37], such as artificial neural networks, 
support vector machines, and decision trees [35], these algorithms mostly perform classification. 
Conventional network inference algorithms such as C3NET and ARACNe-AP can infer gene interactions 
[38–41]. However, these conventional software packages suffer from high noise, which can contain more 
than 90% false positives [27, 41, 42]. In addition, machine learning with graphs [43, 44] has been widely 
applied to infer interaction networks, but it faces challenges in handling highly heterogeneous biological 
data with many more variables (genes) than observations (samples).

A novel software called Fast Inferring NETwork (FINET) [27] was developed to infer endogenous 
interaction networks from highly heterogeneous data. FINET infers any network quickly and accurately and 
infers endogenous regulatory interactions from highly heterogeneous biological data with > 94% precision 
as true positives/true positives + false positives. FINET speed and accuracy come from its implementation 
under fast Julia with stability selection, elastic-net machine learning, and parameter optimization 
algorithms. In addition to its first accuracy, FINET is user-friendly, with only a single command line to 
complete all computational processes, and it works in any OS system although FINET was developed under 
Linux. FINET is a critical tool for uncovering true interactions in big data. Understanding the algorithm 
helps in its wide applications. This review briefly describes the FINET algorithm and its application.

In a matrix with observations (bio-samples) as rows and variables (genes in biology) as columns, 
FINET [27] treats each gene as a target (set as y) and searches for its regulators from the remaining genes 
(set as X). The target-regulator interaction was inferred using an elastic net model [45].
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The elastic net is arguably one of the most effective models for gene selection. Despite this, it is likely to 
produce more than 90% false positives when used alone to infer gene interactions in biology [27].

To reduce the false positives generated by the elastic net model, stability selection has been proposed 
[42]. Stability selection randomly splits the samples into two groups. When a target-regulator interaction is 
simultaneously selected in two groups, stability selection treats this interaction as true. Although this 
stability selection has been proven statistically, it could still contain more than 50% false positives in gene 
interaction inference because of heterogeneous data [27].

To improve the inferring precision and minimize false positive rates, FINET employs the following 
algorithm: FINET randomly splits the total samples into multiple groups, such as eight groups (m = 8), and 
independently infers gene regulatory interactions from each group using the elastic net (Figure 1). This 
process iterates n times. Interactions with high frequency during these m × n operations are treated as 
reliable interactions. Actually, the FINET algorithm filters condition-dependent interactions and retains 
conditionally independent interactions as endogenous ones.

Figure 1. FINET algorithm. FINET splits the total samples into m groups (e.g., m = 8) and infers gene interactions from each 
group. If an interaction (e.g., gene B regulating gene A) occurs in each group, this interaction has a perfect frequency (e.g., 8 
here). This process iterates n times (e.g., n = 50). The possibility of finding an interaction that consistently appears in all trials (m 
× n) in a large heterogeneous dataset is low. Setting a possibility threshold to filter the low number of possible interactions is a 
reasonable solution. Therefore, FINET calculates the frequency score by dividing the total frequency by the total number of trials 
(m × n). When an interaction has a high frequency score (e.g., frequency score > 0.95), meaning that this interaction appears in 
most cases (e.g., 380 out of 400 trials here), FINET treats this gene interaction as an endogenous target-regulator pair

Based on the algorithm described above, FINET can be widely applied to any type of big data. It has 
been applied to compute massive heterogeneous data, and its results have been validated [1, 28, 31]. For 
example, FINET has inferred endogenous regulatory lncRNA networks from all 265k human RNA-seq 
samples from the SRA database [1] and revealed endogenous lncRNAs from unannotated regions of the 
human genome [1, 31]. In addition, FINET unearthed an endogenous regulatory network for all cancers 
based on TCGA data [31]. Moreover, FINET has been applied to identify genome sequence motifs in 
evolutionary studies of the animal kingdom [28] and severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) virus [46].

