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Abstract
Irrespective of men and women, colorectal cancer (CRC), is the third most common cancer in the population 
with more than 1.85 million cases annually. Fewer than 20% of patients only survive beyond five years 
from diagnosis. CRC is a highly preventable disease if diagnosed at the early stage of malignancy. Several 
screening methods like endoscopy (like colonoscopy; gold standard), imaging examination [computed 
tomographic colonography (CTC)], guaiac-based fecal occult blood (gFOBT), immunochemical test from 
faeces, and stool DNA test are available with different levels of sensitivity and specificity. The available 
screening methods are associated with certain drawbacks like invasiveness, cost, or sensitivity. In recent 
years, computer-aided systems-based screening, diagnosis, and treatment have been very promising in the 
early-stage detection and diagnosis of CRC cases. Artificial intelligence (AI) is an enormously in-demand, 
cost-effective technology, that uses various tools machine learning (ML), and deep learning (DL) to screen, 
diagnose, and stage, and has great potential to treat CRC. Moreover, different ML algorithms and neural 
networks [artificial neural network (ANN), k-nearest neighbors (KNN), and support vector machines 
(SVMs)] have been deployed to predict precise and personalized treatment options. This review examines 
and summarizes different ML and DL models used for therapeutic intervention in CRC cancer along with the 
gap and challenges for AI.
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Introduction
Cancer is the second leading cause of death across the globe [1]. In terms of mortality and morbidity, Global 
Cancer Statistics 2020 shows that, out of 36, colorectal cancer (CRC) is the third most common cancer in the 
population. Worldwide, it affects equally to both men and women equally. Every year more than 1.85 
million cases of CRC have been reported and 20% of them have metastatic disease at presentation. The 
estimated number of deaths by 2023 for CRC is 52,550 [2]. CRC is the third most common type of cancer in 
both sexes and demands an early diagnosis and treatment to save the lives of many [3]. It begins with the 
formation of tiny clusters called polyps. Some of these polyps turn malignant resulting in CRC over a period 
of 10–15 years. Males are more likely to be associated with CRC. Family history of CRC in correspondence to 
age and the extent of its effect on the relatives play a role in 10–20% of all CRC patients. Individuals with 
older age and lasting bowel inflammation are at higher risk [4]. Researchers of various domains are 
discovering different approaches to tackle this disease.

Artificial intelligence (AI) can be used to improve CRC treatment and treatment methods. With the 
huge amount of data generated by medical imaging, computed tomography, histopathology evaluation, etc. 
comes the use of AI [5].

In addition, machine learning (ML) algorithms can be used to create predictive models to help clinical 
decision-making without any prior explicit programming [5]. Many modalities and sub-specialties of AI 
show promise for the application of predictive studies, distribution, and prevalence of CRC and thus enable 
personalized approaches in drug discovery uplifting precision medicine and subsequently clinical practices 
[6, 7]. Drug development is inevitably a delicate and challenging procedure that puts a strain on 
productivity and research and development (R&D) costs.

The diagnosis and categorization of diseases and their subtypes among patients are made possible by a 
variety of deep learning (DL) and statistical techniques that depend on data interpretation.

To detect disease targets quickly and accurately, ML, feature-finding, and clustering techniques are 
useful. The application of statistical analysis on big data, experimental data, and data mining methods, 
together with neural networks, improves capacity for de novo drug designing (DD). The use of existing 
drugs for new therapeutic applications is drug repurposing also called repositioning. The use of metformin, 
a type 2 diabetes medication showed reduced chances of developing CRC in 47,000 participants [8]. The 
area of precision medicine is advanced by drug repurposing and combination therapy based on numerous 
genomic markers and increased patient information (Figure 1) [6]. Based on the literature survey, this 
review provides a description of CRC and the performance of various AI-based models in chemotherapy 
and neoadjuvant chemoradiotherapy (nCRT) for its therapeutic intervention. It also shows the application 
of existing AI-backed computational tools in the domain of drug discovery and development processes to 
enhance treatment options for colon cancer and other disease conditions. Finally, it spreads light on the 
challenges that lie ahead of AI for drug repurposing, de novo DD, and therapeutic options for various disease 
conditions including CRC.

