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Abstract
Aim: Early diagnosis of paediatric brain tumors significantly improves the outcome. The aim is to study 
magnetic resonance imaging (MRI) features of paediatric brain tumors and to develop an automated 
segmentation (AS) tool which could segment and classify tumors using deep learning methods and compare 
with radiologist assessment.
Methods: This study included 94 cases, of which 75 were diagnosed cases of ependymoma, 
medulloblastoma, brainstem glioma, and pilocytic astrocytoma and 19 were normal MRI brain cases. The 
data was randomized into training data, 64 cases; test data, 21 cases and validation data, 9 cases to devise a 
deep learning algorithm to segment the paediatric brain tumor. The sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and accuracy of the deep learning model were 
compared with radiologist’s findings. Performance evaluation of AS was done based on Dice score and 
Hausdorff95 distance.
Results: Analysis of MRI semantic features was done with necrosis and haemorrhage as predicting features 
for ependymoma, diffusion restriction and cystic changes were predictors for medulloblastoma. The 
accuracy of detecting abnormalities was 90%, with a specificity of 100%. Further segmentation of the 
tumor into enhancing and non-enhancing components was done. The segmentation results for whole tumor 
(WT), enhancing tumor (ET), and non-enhancing tumor (NET) have been analyzed by Dice score and 
Hausdorff95 distance. The accuracy of prediction of all MRI features was compared with experienced 
radiologist’s findings. Substantial agreement observed between the classification by model and the 
radiologist’s given classification [K-0.695 (K is Cohen’s kappa score for interrater reliability)].
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Conclusions: The deep learning model had very high accuracy and specificity for predicting the magnetic 
resonance (MR) characteristics and close to 80% accuracy in predicting tumor type. This model can serve 
as a potential tool to make a timely and accurate diagnosis for radiologists not trained in neuroradiology.

Keywords
Deep learning model, artificial intelligence, paediatric brain tumors, ependymoma, medulloblastoma, 
pilocytic astrocytoma, brainstem glioma

Introduction
Primary brain tumors are a heterogeneous group of benign as well as malignant tumors arising from the 
brain parenchyma and its surrounding structures. Brain tumors are the most common solid tumors in the 
paediatric age group and they are a leading cause of mortality and morbidity in children worldwide [1–3], 
exceeded only by leukaemia [3, 4]. According to most of the studies, the three most common types of 
paediatric brain tumors are astrocytoma, medulloblastoma, and ependymoma [1]. Overall survival in 
paediatric brain tumors varies with the type and grade of the tumor. It has been found that low-grade 
gliomas like pilocytic astrocytoma after gross total resection have 10-year progression-free survival of over 
95% and have the best survival among paediatric brain tumors [5]. Children with non-disseminated 
medulloblastoma have an approximate 60% to 65% likelihood of survival for 5 years; however, the survival 
in disseminated tumors is less favourable, approximately 35% to 40% [5]. Ependymoma after gross total 
resection and radiotherapy is expected to have over 75% chance to survive for 5 years without any 
recurrence [5]. Brainstem glioma in children has a 3-year survival rate of only 5% to 15% even after 
treatment [6].

Early diagnosis and treatment of paediatric brain tumors significantly improve the outcomes [7]. To 
accurately diagnose paediatric brain tumors on imaging, specialized radiologists with experience in 
neuroradiology as well as in neuro-oncology are required. This niche requirement is often difficult to meet 
in many primary healthcare setups worldwide. Artificial intelligence (AI) is ever evolving tool in healthcare; 
especially in diagnostic oncology [8–11]. If accurate enough, AI-based tools can serve patients where 
specific skilled radiologists are not available. Recent advances in AI have made such diagnostic tools 
possible. Few machine learning-based algorithms have been developed in recent times [12]. Also, the role 
of machine learning in survival prediction and prognostication has been publicized in the field of 
neuro-oncology [13, 14]. The majority of brain tumor segmentation and radio genomics classification work 
has been published for glioblastoma in recent literature [15–17].

The purpose of this study was to study semantic and deep learning magnetic resonance imaging (MRI) 
features of paediatric brain tumors and to develop a deep learning based automated segmentation (AS) tool 
which could segment paediatric brain tumors and predict subtypes.

Materials and methods
Patient cohort

Approximately 2,500 patients registered between 2007–2020 at a tertiary cancer care institute were 
screened after clearance from the Institutional Ethics Committee. Cases with preoperative MRI in digital 
imaging and communications in medicine (DICOM) format were selected for the study. Clinical information 
obtained from electronic medical records. Clinical parameters assessed were age, sex, clinical features like 
seizures, gait ataxia, and cranial nerve palsy. Cases with histopathological diagnosis of ependymoma, 
medulloblastoma, and pilocytic astrocytoma were included in the study. Tumors for which biopsy is not 
routinely performed i.e., brainstem glioma and a few cases of pilocytic astrocytoma were also included, 
considering joint discussion of diagnosis by radiologist, radiation oncologist, and medical oncologist to be 
final. A total of 75 cases were selected. MRI semantic features were obtained for all 75 cases using available 
sequences. MRI semantic features included in this study are mentioned in Table 1.
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Table 1. MRI semantic features