Together, the big data approach provides a promising way to minimize noise and understand the 
endogenous true picture of heterogeneous big data.
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lncRNA endogenous functional system
In contrast to conventional protein-dominated functional systems, noncoding RNA (ncRNA) functions are 
thought to be secondary in the human genome. However, a recent big data study revealed that ncRNAs, 
instead of proteins, drive animal lifespan evolution in the entire animal kingdom [28]. ncRNAs increase 
their content in animal genomes during evolution and coincide with trimming mitochondrial genome 
length, which is associated with lower energy consumption. Moreover, more active ncRNAs in the female 
reproductive system than their male counterparts account for why women outlive men [28]. These results 
indicate that ncRNAs are crucial functional genes in the two most important traits in humans, including 
reproduction and longevity. This discovery also emphasizes the biological significance of 98% of noncoding 
regions in the human genome and suggests that ncRNAs, rather than proteins, carry out most biological 
functions in the human genome. Understanding the functional system becomes critical for understanding 
human genome functions. However, the underlying ncRNA functional system remains largely unknown, and 
it is challenging to explore this complex ncRNA functional system in conventional studies.

A recent big data study was undertaken to capture the big picture of the lncRNA functional system in 
human genomes [1, 31], in which massive amounts of data were downloaded from the SRA [29] by 
searching human genomes and RNA sequences without filtering them out based on physiological 
conditions. This dataset contains all human RNA-seq data deposited in the SRA database, including 265,361 
SRA samples under various experimental conditions, such as tissues, cell lines, and physiological conditions. 
These data are sufficiently comprehensive and heterogeneous to represent all types of conditions. 
Endogenous lncRNAs, including both annotated and unannotated lncRNAs, in this dataset reflect 
endogenous lncRNAs in heterogeneous human genomes. The functional characteristics of these endogenous 
lncRNAs represent the general endogenous traits of lncRNAs in all human genomes. In addition, the big 
picture derived from these endogenous lncRNAs represents the key biological principles of lncRNAs in all 
human genomes. As discussed in the following sections, these biological principles form the basis for 
understanding the functional system of lncRNAs in the human genome.

Distinctive lncRNA transcription initiation

Although the mechanism of lncRNA transcription initiation remains unclear, it has been assumed that 
mRNA transcription initiation mechanisms can be adopted for lncRNAs [14, 15, 47]. In the mRNA-coding 
protein system, histone proteins tightly wrap DNA into a highly condensed chromatin structure containing 
a series of basic structural units called nucleosomes. Chromatin structure is very stable and prevents DNA 
from being transcribed into mRNAs. When a pioneer transcription factor binds to chromatin in a gene 
promoter region, chromatin modification occurs at the initiation region to expose DNA. Transcription 
factors bind to exposed DNA and recruit Pol II to initiate transcription. Once initiated, transcription can 
occur bidirectionally, with sense mRNAs and antisense lncRNAs being the major categories of lncRNAs [14].

Chromatin modification is critical for transcription initiation of both lncRNA and coding mRNAs. In 
yeast, mutating nucleosome chaperones alter the chromatin structure and expose DNA, resulting in Pol II 
initiation [48]. Loss of chromatin remodelers such as Isw2, which suppresses antisense lncRNA 
transcription, also generates both coding and lncRNA transcripts [49]. Modifying the chromatin template 
during transcription can enhance the efficiency of RNA synthesis and pre-mRNA processing [50]. For 
example, histone H3 lysine 4 trimethylation (H3K4me3) over promoter regions activates transcriptional 
elongation, enhances capping, and recruits splicing factors from the Pol II complex [51, 52]. H3K4me3 also 
reactivates multiple rounds of transcription [53]. Similarly, H3K36me3 facilitates efficient elongation, 
splicing, and 3’ end processing [50].