Functionalities of AI
A subfield of computer science called AI encompasses various fields, including mathematics, logic, 
philosophy, psychology, cognitive science, and biology. AI refers to intelligent technology that has been 
artificially created to mimic humans. This AI is incorporated into a computer system known as an AI 
system, which eventually serves as a thinking machine. The three characteristics of the AI system are 
intelligence, intentionality, and adaptability. A variety of strategies can be used to create an AI system that 
effectively performs human tasks. AI supports the system’s decision-making process and aids in outcome 
forecasting. To advance current technology or develop new ones, AI combines different ML algorithms and 
neural networks (Figure 2).
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Figure 1. How and where AE in cancer research is being used

Figure 2. Applications of AI in different disciplines, utilizing DL and ML

Basics of ML

A subtype of AI called “ML” enables computers to learn from their surroundings automatically and without 
human involvement, which suggests that they are developing their decision-making abilities. ML employs a 
number of algorithms and strategies to classify and enhance the data to make better predictions. In the 



Explor Target Antitumor Ther. 2023;4:1286–300 | https://doi.org/10.37349/etat.2023.00197 Page 1289

medical sciences, ML techniques are now applied for the detection and categorization of distinct tumor 
forms. First, ML algorithms look for patterns, and then they take actions based on those patterns [9, 10]. ML 
can be primarily divided into three types: supervised learning, unsupervised learning, and reinforcement 
learning (Figure 3).

Figure 3. Categorization of ML algorithms with its subtypes and their applications

In supervised learning, both the input and output data are provided by the trainer. It is a kind of ML in 
which the data has been labeled so that the machine may discover and build patterns between the input 
and output data. By identifying the pattern, it can learn how to classify or categorize the data [11]. 
Supervised learning is of two types viz (A) classification and (B) regression.

Classification is a type of supervised learning that is used to predict/classify discrete values such as 
male or female, yes or no, malignant or benign, etc. Some classification algorithms under supervised 
learning are decision trees, random forest (RF), logistic regression (LR), support vector machines (SVMs), 
etc. [12].

Similarly, regression is another type of supervised learning used to predict continuous values. Some 
regression algorithms under supervised learning, i.e., regression trees, linear regression, non-linear 
regression, polynomial regression, etc. [12, 13].

Unsupervised learning is a type of ML in which algorithms may uncover previously undiscovered 
patterns in unlabelled datasets and provide the desired output without any external help. Unlabelled 
datasets are analyzed and clustered using ML techniques [11]. Unsupervised learning is of two types viz (A) 
clustering and (B) association. Clustering is a technique for organizing data points into various clusters 
made up of related data points. Finding correlations between variables in a large database is done using the 
unsupervised learning technique of association.

Some algorithms are under unsupervised learning, i.e., k-means clustering, apriori algorithm, 
hierarchal clustering, independent component analysis, k-nearest neighbors (KNN), and principle 
component analysis (PCA).

Reinforcement learning is an ML strategy that relies on feedback, in which an agent learns 
automatically utilizing feedback rather than labeled data. The agent is necessitated to learn exclusively 
from its own experience because there isn’t any labeled data.
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SVM

Researchers have used ML techniques for datasets for the diagnosis and treatment of cancer. Although 
there are many methods proposed for classification, SVM is the most popular due to its strong 
mathematical foundation based on structural risk minimization, statistical learning theory, and its accurate 
performance. SVM is a pattern recognition tool [14]. SVM is being used in many ways in the field of drug 
discovery (Figure 4) [15].

Figure 4. Applications of SVM in drug discovery

For linear classification, the decision function can be formulated as equation 1 (Eqn. 1). For non-linear 
classification, the decision function can be formulated as Eqn. 2.

Eqn. 1:

Eqn. 2:

Where, k = kernel function; xi = n-dimensional vector; yi = its label; and ai = Lagrange multipliers.

