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Abstract
Alternative protein-protein interactions (PPIs) arising from mutations or post-translational modifications 
(PTMs), termed phenotypic switching (PS), are critical for the transmission of alternative pathogenic 
signals and are particularly significant in cancer. In recent years, PPIs have emerged as promising targets 
for rational drug design, primarily because their high specificity facilitates targeting of disease-related 
signaling pathways. However, obstacles exist at the molecular level that arise from the properties of the 
interaction interfaces and the propensity of small molecule drugs to interact with more than one cleft 
surface. The difficulty in identifying small molecules that act as activators or inhibitors to counteract the 
biological effects of mutations raises issues that have not been encountered before. For example, small 
molecules can bind tightly but may not act as drugs or bind to multiple sites (interaction promiscuity). 
Another reason is the absence of significant clefts on protein surfaces; if a pocket is present, it may be too 
small, or its geometry may prevent binding. PS, which arises from oncogenic (alternative) signaling, causes 
drug resistance and forms the basis for the systemic robustness of tumors. In this review, the properties of 
PPI interfaces relevant to the design and development of targeting drugs are examined. In addition, the 
interactions between three tyrosine kinase inhibitors (TKIs) employed as drugs are discussed. Finally, 
potential novel targets of one of these drugs were identified in silico.
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Characteristics of protein-protein interaction interfaces
Functional interactions between protein molecules are mediated by protein interfaces, which have specific 
sizes, shapes, and complementarity characteristics [1, 2] and involve electrostatic and hydrophobic 
interactions facilitated by the flexibility of the proteins in contact as well as hydrogen bonds. There are 
three size classes of protein interaction interfaces: The first class is characterized by an average contact 
area of about 120 to 200 square nanometers, the second by areas of about 110 to 120 square nanometers 
and occurs in volatile interactions and short-lived complexes [3, 4]. In contrast, proteins involved in signal 
transduction and protease-substrate interfaces are characterized by larger surfaces, ranging from 200–460 
square nanometers. Although the interfaces can be large, as discussed above, few interface residues 
contribute more than a few kcal/mol of energy (typically > 2 kcal/mol) [5]. Stabilization of protein-protein 
interactions (PPIs) is determined by the size and chemical character of the interacting surfaces, which are 
excluded from solvent contacts [6, 7]. The complementarity of the surfaces and the specificity of the 
interactions are determined by the packing density of the atoms in the two contacting proteins. The forces 
involved are polar interactions such as hydrogen bonding, electrostatic attractions involving occasional 
water molecules at the interface, hydrophobic interactions, and van der Waals contacts [8–11]. Protein-
protein recognition interfaces and bonds can be identified by measuring the accessible surface area of the 
interacting proteins, which roughly correspond to the areas of the two proteins that are inaccessible to the 
water solvent. This restricts the interaction surfaces to clefts or crevices away from water molecules. Stable 
protein complexes are formed mainly by hydrogen bonds and salt bridges [3], whereas transient complexes 
are stabilized by hydrophobic interactions [12, 13].

Protein interaction interfaces contain at least three types of atoms: the interface atoms, which lose 
accessibility to the solvent and are within the van der Waals radii but do not make van der Waals contacts. 
The second class is the contact atoms, which are all atoms located at a distance corresponding to the van 
der Waals radii and additionally 0.05 nm away from the atoms of the binding partner. Third, the atoms that 
are completely buried when two proteins interact, may be accessible to the solvent in the unbound 
proteins. While the size of the interfaces between different classes of interactions, i.e., antibody-antigen, 
kinase-substrate, etc., varies considerably, the buried hydrophobic surface area is thought to contribute 
directly to the binding energy [10, 14]. Notably, hydrophobicity is the main driving force in PPIs, which 
occur between nonpolar side chains via van der Waals interactions and are thermodynamically 
spontaneous as the nonpolar domains move from an aqueous to a hydrophobic environment [10, 15]. The 
hydrophobic effect is the main driving force as the groups of hydrophobic residues withdraw to avoid 
contact with water, while the H-bonds and electrostatic contacts stabilize the conformation. This leads to 
the expulsion of water molecules and an increase in entropy, resulting in stable complex formation. 
Complex formation is also favored by electrostatic attractive forces resulting from the complementarity of 
the protein interacting surfaces, even within a hydrophobic cleft. Electrostatic interactions determine the 
half-life of a complex and are typical of transient associations between proteins [16–18].