There are three distinct Pols in the human genome that transcribe ncRNAs: RNA Pol I, Pol II, and Pol III 
[14]. Pol I transcribes ribosomal RNA (rRNA) and Pol III transcribes smaller, structural ncRNAs, such as 
transfer RNAs (tRNAs) and 5S rRNA. While Pol I and Pol III transcripts are derived from approximately 
30% of the total nuclear transcription, Pol II predominantly works for the remaining 70% of transcriptions, 



Explor Target Antitumor Ther. 2024;5:170–86 | https://doi.org/10.37349/etat.2024.00211 Page 175

although the transcripts derived from Pol II are generally less stable than those from Pol I and Pol III. Pol II 
has been characterized as the primary factor transcribing protein-coding genes and lncRNAs [14].

The Pol II complex typically resides in several gene promoters and does not allow the gene to initiate 
transcription [50]. For most genes, transcription initiation is normally enhanced by enhancers and ancillary 
regulatory elements, which interact with the gene promoter to form a transcription initiation hub [54]. 
Therefore, chromatin modifications, Pol II, and enhancers play key roles in gene transcription [15, 47]. 
Conventionally, this mechanism has been used to explain the initiation of the transcription of both 
antisense lncRNAs and sense mRNAs.

In a recent big data study, the profiles of histone modifications, Pol II, and enhancers were 
systematically examined [1]. This big data study investigated the transcription initiation profiles of 14,122 
genes for both active protein-coding genes and functional lncRNAs. The initiation profile was analyzed 
using 780 chromatin immunoprecipitation sequencing (chip-seq) samples, and the top nine factors were 
measured using Encyclopedia of DNA Elements (ENCODE) [3]. These nine factors included assay for 
transposase accessible chromatin with high-throughput sequencing (ATAC-seq) for chromatin accessibility, 
three markers for enhancers [histone H3 lysine 4 monomethylation (H3K4me1), histone H3 lysine 27 
acetylation (H3K27ac), and H3K9ac], three markers for promoters [H3K4me3, Pol II subunit alpha 
(POLR2A), and H3K36me3], and two markers for silencing and tissue specificity (H3K27me3 and 
H3K9me3). The measurement of these marker profiles varies among tissues and cell lines in the ENCODE 
project. For unbiased results, this big data study included all measurements conducted by ENCODE, without 
filtering out any tissues or cell types.

The overall profiling of these protein-coding gene measurements was in agreement with the 
conventional concept of transcription initiation, as described above, in which all 14,122 gene promoter 
regions were densely surrounded by the biomarkers of Pol II, enhancer, and chromatin modification. 
Multiple markers usually bind to a gene promoter simultaneously, with a minimum binding frequency of 
75% (10,592 out of 14,122) of any marker binding to a gene promoter.

Unexpectedly, lncRNAs exhibited a marker-binding profile distinct from that of protein-coding genes. 
First, putative lncRNA promoter regions, defined as 5,000 base pairs (bp) within the transcription start site 
(TSS), barely exhibited POLR2A binding. Only 12% (a median of 1,668 out of 14,122 lncRNAs) of the 
lncRNA promoter regions showed POLR2A binding. This indicates that more than 88% of the lncRNAs do 
not require POLR2A during their initiation. This suggests that Pol II is not a key player in activating lncRNA 
transcription, as was previously thought. Second, all three enhancer biomarkers, H3K4me1, H3K27ac, and 
H3K9ac, showed only 16% binding frequency. The low binding frequency (16%) of enhancers might not 
account for widespread lncRNA transcription initiation, although this 16% was significantly higher than 
that of POLR2A (12%; Kruskal-Wallis, P < 2.2e−16). In addition, binding of the enhancer marker H3K4m1 
across the lncRNA promoter regions was significantly higher than that of H3K4me3, a marker for active 
promoters near the TSS of protein-coding genes. This indicates that enhancers contribute more to lncRNA 
activation than Pol II. Third, lncRNA promoters carry only limited binding of chromatin modification 
markers, with a median of 14% (1,990/14,122) of binding sites, suggesting that most lncRNA initiations 
(more than 86%) do not require protein-based chromatin modifications, similar to protein-coding genes.