Naive Bayes classifier model

Naive Bayes classifier (NBC) are simple “probabilistic classifiers” based on Bayes theorem with naive 
(strong) independence assumption between the features (Eqn. 3). Naive Bayes has been used to diagnose 
CRC by identifying the origin of tumor cells using RNA sequence data [16].

Eqn. 3:

Where, x = attributes; c = class; P(c|x) = probability of “c” being true, given that “x” is true; P(x|c) = 
probability of “x” being true, given that “c” is true; P(c) = probability of “c” being true; and P(x) = probability 
of “x” being true.

Using Bayesian probability, the above Eqn can be written as Eqn. 4.

Eqn. 4:
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LR

LR is the practical application of AI for disease prognosis and management. LR models predict the 
probability of values ranging from 1 and 0. It is mostly applied to categorical data [17]. For example, if the 
cancer is malignant (1) or not (0). LR can be represented by Eqn. 5:

Eqn. 5:

Where, y = predicted output; b0 = intercept; x = input value; and b1 = co-efficient of the input value 𝑥 
(single value).

DL

DL is an ML technique that trains a computer to filter inputs through layers as it gains the ability to predict 
and categorize data. It basically consists of a neural network with three or more layers. These neural 
networks attempt to mimic how the human brain functions [12, 18]. This has been classified broadly into 
convolutional neural networks (CNNs), artificial neural networks (ANNs), and recurrent neural networks 
(RNNs).

CNNs are a specific type of neural network that is mostly used for object recognition, image clustering, 
and image classification [19], while the ANNs mimic the biological neural networks of the human brain and 
are typically comprised of three layers, i.e., (A) the input layer which accepts input from the programmer in 
a variety of formats; (B) hidden layer: these layers are situated in-between the input and output layers and 
it performs all calculations to reveal hidden characteristics and patterns; and (C) output layer: this layer is 
used to convey the output after the input has undergone several transformations utilizing hidden layers.

RNNs are a specific kind of ANN that is mostly used in speech recognition and natural language 
processing (NLP). Because their mathematical processes are performed sequentially, RNNs get their name 
[19, 20].

Steps of drug discovery and AI
The long and difficult process of finding new drugs can be roughly broken down into the following stages: 
(A) target identification; (B) target validation; (C) lead identification; (D) lead optimization; (E) product 
characterization; (F) formulation and development; (G) pre-clinical research; (H) investigational new drug; 
(I) clinical trials; (J) new drug application; and (K) approval [21]. Regarding a certain ailment, it is required 
to first determine the target. In the following phase, hit identification, molecules in molecular libraries are 
identified using techniques including combinatorial chemistry, high-throughput screening, and virtual 
screening. In a clinical study, the medication candidate is finally given to patients after passing all 
preclinical tests satisfactorily.

The medication must proceed sequentially through each of the three stages of this process. Phase I 
entails doing drug efficacy tests on a handful of individuals with the specified ailment; phase II entails 
running drug safety tests on a smaller number of human subjects; and phase III entails performing 
effectiveness tests on a wider range of patients. If the drug candidate’s safety, as well as effectiveness, are 
shown during the clinical phases, agencies like the Food and Drug Administration (FDA) review the 
substance for authorization and marketing. A traditional drug discovery pipeline is thought to cost an 
average of 2.6 billion dollars, and it may take up to 12 years to accomplish [22, 23].

The main concerns for all pharmaceutical companies are how to save expenses and advance initiatives. 
To increase productivity and cut costs, AI-based computational tools are being used at various phases of the 
drug discovery process (Table 1). These include cell classification and real-time image-based cell sorting, as 
well as computer-aided organic synthesis, design of new molecules, assay development, and prediction of 
the three-dimensional (3D) structures of target proteins, among many other uses (Figure 5). In general, AI 
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can automate and optimize these time-consuming processes to dramatically speed up R&D medication 
development [24, 25]. Also, AI is used to coordinate, operate, and recruit participants for clinical trials, 
frequently associated with improved patient monitoring during clinical trials or with medical equipment 
that can access specific patient data and guide medical decisions [26, 27].