Hotspot amino acids and complementarity clusters
Alanine scanning mutagenesis has been extensively used to identify protein interaction sites as well as 
hotspots, amino acids that provide a large amount of binding energy, typically fixed at 2 kcal/mol [19–21]. 
The substitution of alanine is advantageous because although it eliminates side groups downstream of the 
b-carbon, it minimizes the conformational freedom of the protein, which would be increased if glycine were 
used [22]. Alanine scanning has revealed large differences in the energetic contributions of the replaced 
interface residues, such that only a few residues participate in the free energy of binding in multiprotein 
complexes [2, 23, 24]. Typically, it is interaction energies greater than 2 kcal/mol that contribute to the 
interaction energy in protein pairs. Thus, it is a small number of buried residues that are central to binding 
affinity, which is determined by calculating the change in binding free energy (ΔΔGbinding). Alanine scanning 
revealed that about 10% of the interface residues can be considered hotspots [21, 25]. Interestingly, the 
same hotspot residues from the same protein are used in different complexes [25–27]. Hotspots are usually 
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conserved residues and are rarely found at the edges of interfaces [5, 28]. The most abundant hotspot 
amino acids are tryptophan (21%), arginine (13%), and tyrosine (12%). In contrast, leucine, serine, valine, 
and threonine are almost never used as hotspots in interaction interfaces [20]. Tryptophan is unique in that 
it can form hydrogen bonds and contributes aromatic π-electrons that form a hydrophobic region and thus 
can shield hydrogen bonds from nearby competing water molecules. When tryptophan is replaced by 
alanine in site-directed mutagenesis experiments, the rather large size difference between the two amino 
acids leaves a significant gap that leads to destabilization. The second most abundant amino acid on 
hotspots, arginine, can form at least five hydrogen bonds and one salt bridge on the guanidinium motif [20]. 
Finally, tyrosine, the third most abundant amino acid in hotspots, can interact with its hydrophobic benzene 
ring and aromatic π-electrons and with the formation of a hydrogen bond from its hydroxyl group. The high 
percentage of aromatic amino acids as hotspots clearly underlines the importance of the hydrophobic effect 
in PPIs [29].

Clustered complementarity of conserved residues
Another feature of protein interaction interfaces is their clustered complementarity of shape and 
juxtaposed hydrophobic and hydrophilic hotspots. Conserved residues are in pockets throughout the 
interface and buried charged residues form salt bridges, whereas hydrophobic residues on both surfaces fit 
well into each other’s cavities and crevices, ensuring complementarity. Thus, complementarity is controlled 
by the orientation of polar and nonpolar residues, the number of water molecules in the cavities, and the 
packing density of atoms at the interface [30–32]. Complementary crevices and cavities contain nearly 80% 
of the hotspot residues and over 90% of the residues with a ΔΔGbinding bond greater than 4 kcal/mol are 
localized in complementary crevices and cavities. Remarkably, these regions contain a small number of 
polar or ionizable residues, suggesting that the disadvantage of removing water molecules is small, 
especially since such residues form lamellar bridges within the hydrophobic environment [30].

Phenotypic switching in protein interactions
Drug resistance is a major challenge in cancer and infectious diseases. Recently, advances in structural 
biology and chemical reactivity have enabled the design and development of covalent protein interaction 
inhibitors. A key mechanism of resistance is phenotypic switching (PS) in the formation of protein 
complexes via alternative PPIs [33]. Drug addiction in cancer cells is also associated with phenotype 
switching. However, the logic behind the structural and sequence basis of this phenomenon remains 
currently unclear. Altered interactions in protein complexes underlie almost all phenomena in biology, but 
they are particularly important in cancer signaling, which maintains tumor growth and metastatic behavior. 
PS changes in signaling complexes that promote cancer growth arise from mutations [34], post-
translational modifications (PTMs), particularly methylation [35, 36] and phosphorylation [37], as well as 
from other PTMs such as deamidation, ubiquitination and succination [38].