Furthermore, the binding distances of these markers to the lncRNA TSS differed from those of protein-
coding genes. When the minimum distance from marker binding to TSS was measured, the medians for 
lncRNAs ranged from 240 bp to 336 bp, while they ranged from 50 bp to 120 bp for protein-coding genes, 
which were significantly different (P < 2.84e−06). This provides another line of evidence that lncRNA 
initiation is distinct from that of protein-coding genes.

The overall binding frequency of Pol II, enhancers, and chromatin modifications in lncRNA promoters 
was too low to explain the widespread lncRNA initiation. The binding distances of these biomarkers to the 
lncRNAs were far from their TSS values. These findings suggest that lncRNAs possess initiation mechanisms 
distinct from those of proteins. The key factors underlying the activation of most lncRNAs remain to be 
investigated.
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Primary regulators of lncRNAs: lncRNAs

The current conventional concept of lncRNAs assumes that proteins are primary regulators of lncRNAs [14, 
50, 55]. For example, the integrator complex integrator-protein phosphatase 2A complex (INTAC) 
attenuates lncRNA transcriptional elongation [55]. While these conventional findings offer some 
explanation for lncRNA processes, such as initiation and attenuation, the exact molecules that play a crucial 
role in lncRNAs remain unanswered.

Recent big data studies have filled the gap between individual regulators and systems versions of 
lncRNA regulators [1], providing a big picture of the primary regulators of lncRNAs, in which lncRNAs 
predominate primary regulator profiling and proteins only serve as secondary regulators. More than 65% 
of unannotated lncRNA regulators are endogenous lncRNAs [1]. Consistently, annotated lncRNAs also 
function as the most abundant regulators of annotated lncRNAs [31], suggesting that lncRNAs are the 
primary regulators of lncRNAs. The self-regulation of lncRNA-lncRNA lays the foundation for the overall 
functional system of lncRNAs, including their initiation and activation. This self-regulation may be weak 
under normal conditions, but highly activated under stimulation [31, 56].

In fact, recent advances in technologies examining the high-dimensional structures and expression of 
RNA also reveal the regulatory roles of RNA in regulating RNA themselves [14, 50]; however, only big data 
studies can provide a comprehensive picture of the lncRNA-lncRNA regulatory mechanism.

Together, lncRNAs have a unique functional system distinct from that of mRNA proteins, in which 
lncRNAs are transcriptionally initiated by unknown initiation factors and are primarily transregulated by 
lncRNAs from other chromosomes (Figure 2).

Figure 2. lncRNA initiation model. In the conventional model, lncRNAs are primarily initiated by Pol II and regulated by proteins, 
while in the big data model, lncRNAs are primarily initiated by unknown factors and regulated by lncRNAs

According to the same big data study, proteins account for only 22% of lncRNA regulators [1]. This 
indicates that proteins can only act as secondary regulators of lncRNAs, as opposed to serving as primary 
regulators, but mitochondrial proteins such as mitochondrially encoded cytochrome C oxidase I (MT-CO1) 
should not be ignored. These mitochondrial proteins target several lncRNAs. For instance, MT-CO1 
regulates more than 400 lncRNA targets [1]. These abundant mitochondrial proteins and their targets in the 
endogenous lncRNA network suggest that mitochondria play a critical role in regulating lncRNAs and 
ncRNAs are strongly associated with energy-consuming processes. Consistently, the most recent discovery 
from big data also uncovered ncRNAs associated with mitochondrial low energy-consuming [28].

Do lncRNAs target neighboring genes?

Understanding the majority of lncRNA target locations is the first critical step toward understanding their 
functions and mechanisms. However, the complexity of lncRNA interactions in the human genome makes it 
challenging to capture a large picture, leading to controversial discussions [57, 58]. Conventional studies 
have speculated that lncRNAs tend to target their neighboring protein-coding genes [15, 59]; however, 
recent comprehensive lncRNA networks of both annotated and unannotated lncRNAs based on big data 
have answered “NO” to this conventional notion [1, 31]. lncRNAs do not primarily regulate their 
neighboring protein genes or cognate genes via complementary sequences. More than 57% of lncRNAs 
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transregulate their targets across chromosomes [1, 31]. Consistently, the majority of lncRNAs are located in 
the cytoplasm as transregulators [60].