Table 1. Computational tools for drug discovery: AI-based

Tools Purpose References
DeepChem Drug discovery task prediction [28]
DTI-CNN DL based drug-target interaction prediction [29]
ORGANIC Molecular generation tool with desired properties [30]
Chemputer Chemical synthesis reporting procedure [31]
DeltaVina Rescoring protein-ligand binding affinity: scoring [32]
DeepCPI Drug–protein interaction prediction [33]
PotentialNet A CNN graph-based ligand-binding affinity prediction [34]
DeepNeuralNet-QSAR Prediction of molecular activity [35]
Hit Dexter Prediction of molecules responding to biochemical assays [36]
DeepTox For toxicity prediction [37]
PPB2 Polypharmacology prediction [38]
SCScore For evaluation of the synthesis complexity of a molecule [39]
NNScore Protein-ligand interaction scoring study [40]
SIEVE-Score Structure-based virtual screening [41]
REINVENT Molecular de novo design based on RNN and RL [42]
RL: reinforcement learning; DTI-CNN: drug-target interaction-CNN; QSAR: quantitative structure-activity relationship; PPB2: 
polypharmacology browser 2; SCScore: synthetic complexity score; SIEVE-Score: similarity of interaction energy vector-score; 
DeepTox: DL for toxicity; NNScore: neutral-network receptor-ligand scoring function

A quick overview of the recent instances of drug development using AI techniques has been discussed 
as shown in Figure 5. The developing field of AI has garnered limited attention despite its significant 
expansion. The computational creation of novel structures with desired attributes, known as de novo 
design, is a focal point, particularly starting with fresh chemical matter. Likewise, the related domains of 
forward prediction and retrosynthesis prediction, seeking to establish how chemical matter designated for 
experimental research can be synthesized, have also piqued substantial interest. Determining whether a 
ligand binds to a specific protein target once it has been placed is the logical next step, and target prediction 
in silico and docking (and related techniques) have been active research fields for decades [43]. In terms of 
predicting ligand-protein interactions, methods like DL have a somewhat good effect on improving 
numerical measurements of performance (often marginally). This hasn’t always been the case, though, as 
evidenced by a recent large-scale study that found no benefit to DL in terms of performance. Also, special 
attention must be paid to the model performance measurements employed in this context and if they reflect 
a pertinent metric capable of detecting both significant and practically applicable changes in model quality 
[44].

AI in drug discovery

The process of creating efficient new pharmaceuticals is the most complicated part of the medication 
development process. The techniques that incorporate AI have evolved into flexible toolkits that can be 
used widely in several stages of drug development, including the identification and validation of drug 
targets, the design of new drugs, drug repurposing, improving R&D efficiency, the analysis of biomedicine 
data, and the improvement of the decision-making process to enroll patients in clinical trials [21]. While 
addressing the inefficiencies and uncertainties brought on by the conventional techniques of drug 
development, these potential applications for AI offer the ability to reduce bias and human meddling in the 
process [45, 46].
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Figure 5. AI in drug screening, DD, drug repurposing, and chemical synthesis

Further applications of AI in drug development include pharmacological qualities, protein features and 
efficacy, drug combination and DTI, drug repurposing, drug synergism/antagonism prediction, and 
prediction of practical synthetic methods for drug-like compounds [47]. Finding new pathways and targets 
using omics research is made feasible by the development of novel biomarkers and therapeutic targets, the 
creation of personalized medicine based on omics markers, and the discovery of connections between 
drugs and illnesses.

When it comes to suggesting powerful medication ideas and correctly anticipating both their qualities 
and potential toxicity hazards, DL has shown exceptional effectiveness. The analysis of enormous datasets, 
arduous compound screening while minimizing standard error, and the requirement for major R&D costs 
and time of over US$ 2.5 billion each decade may all be avoided with the application of AI approaches. With 
the aid of AI technology, new research may be conducted to aid in the discovery of new drug targets, logical 
medication design, and drug repurposing [44].