The role of disordered regions is currently being investigated as PS and altered interactions are 
controlled by conformational changes in the interacting proteins [39, 40]. Altered protein-protein 
controlled PS is evident in melanoma growth and metastasis and drug resistance [41] and appear to be a 
general mechanism for tumor growth [42]. However, our understanding of the logic that governs 
interaction-induced PS in cancers remains limited. This phenomenon is often driven by key mutations that 
result in conformational changes in constitutively active proteins (e.g., kinases) or the overexpression of 
oncoproteins (e.g., due to gene amplification). An example of this is drug addiction in melanoma cells which 
occurs when tumor cells that are initially sensitive to a drug eventually become dependent on its presence 
for survival [43]. In melanoma cells, the mechanism involves a switch in signaling from the standard v-raf 
murine sarcoma viral oncogene homolog B1 (BRAF) pathway to the extracellular signal-regulated kinase 2 
(ERK2) and JUNB proto-oncogene, AP-1 transcription factor subunit pathways, because when these two 
genes were genomically knocked out, the melanoma cells died. However, although BRAF signaling can also 
occur via ERK1, cells remained viable when ERK1 is genomically depleted [44]. The previous argument 
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suggested that the exclusive use of ERK2, as opposed to ERK1, in drug-addicted melanoma cells might 
result from preferential genetic (or physical) interactions of BRAF complex proteins with ERK2 rather than 
ERK1 [33]. The structural and sequence basis of this phenomenon is currently unknown. However, 
identification of the alternative interactions would help, for example, to identify the interacting surfaces 
between BRAF and ERK2 complexes and to target them with small molecules.

Targeting PPI interfaces in oncogenic signaling cascades-pitfalls and 
promise
The robustness of oncogenic properties of cancer cells chiefly derives from altered PPIs. Therefore, 
systematic mapping of protein interactomes, i.e., total cellular PPIs in cancer cells, is required to identify 
key interactions and interfaces. In addition, knowledge of protein surface residues at interaction sites can 
provide insight into how molecular recognition supports tumor development and growth and may aid in 
the search for rational design of drugs that regulate PPIs or mimic their action [22]. Conformational 
changes in growth-related proteins, such as occurs in the oncogenic rat sarcoma (RAS)/epidermal growth 
factor receptor (EGFR)/neurofibromatosis type 1 (NF1) complexes, and altered PPIs, have been implicated 
in the oncogenic process, allowing them to interact with alternative protein targets and relay their growth 
signals in an uncontrolled manner. Thus, multiprotein complexes such as protein kinase B (PKB or AKT)-
forkhead box O3a (FOXO3a)-14-3-3, murine double minute 2 (MDM2), P53, and Myc-MYC associated factor 
X (MAX) complexes have been investigated in several studies and have been shown to affect cancer cell 
growth and death, however how (and why) alternative interactions occur remains unknown [45, 46]. All of 
the above examples involve altered PPIs as a result of mutations or overexpression of oncoproteins, and 
they are typical examples of PS [22]. Systematic network assignment of groups of PPIs involved in 
interaction cancer networks is currently pursued and may shed light on how it occurs [47, 48].