Targets of a single lncRNA

In contrast to a single protein that regulates hundreds of targets, a single lncRNA typically regulates a few 
selected targets. This is the maximum case for 12 proteins and 10 lncRNAs targeted by a single unannotated 
lncRNA, as revealed by big data [1], suggesting that lncRNAs mediate their targets in a specific and precise 
manner. Interestingly, most lncRNA targets are proteins (> 55%) [1]. This is consistent with the 
conventional notion that lncRNAs primarily function as regulators of their target proteins. However, this 
big data discovery has advanced our understanding of the fundamental drivers of protein-based 
phenotypes, in which proteins function as molecular phenotypes that are primarily controlled by lncRNAs 
[1, 31]. Therefore, the observed phenotypes derived from these proteins were mediated by lncRNAs. 
Therefore, lncRNAs have served as fundamental drivers of protein phenotypes rather than proteins, as is 
conventionally believed. This parallels recent observations that cancerous phenotypes are expressed by 
proteins but regulated by lncRNAs [31, 56], as discussed in the cancer section below.

Broad lncRNA functions

lncRNAs were once thought to be useless junk without functions, but recent studies have recognized them 
as regulators of several processes [4–7]. A study of big cancer data further demonstrated that lncRNAs are 
the deadliest regulators of all cancers [56]. However, only a small proportion (< 1%) of lncRNAs has been 
functionally characterized, and their primary functions in the human genome remain unknown. A recent 
study on systematically unannotated lncRNAs updated their broad crucial functions involving almost all 
critical bioprocesses [1], such as DNA replication, nucleic acid metabolism, transcription, RNA processing, 
cell cycle, and stress response. Therefore, lncRNAs play fundamental roles in the human genome.

Endogenous regulators of the entire cancerous regime: lncRNAs
Scientific publications regarding lncRNAs and cancers have dramatically increased in recent years, from 
627 papers in 2014 to 5,658 papers in 2020 [before the coronavirus disease 2019 (COVID-19) pandemic, 
Figure 3]. This indicates that the functional role of lncRNAs in cancer has attracted the attention of 
researchers. However, these studies did not identify the endogenous roles of lncRNAs in all cancers.

All cancers generally result from abnormal genomes evolving into an endogenous regulatory regime 
that is distinct from that in normal human tissues [61, 62]. Understanding this endogenous regime provides 
deep insights into the fundamental mechanisms of all cancers, and toward developing a general strategy to 
combat all cancers. Conventional approaches have been heavily employed to study this regime and to 
identify endogenous regulators of the cancerous regime [19, 30]. These approaches employ genome 
sequences, functional genomics, and biochemistry or combinations; however, the complex nature of cancer 
genomes and heterogeneous cancer data make these approaches ineffective. One of the highly intense study 
fields employed genome sequencing to identify mutations conserved across all cancers as universal cancer 
drivers. Projects based on this hypothesis have identified thousands of mutations in both protein-coding 
regions and ncRNAs in a large number of patient DNA samples from various cancer types [19]; however, no 
single consensus mutation has been found across all cancer types. Most of these mutations are specific to 
individual patients. For example, KRAS proto-oncogene, GTPase (KRAS) is one of the most mutated genes in 
lung cancer, but no single KRAS mutation is present in more than 40% of patients with lung cancer [19]. 
KRAS mutations are present in less than 2% of cancer types [19]. This indicates that the conventional 
strategy for identifying conserved mutations is unlikely to identify universal cancer drivers that 
endogenously regulate all cancer types.

Moreover, conventional biological approaches, such as gene knockout, usually cause transcript 
compensation [63] and alter whole-genome activation, leading to seriously biased gene regulation. 
Conventional computational approaches, such as regulatory network inference, usually suffer from high 
noise with a low accuracy of < 50% [27, 41, 42] when computing heterogeneously complex genome data. 
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Figure 3. Recent 10-year publications on lncRNAs and cancers. Data was derived from PUBMED by searching “lncRNA and 
cancers”

Taken together, these results suggest that the current conventional approach faces challenges when 
revealing endogenous cancerous mechanisms across cancer types.