AI-based therapeutics in CRC
Chemotherapy, nCRT, and more comprehensive methods of treatment are available for CRC. Utilizing AI for 
CRC treatment, clinicians can choose the best-suited treatment option and increase the effectiveness of 
treatment by creating a personalized treatment course for each patient [1, 48]. AI-based interventions have 
been proven a state-of-the-art method to identify the appropriate surgery method, especially in handling 
complicated situations in CRC patients [49]. Further, these methods have been proven to be indispensable 
tools in the investigation of the precise stage of heterogeneity level of CRC during its diagnostic and suggest 
the possible management method. AI and ML present the ability to achieve early detection and diagnosis by 
precisely detecting polyps and lesions through image analysis. AI plays a promising role in improving 
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accuracy and efficiency, especially in image analysis and molecular profiling [3]. ML identifies CRC 
biomarkers for non-invasive screening, while neural networks assist in analyzing the histopathologic 
images and reduce the expertise gaps. AI boosts medical image readability and guides precise robotic 
surgery, thus benefiting CRC treatment. AI also enhances nCRT, improving CRC treatment and efficacy 
assessment [50]. The table offers details about research on AI models for CRC treatment in relation to 
chemotherapy and nCRT (Table 2).

Table 2. Recent research on AI models for predicting nCRT and chemotherapy response in the treatment of CRC

Topic Research Model Performance Year Reference
EUS images of 43 LARC patients as 
predictive biomarkers

Images pre-processed by lee, wiener, 
median, frost, bilateral, and wavelet filters

LR and 
SVM

AUC: 0.71 and 0.76
Accuracy: 70.0% and 71.5%

Sensitivity: 69.8% and 80.2% 
(respectively)

2022 [51]

CT images of 215 LARC patients

Images evaluated by filtration histogram 
texture analysis and fractal dimension

LR Accuracy: 82%

Specificity: 89% 
Sensitivity: 60%

2021 [52]

pCR prediction in 282 LARC patients (248 
training and 34 validation)

ANN AUC/accuracy/sensitivity: 0.84/0.88/
0.94 respectively

2020 [53]

pCR prediction in 6,555 non-metastatic 
cancer patients undergoing radical 
resection

LR 92.4%/88.2%: With/
without—pathological complete 
response

(overall survival rate of 3 years)

2019 [54]

MRI of 98 patients (53/45: training test/
validation set respectively)

Image preprocessing by EMLMs and LOG 
filters

SVM, NN, 
BN, and 
KNN

Test (AUC and accuracy): 97.8% and 
92.8%

Validation (AUC and accuracy): 95% 
and 90%

2019 [55]

nCRT

MRI of 55 LARC patients to predict pCR 
and pNR rates

RF 0.83: Mean of AUC 2019 [56]

Irinotecan drug toxicity prediction in 20 
metastatic CRC patients (liver function 
bloody tests and tumor markers)

SVM Accuracy: 91%/76%/75% for 
diarrhea/leukopenia/neutropenia 
respectively

2019 [57]Chemotherapy

Detection of IC50 of a drug
Evaluation of QSAR using NMR

Analysis of 18,850 organic compounds

KNN, RF, 
and SVM

Above 63% accuracy 2018 [58]

AUC: area under curve; NN: neural network; BN: Bayesian network; LARC: locally advanced rectal cancer; EUS: endorectal 
ultrasound; IC50: half maximal inhibitory concentration; LOG: Laplacian of Gaussian; NMR: nuclear magnetic resonance; CT: 
computed tomography; MRI: magnetic resonance imaging; pCR: pathologic complete response; EMLMs: ensemble machine 
learning models; pNR: pathologic non responder

The following table enlists the FDA-approved individual drugs for CRC treatment. However, the drug 
combinations are not FDA-approved but the drugs individually are approved by FDA. The list does not 
include all the drugs and there may be more drugs (Table 3) [59].