Challenges in targeting PPIs in cancer
The large area covered by the PPI interfaces, their noncontiguous nature, the relative lack of natural 
ligands, and the relative sparseness of deep clefts present formidable obstacles to the implementation of 
structure-based small molecule design [49, 50]. Nevertheless, there are at least two features that facilitate 
the development of selective molecular modulators for the future targeting of PPIs. The first feature is the 
presence of hotspots that contribute most of the binding free energy [51]. The second feature, which 
counteracts the presence of large interfaces, is the flexibility of side chain motions and unstructured loops 
on proteins [52, 53]. The presence of disordered regions (about 40% of all proteins are disordered or have 
extended disordered regions [54]) and the flexibility of atomic motions in proteins allow small molecules to 
explore their surfaces and bind in ways that cannot always be predicted from static conformational 
representations [39]. An example is the (promiscuously binding) drug imatinib (Gleevec) which interacts 
with and inhibits tyrosine kinase c-Abelson leukemia virus protein (c-ABL) (Figure 1), oncoprotein stem 
cell factor receptor (c-KIT), and the non-kinase NRH: quinone oxidoreductase 2 (NQO2), a flavoprotein that 
serves as a quinone reductase in the hydroquinone conjugation reaction, in detoxification pathways as well 
as in biosynthetic, as well as platelet-derived growth factor receptor alpha (PDGFRα) and the Src proto-
oncogene, non-receptor tyrosine kinase (SRC) kinase. Imatinib is a tyrosine kinase inhibitor (TKI) that 
specifically targets the breakpoint cluster region(BCR)-Abelson leukemia virus (ABL) fusion protein in 
chronic myeloid leukemia (CML) and has beenwidely used in the treatment of various cancers [55]. 
Imatinib contacts Asp159, His139 and Phe160, among others, in a cleft of c-ABL (Figure 1). Imatinib 
preferentially inserts itself into a hydrophobic cleft and interacts with a disordered domain (Figure 1), 
suggesting that the flexibility of these regions favors binding of the drug. The tendency of the drug to 
preferentially interact with disordered regions in proteins suggests that a broader range of targets remains 
to be identified and might illuminate the interaction logic of PS mediated by intrinsically disoredered 
regions (IDRs). The data suggest that similar molecules are likely to bind by a similar mode.
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Figure 1. The imatinib/c-ABL complex (PDB code of c-ABL: 6hd6). Imatinib’s chemical structure is shown on the left panel 
whereas in the right panel, imatinib (shown by the arrow) is situated within a hydrophobic cleft of the c-ABL kinase. It forms 
interactions with multiple amino acids, including ASP159, HIS139, and PHE160, within a disordered domain. For additional 
insights, refer to the accompanying text

Two other similarly structured molecules, ponatinib and ibrutinib, also preferentially bind to deep 
pockets that contain disordered stretches of amino acids, between secondary structural elements in the 
targeted kinases (Figure 2A and B) with the tyrosine kinases c-KIT and c-SRC respectively. Ponatinib, a c-
ABL1 inhibitor, is currently approved for CML and acute lymphoblastic leukemia (ALL) therapy, and it is 
also a fibroblast-macrophage colony-stimulating factor (FMSF)-like tyrosine kinase 3 (FLT3) inhibitor. 
Therefore, the binding characteristics of imatinib can be extrapolated to ponatinib and ibrutinib, as well as 
other TKIs with similar structures. Regardless, the structural features of a drug and the binding sites on the 
target protein remain key criteria by which to dissect how a drug interacts with a protein target. It is 
essential that computational approaches are confirmed with experiment given the propensity of most 
molecule drugs to bind to several regions and most commonly to hydrophobic crevices or clefts.

Understanding the structural features of the target protein binding sites, facilitates the computational 
modeling and prediction of the binding affinity and efficacy of similarly structured drugs that target the 
same or similar protein targets. Imatinib represents an important example of a targeted therapy drug that 
has revolutionized cancer treatment. However, it is important to emphasize that the binding characteristics 
of imatinib may not be directly applicable to all other drugs in the same family or to other drugs that target 
different protein targets [57–59]. A systematic survey of the binding mode of specific classes of drugs will 
certainly reveal their mode of binding to their targets. Compared to traditional chemotherapy drugs, which 
often have non-specific effects on rapidly dividing cells, targeted therapy drugs like imatinib can offer more 
precise and effective treatment with fewer side effects. Regardless, imatinib is not necessarily 
representative of all targeted therapy drugs, as different drugs can target different proteins with varying 
levels of selectivity and specificity. Conversely, the ability to bind to multiple proteins within a signaling 
pathway can be leveraged to achieve broader activity against various types of cancer. Additionally, some 
targeted therapy drugs may be more, or less, potent than imatinib or may have different pharmacokinetic 
properties that affect their dosing and administration. Experimental validation is needed to confirm the 
binding characteristics of other drugs in this family that target different kinases especially because a 
specific class, the three boron hydrogen (B-H) bonds (BH3)-mimetics, which are designed for breaking PPIs, 
interact with structured domains of their targets [60, 61] rather than with disordered regions.