Uncovering a systemic regulatory network that is endogenous to all cancers provides a foundation for 
understanding this regulatory regime. A recent big data study utilized FINET [27] to infer an endogenous 
regulatory network of annotated genes from massive heterogeneous cancer data, including all 11,574 RNA-
seq samples and 36 cancer types measured using TCGA. This network discovery has advanced our 
knowledge of endogenous regulators that modulate this regime, leading to a conceptual breakthrough in 
cancer biology, as discussed in detail below.

Dominated lncRNA modules

Theoretically, the network modules execute the primary functions of a network. A network module was 
constructed using individual components. Therefore, the composition of the module components provides a 
metric for understanding the module function. The entire endogenous cancerous network was broken 
down into modules and the module composition for each module was calculated [31]. These modules are 
then clustered into either protein modules (proteins occupy > 50% of components in a module) or 
noncoding modules (ncRNAs > 50% of components in a module) [31]. ncRNA modules significantly 
increased their proportion in the cancerous network to 45.94%, and protein modules decreased to 47.29% 
compared with that of the normal network (P = 0.02963, χ2 test), in which protein modules accounted for 
60.52% of the total network modules, and lncRNA modules only accounted for 28.94% in the normal 
regime [31]. Notably, 45.94% of the lncRNA modules were derived from annotated lncRNAs measured in 
this study [31]. In the context of cancer, when unannotated lncRNAs are discovered for a cancer regimen, it 
is reasonable to assume that lncRNA modules predominate. This is because most ncRNAs in cancers remain 
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unannotated and lncRNAs are key regulators of all cancers [1, 31, 56]. This shift in the network composition 
to lncRNA modules in the cancer network suggests that lncRNAs drive the cancerous network.

lncRNAs as the most important rulers in the cancerous regime

Network hubs are critical network players. lncRNAs serve as the most critical hub in cancerous regions 
(Figure 4) [31, 64]. Among the top 1,500 hubs, proteins accounted for only 15%, whereas lncRNAs 
constituted 85% (Figure 4A). In particular, processed pseudogenes account for 45% of the total. 
Furthermore, lncRNAs accounted for 100% of the top 50 hub profiles (Figure 4B). These results suggested 
that lncRNAs are the most important regulators of cancer.

Figure 4. lncRNAs predominate among the top hubs in the cancerous regulatory regime. (A) lncRNAs, especially pseudogenes, 
predominant in the top 1,500 hubs; (B) lncRNAs predominate among the top 50 hubs

For detailing lncRNA functions, this review provided five lncRNA functional examples that are 
regulatory network hubs in cancers (Figure 5): growth arrest specific transcript 5 (GAS5), small nucleolar 
RNA host gene 12 (SNHG12), taurine up-regulated 1 (TUG1), HOX transcript antisense RNA (HOTAIR), and 
phosphatase and tensin homolog (PTEN) pseudogene 1 (PTENP1). These networks (Figure 5A) were 
directly extracted from the cancer database of the endogenous network generated from big data (https://
combai.org/network/cancer/) and these functions (Figure 5B) were derived from PUBMED (https://
pubmed.ncbi.nlm.nih.gov/). These networks provided a comprehensive functional picture of these five 
lncRNAs in all cancers, and they are not limited to the known cancer types published in PUBMED 
(Figure 5B).