The names of the drugs are shorthand references to the NCI’s cancer drug information. It’s possible 
that some drugs used to treat rectal and colon cancer aren’t included here. Some drugs combination used 
currently for CRC viz capecitabin and oxaliplatin (CAPOX), leucovorin, fluorouracil, and irinotecan 
(FOLFIRI), FOLFIRI-CETUXIMAB, oxaliplatin, 5-fluorouracil, and folinic acid (FOLFOX), capecitabine and 
irinotecan (XELIRI), 5-fluorouracil-leucovorin (FU-LV), FOLFIRI-BEVACIZUMAB, and oxaliplatin and 
capecitabine (XELOX) [59].

Challenges
Certain components of the drug development process haven’t gained enough attention yet. For instance, it 
is currently challenging to determine precisely how well a drug candidate binds to its intended protein 
target [24, 60, 61]. AI and other computational techniques do not currently perform well in this field for 
several reasons [24, 43, 62].
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Table 3. FDA-approved medications for colon and rectal cancer consisting of both generic and brand names

FDA-approved 
individual drugs (CRC)

Mechanism of action

Ipilimumab Prevent inhibition of T-cell mediated immune responses to tumors by binding CTLA-4
Bevacizumab (Mvasi) Mvasi, a mAb, inactivates serum VEGF treating metastatic CRC
Pembrolizumab Binds to PD-1 inhibiting its interaction with PD-L1 and PD-L2. Enhances anti-tumor immune response 

and tumor immune monitoring
Tucatinib Inhibits HER-2 suppressing tumors by affecting cell proliferation and AKT and MAPK signaling
Ziv-aflibercept (Zaltrap) Inhibits VEGF-A and PIGF to reduce vascular permeability and inhibit neovascularization. Delay vision 

loss and advancement of metastatic CRC
Irinotecan hydrochloride Restricts DNA strands from elegating by attaching to the topoisomerase I-DNA complex and inhibiting 

its action, which causes fatal double-stranded splits in the DNA. Causes apoptosis as DNA damage is 
ineffectively repaired

Nivolumab Restores tumor-specific T-cell response in patients. Binds to PD-1, avert PD-L1 and PD-L2 from 
blocking the action of T-cells

Ramucirumab By binding to VEGFR2, it halts the ligands (VEGF-A, VEGF-C, and VEGF-D) from binding to it, 
blocking VEGF-stimulated receptor phosphorylation and the proliferation, permeability, and migration 
of human endothelial cells that are later caused by ligands

Cetuximab Blocks the binding of EGF, which in turn prevents EGFR activation. It also binds selectively to the 
EGFR and phosphorylates and activates receptor-associated kinases (MAPK, PI3K/AKT, and JAK/
STAT)

Regorafenib At clinically attained concentrations it inhibits the function of VEGFR1, VEGFR2, VEGFR3, RET, 
PDGFR-alpha, PDGFR-beta, KIT, FGFR1, FGFR2, BRAFV600E, PTK5, TIE2, TrkA, RAF-1, BRAF, 
DDR2, SAPK2, Eph2A, and Abl

Panitumumab Panitumumab binds primarily to EGFR and prevents ligands from binding to EGFR
Leucovorin calcium By strengthening the bond between the active metabolite (5-FdUMP) and the enzyme thymidylate 