A search for proteins capable of binding imatinib was conducted utilizing the SwissTarget site, 
resulting in the extraction of several targets (refer to Supplementary material) [62, 63]. Of these targets, 
60% are kinases, 20% are electrochemical transporters, and the remainder belong to the family of A/G 
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Figure 2. Ponatinib and ibrutinib bound to the c-KIT and c-SRC oncoproteins. (A) C-KIT/ponatinib complex (PDB code:4u0i). 
The chemical structure of ponatinib (left panel); close aspect of c-KIT with surface features to reveal crevices and pockets and 
with ponatinib bound to one of these pockets (right panel). VAL654 is in contact with ponatinib; other amino acid contacts 
include ASP810, CYS809, PHE811, and THR670 (see text for discussion); (B) c-SRC/ibrutinib complex (PDB code:6l8l). The 
chemical structure of ibrutinib (left panel); Ibrutinib bound to the c-SRC protein showing LYS295 being contacted by the drug 
(right panel). Interaction analyses were performed with Chimera [56]

protein-coupled receptors and other enzymes (Supplementary material, and Figure 3A). A network of the 
top one hundred computationally-derived targeted proteins was reconstructed utilizing the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) database. Using K-means clustering, the network was 
organized [64] into four protein clusters (Supplementary material, and Figure 3B). Not surprisingly, the 
most enriched proteins in the clusters belong to the signaling kinase receptors (cluster 1), the platelet-
derived growth factor receptor beta (PDGFRβ) pathway (cluster 2), the spliceosome and cell division cycle 
5-like protein (CDC5L) protein group (cluster 3), and the peptidyl tyrosine phosphorylation and the 
protein-tyrosine phosphatase 1B (PTP1B) pathways (cluster 4). While clusters 1 and 2 contain proteins 
known to interact with imatinib, clusters 3 and 4 contain proteins that represent novel, unexplored targets, 
particularly in the spliceosome and tyrosine phosphorylation pathways (Supplementary material). If 
experimentally confirmed, it would be interesting to explore whether these disparate protein targets share 
conformational similarities (especially in the absence of primary structure similarity). Notably, clusters 2 
and 4 are linked to cluster 1 whereas cluster 3 appears to be isolated (Supplementary material, and 
Figure 3B), suggesting that, as of now, not all interactors have been identified. Notably, several kinases in 
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groups 1 (blue) and 4 (red) are clustered together, a finding that is consistent with the targeting 
preferences of imatinib. A similar analysis for ponatinib and ibrutinib revealed similar targets, however, 
compared to imatinib’s 60% being kinases, ponatinib and ibrutinib targets overwhelmingly were kinases, 
95.3% and 93% respectively (data not shown). Also notably, ponatinib and ibrutinib target novel proteins 
not targeted by imatinib. Interestingly, phosphoinositide 3-kinase (PI3K) emerged as a top bottleneck in 
clusters 1 and 4, consistent with its key role in tumors treated with imatinib and other TKIs.

Figure 3. Most frequent in silico bound protein classes by imatinib. (A) Gene ontology (GO) analysis of imatinib target proteins. 
Sixty percent of enriched functional groups are kinase enzymes. A hypergeometric method was used for computing enrichment 
within the Metascape website [65]; (B) the network of imatinib-targeted proteins that were identified with SwissTarget. Four main 
clusters are apparent. Clusters 1, 2 and 4 contain well-established enzymes that have been experimentally found to interact with 
imatinib, whereas cluster 3 contains novel targets identified by in silico analysis using the SwissTarget algorithm. The dotted 
lines in Figure 3B designate the shortest paths between the proteins, with PI3K kinase being a bottleneck for clusters 4 and 1 
which share several kinases. Several nodes are unlinked suggesting that not all interactions have been identified or that, if 
known, were not included in the STRING database



Explor Target Antitumor Ther. 2023;4:1071–81 | https://doi.org/10.37349/etat.2023.00181 Page 1078

Conclusions
Understanding the nature of PPIs can be a starting point for developing rational approaches to drug design. 
Assay technologies that mimic physiology as closely as possible are a necessary step in this direction. In 
parallel, identifying PPIs driven by rewiring (PS) is critical for discovering systemic drug targets and 
overcoming drug resistance. A serious obstacle to generalizing rational approaches is the fact that while 
most small molecule drugs employ the same types of interactions (H-bonds and ionic bridges), it is difficult 
to predict the site of interaction, as exemplified by the similarly structured drugs, imatinib on the one hand 
and ponatinib and ibrutinib on the other. In future, modulation of PPIs at the systems level is expected to 
play an important role in mechanistic studies and in the design and development of systemic drugs.
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