One example is the PTENP1 and PTEN interaction, which is found only in the cancer network, but not 
in the normal regime [31]. This is consistent with experimental observations that have only been reported 
for cancers [18, 58]. Conventional approaches have only revealed PTENP1 as a regulator of PTEN, but big 
data has expanded the PTENP1-PTEN interaction to a network module containing several novel PTENP1 

https://combai.org/network/cancer/
https://combai.org/network/cancer/
https://combai.org/network/cancer/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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Figure 5. Examples of cancerous lncRNA hubs. These hub interactions were directly extracted from the website of the recent 
big data discovery (https://combai.org/network/cancer/) via searching five lncRNAs, including GAS5, SNHG12, TUG1, HOTAIR, 
and PTENP1. (A) Networks of 5 lncRNAs; (B) list of specific functions of 5 lncRNAs in cancers [65–69]. Network annotation: (a) 
node color denotes gene category, light green, blue, pink, red, and light sky blue respectively denote protein-coding, antisense 
RNA, lincRNA, processed pseudogene, and other; (b) edge color represents regulation strength: red, pink, and light gray 
respectively represent strong positive, middle positive, and weak regulation (positive or negative); and (c) edge thickness 
denotes confidence, thicker, more confident

interacting partners in the cancer regime, including PTENP1 antisense RNA (PTENP1-AS), RP11-181C21.4, 
PTENP1-MEMO1P1, and RP11-384P7.7 [31]. This PTENP1-PTEN module is driven by the pseudogene 
PTENP1 instead of the PTEN protein [31], as conventionally thought. PTENP1 and its partners provide a 
complete picture of PTENP1’s endogenous regulatory roles in all cancers.

Once labeled, junk pseudogenes have recently been reported to be regulators of cognate genes [58], 
and their functions are thought to be secondary. Indeed, the pseudogenes discussed above act as the most 
critical drivers, instead of secondary regulators. This is also supported by system-based validation showing 
that pseudogenes are the deadliest endogenous regulators of all cancers [56].

lncRNAs as the top cancer inducers

Cancer inducers play a critical role in cancer development. While proteins work as the top inducers in the 
normal regime, lncRNAs predominate as the strongest inducers in the cancer regime, including processed 
pseudogene, antisense RNA, and lincRNA [31]. Moreover, clinical data have shown that lncRNAs are the 
universal deadliest inducers of all types of cancers [56].

Interestingly, these cancer inducers modulate proteins as their major targets (> 98%) [31]. Instead of 
acting as cancer drivers, proteins serve as lncRNA targets. Therefore, protein functions are molecular 
phenotypes fundamentally determined by lncRNAs in cancers. The conventional practice of treating 
proteins as cancerous drivers and monitoring protein activity to determine their fundamental mechanism 
is misleading.

lncRNA local targets in cancers

Generally, the majority of lncRNAs serve as trans-regulators to regulate their targets across chromosomes 
in healthy tissues [1, 31]; however, in cancerous regions, lncRNAs serve as cis-regulators that primarily 
target local proteins [< 1 mega bp (Mb)] [31]. However, lncRNAs rarely regulate their cognates under both 

https://combai.org/network/cancer/
https://combai.org/network/cancer/
https://combai.org/network/cancer/
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normal and abnormal conditions [31]. Therefore, lncRNA regulation switches from normal trans-regulation 
to cancerous cis-regulation; however, lncRNAs are not cognate regulators.

lncRNAs biomarkers to detect all cancers

Detecting cancer at the population level is one of the most effective ways to save the lives of cancer patients. 
Although technological advancements, such as microarray and sequencing, provide rich resources for the 
development of efficient detection systems, no practical system is available for clinical use. The core 
challenge in developing such a system is identifying a set of endogenous biomarkers for all cancers. In a 
recent big data study, lncRNAs have been identified as endogenous cancer biomarkers [56, 64, 70]. 
Incorporating these lncRNA biomarkers with artificial neural networks can accurately discriminate all 
cancers with a 96% area under curve (AUC) of a receiver operating characteristic curve (ROC) [64]. This 
provides a platform for screening for cancers at the population level.

Therefore, lncRNAs, rather than proteins as conventionally thought, serve as the most important 
regulators of the tumorous regime and cis-regulate their local (1 Mb) protein as their targets (Figure 6).