synthetase, leucovorin increases the action of fluorouracil
CTLA-4: cytotoxic T lymphocyte antigen-4; mAb: monoclonal antibody; PD-1: programmed death-1; PD-L1: PD-ligand-1; HER-2: 
human epidermal growth factor receptor-2; AKT: AKT serine/threonine kinase; MAPK: mitogen-activated protein kinase; VEGF-
A: vascular endothelial growth factor-A; PIGF: placental growth factor; I-DNA: I-motif DNA; VEGFR2: VEGF receptor 2 ; EGF: 
epidermal growth factor; EGFR: EGF receptor; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; JAK: Janus kinase; STAT: 
signal transducer and activator of transcription; RET: Ret proto-oncogene; PDGFR-alpha: platelet derived growth factor receptor 
alpha; KIT: KIT proto-oncogene, receptor tyrosine kinase; FGFR1: fibroblast growth factor receptor 1; PTK5: protein tyrosine 
kinase 5; TIE2: tyrosine kinase with immunoglobulin like and EGF like domains 2; RAF-1: Raf-1 proto-oncogene, serine/
threonine kinase; BRAF: B-Raf proto-oncogene, serine/threonine kinase; DDR2: discoidin domain receptor tyrosine kinase 2; 
SAPK2: sucrose non-fermenting-1-related protein kinase 2; Eph2A: ephrin type-A receptor 2; Abl: a gene; 5-FdUMP: 5-
fluorodeoxyuridine monophosphate; BRAFV600E: B-Raf proto-oncogene; TrkA: tropomyosin receptor kinase A

First off, AI is a data-mining technique. When using AI for data mining, the amount and quality of the 
available data directly affect how well AI models work [20, 24, 63–65]. Large volumes of training data are 
necessary for effective DNN training. The creation of transfer learning technology, that applies the lessons it 
picks up from one activity to another, could be a viable solution to this issue. The second problem is that 
occasionally the data quality is not good enough for effective AI learning. Biological assays, techniques, or 
conditions are frequently different from those used to measure experimental data in public databases. A 
substance can provide completely different results from measurements made using several techniques, 
which are incomparable. Also, outstanding data could be found in public databases [66].

There have been many unresolved questions such as how AI can be utilized to reliably estimate the 
binding affinity of a novel drug considering that the scaffold is distinct from the training datasets available. 
How AI can predict changes in protein structure that can occur at microseconds or even second 
timeframes? If AI can predict a new drug’s complex physical properties, such as its capacity to pass through 
the brain-blood barrier (BBB), membrane permeability, etc.? The most important therapeutic targets in 
drug research would be revealed if AI could predict new G protein-coupled receptors (GPCR) allosteric sites 
[24]. Hence, selecting high-quality data from the raw inputs is a crucial step before doing specific AI 
operations. AI could provide the answer by automating data entry as well. Finally, when a 2D interpretation 
of 3D atomic space occurs for AI computations, crucial 3D target structural information is lost, including the 
chemical surrounding of the target protein’s ligand binding site, the drug molecule’s conformation, and the 
protein’s flexibility. Alternatively, proteins and drug molecules could be sampled in varied conformations 
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and states within physiological settings using molecular dynamics (MD) simulations. The effectiveness of 
this method was recently demonstrated in a study that used AI and MD simulations to examine the ligand 
specificity of GPCRs. Shortly, it’s possible to get beyond the constraints of binding-affinity forecasts and 
other molecular property predictions by transferring data from MD to AI [24].

The fact that the role of DL techniques is a “dark secret” or “black box” must be emphasized [67]. 
During the training stage, a neural network is only given one particular input with a label. Even the person 
who created the network may not be aware of what is being examined at the intermediate phases or the 
reasoning behind the model’s conclusions because the features are not explicitly described. To sum up, a lot 
of effort has been put towards incorporating AI techniques to speed up the drug discovery and 
development process, but more effective applications of these techniques will be required before the 
complete potential of AI in drug discovery and development is achieved [24].

Conclusions
With the overwhelming increase of clinical data and advancements in ML techniques and especially DL 
techniques, AI has enhanced the potential in various clinical aspects of CRC. AI algorithms are used for CRC 
including CRC identification, therapeutic evaluation, survival prediction, etc. However, there is not much 
literature available on the application of AI in CRC treatment. For better results, data quantity and quality 
are the important factors to be improved for precise treatment. The rationale behind any DL algorithm’s 
conclusions is the accurate calculation of the binding affinity of a novel drug candidate, along with the type 
of treatment to be selected for and individuals whom AI has to advance with preciseness. Despite ground-
breaking advancements in AI-infused medication design and research, there is still a long way to go before 
personalized therapy for cancer patients can be effectively applied. This demonstrates the potential of AI 
technology along with current limitations.
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