Figure 6. lncRNA working models in cancer cells. In the conventional model, proteins serve as primary regulators and trans-
regulate proteins in cancers, but in the big data model, lncRNAs work as the primary regulators and primarily cis-regulate the 
local proteins as their targets within approximately 1 Mb

Clinical applications of lncRNAs in cancers
With more functions of lncRNAs found in cancers, their clinical applications in cancers have increased 
linearly every year (Table S1). In 2022, there were six lncRNA clinical applications, and a total of 28 clinical 
applications were available in the clinicaltrials.gov database. These applications include drug targeting, 
diagnostic testing, and screening. Interestingly, exosomal lncRNAs have been used in cancer detection. This 
parallels our recent report showing that ncRNAs and an artificial intelligence (AI) neural network can 
detect all cancers with 96% of AUC.

Conclusions
Why the human genome contains 98% noncoding regions remains a mystery, but a recent big data study 
has dramatically advanced the understanding of its biological significance [28]. ncRNAs work with 
mitochondria in a low-energy fashion and extend animal lifespan during evolution; they also serve as 
crucial players in the human reproductive system [28]. Lifespan and reproducibility are the two most 
important traits in the evolution of any species. Without strong reproduction and long longevity, the species 
disappears in a long evolutionary process. Humans evolutionarily gain an increasing number of ncRNAs in 
their genomes to live longer and produce more generations. Assuming that these 98% noncoding regions 
were converted into protein-coding regions, humans might only survive a week as yeasts, which contain 
fewer noncoding regions and live only about a week. Therefore, 98% of these noncoding regions are 
functionally critical for humans. Consistently, recent big data studies have also unearthed ncRNAs as 
endogenous regulators for all cancers, whereas proteins only work endogenously under normal 
physiological states [31]. This suggests that under abnormal conditions, human ncRNAs are functionally 
more important than proteins. Humans live mostly in abnormal environments, such as various diseases, 
microbial infections, and variable environmental changes. These abnormal factors force humans to gain 
98% of noncoding regions that are efficiently transcribed as ncRNAs that perform functions to cope with 
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certain physiological states. Comprehending these ncRNA functions will be a key task in human genome 
research in the near future.

Comprehending ncRNA functions is challenging for conventional scientists, but big data scientists have 
taken advantage of the massive amount of available data and have revealed the big picture of human 
lncRNA functional systems [1]. In contrast to the conventional notion that lncRNAs are the secondary 
components in protein-based functional systems, the breakthrough discovery emphasized that lncRNAs 
have a distinctive functional system that is different from protein-based systems, and this system is 
endogenous to all human genomes and is independent of any condition [1]. This conceptual update of the 
endogenous lncRNA functional system has established a foundation for comprehending human genome 
function. For example, in this lncRNA system, lncRNAs have a unique transcription initiation system, 
although their initiation factors remain elusive. Future research using emerging big data will accelerate the 
discovery of lncRNA initiation factors. This will open a new avenue for understanding the transcriptional 
mechanisms of the dark regions in the human genome.

Since ncRNAs function as critical players under abnormal conditions and lncRNAs have their own 
functional system, it is not surprising for big data studies to uncover ncRNAs, instead of proteins as thought, 
as endogenous rulers for all cancers [31]. This breaks through the concept of fundamental drivers of all 
cancers. Future research based on this concept will help to elucidate the universal machinery and 
mechanisms of all cancers. The application of this novel concept will lead to the creation of a universal 
strategy for the diagnosis and treatment of all cancers. In particular, the biological functions of the 
abundant pseudogenes that dominate the cancer regime remain elusive. Elucidating the biological 
significance of these pseudogenes will be critical in cancer research and clinical applications.

Big data studies in biology are in their infancy, but they will evolve rapidly as emerging big data 
become available. Future research on big data should focus on both specific topics and big-picture analyses 
of a broad range of massive data to make conceptual breakthroughs in the general fundamental principles 
of biology. Embedded computational algorithms that integrate AI with emerging data requirements must be 
developed. These novel computational algorithms will advance the understanding of the fundamental 
principles of biology and lead to a revolutionary scientific discovery era.
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