MR sequence Intensity pattern Intensity pattern Intensity pattern
T1WI Hyperintense Isointense Hypointense
T2WI Hyperintense Isointense Hypointense
FLAIR Hyperintense Isointense Hypointense
Haemorrhage Present Absent -
Calcification Present Absent -
DWI Restriction No restriction -
Cyst Present Absent -
Necrosis Present Absent -
Tumor margins Well defined Ill defined -
Enhancement pattern Homogenous Heterogeneous -
Enhancement pattern Mild (< 25%) Moderate (25–75%) Severe (> 75%)
Tumor location Forebrain Brainstem Cerebellum and fourth ventricle
Laterality Right Left Midline
Oedema < Tumor volume = Tumor volume > Tumor volume
Midline shift Present Absent -
Hydrocephalus Present Absent -
MR: magnetic resonance; T1WI: T1 weighted image; FLAIR: fluid-attenuated inversion recovery; DWI: diffusion-weighted 
imaging; -: blank cell

MRI scans of these 75 cases (with brain tumors) and 19 other cases without any abnormality (i.e., 
without tumors) were also retrieved. Data was divided into training, validation, and test data sets and used 
to devise a deep learning-based algorithm to segment the paediatric brain tumor. These 94 cases were 
randomized and split into training data, 64 cases; test data, 21 cases, and validation data, 9 cases.

Radiology review

The MRI semantic features were detected by a radiologist with 12 years of experience in neuroimaging. In 
addition to routine sequences (T1, post-contrast T1, T2, FLAIR, and DWI), the gradient echo (GRE)/
susceptibility-weighted imaging (SWI) sequences were evaluated for the detection of blooming within 
tumors. Isointensity was labelled when the tumor signal had similar intensity as that of grey matter, hypo 
intensity, and hyperintensity when the tumor signal had low and high intensity as compared to grey matter 
respectively. High signals on isotropic (DWI) images with corresponding low apparent diffusion coefficient 
(ADC) values were labelled as restricted diffusion. Enhancement was quantified as mild, moderate, and 
severe as compared to the entire tumor volume. The enhancement was labelled as heterogeneous or 
homogeneous. Training data is used to train the deep neural network, and validation data is used to check 
the network performance and fine-tune the network. Test data was used to assess the final accuracy of the 
trained model. In order to make models generalize better and create variations of the data, data 
augmentation was performed. For each patient, MRI data of size 240 × 240 × 155 was provided with FLAIR, 
T1, postcontrast T1, T2, and DWI sequences. The tumor was annotated on all slices in the post-contrast 
phase. Annotations for tumor identification were done as shown in Figure 1. Separate annotations were 
also done for enhancing and non-enhancing components of the tumor as shown in Figure 2. An annotation 
to identify a tumor site was shows in Figure 3. The annotations were verified by the same radiologist. The 
deep learning model was trained to identify the tumor, location, and then segmentation to identify the 
enhancing and non-enhancing component of the tumor. The deep learning-based model predicted focal T1 
hyperintensity as a haemorrhage. For cyst and necrosis, the model classified cyst as structures that are T2 
hyperintense and T1 hypointense and shows significant suppression (> 75%) and necrosis to structures 
which did not show significant suppression (< 25% or no suppression) on FLAIR. Deep learning based-
model predicted features was showed in Table 2. For prediction of signal intensity on T1WI, T2WI, FLAIR, 
cyst, necrosis, diffusion restriction, tumor location, and enhancement, they followed similar identification 
criteria to an experienced radiologist.
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Figure 1. Figure shows annotation for tumor identification. A: anterior; P: posterior; R: right; L: left

Figure 2. Figure shows annotation for enhancing (green) and non-enhancing (yellow) components of the tumor. A: anterior; P: 
posterior; R: right; L: left
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Figure 3. Figure shows annotations for training the model to identify the site of the tumor. Blue: forebrain; pink: cerebellum; 
aqua: brainstem; A: anterior; P: posterior; R: right; L: left

Table 2. MR features used for deep learning-based model prediction

MR sequence Intensity pattern Intensity pattern Intensity pattern
T1WI Hyperintense Isointense Hypointense
T2WI Hyperintense Isointense Hypointense
FLAIR Hyperintense Isointense Hypointense
Haemorrhage Present Absent -
DWI Restriction No restriction -
Cyst Present Absent -
Necrosis Present Absent -
Enhancement pattern Homogenous Heterogeneous -
Enhancement pattern Mild (< 25%) Moderate (25–75%) Severe (> 75%)
Tumor location Forebrain Brainstem Cerebellum and fourth ventricle
-: blank cell

Development of deep learning algorithm and classification

The AI pipeline used two different models in a sequence. The first model performed lobe segmentation and 
the second model segmented tumors in the scan. The first model used a variation of three-dimensional (3D) 
U-NET [18] which takes a 256 × 256 × 24 voxel grid as input. Before feeding the data to the model, we 
clipped the voxel values from a range of 0 to 2,030. After this, the voxel values were standardized with a 
mean of 730 and a standard deviation (SD) of 361. The network gave three channels as output. These 
output labels were used to label each voxel of the 3D input as forebrain, brainstem, and cerebellum. The 
training and validation curve for the lobe segmentation network is shown in Figure 4. These predictions 
were later used to build the heuristic for post-processing of the results from the pipeline. The second model 
was a variation of 2D U-NET [18]. We processed the data at this stage in two steps. In the first step, scan 
slices were taken in the shape of 512 × 512 × 1 as input and predicted tumor segmentation. The second step 
took predictions of the first step and second channel of input along with the original slice and predicted two 
channels representing enhancing and non-enhancing components of the tumor. The training and validation 
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curve for stage 1 and stage 2 network for tumor segmentation is shown in Figure 5 and Figure 6 
respectively.

Figure 4. Training and validation curve for lobe segmentation network

Figure 5. Training and validation curve for stage 1 network for tumor segmentation

Before feeding the slices to the models, we clipped the values of the input from the 0 to 2,030 range and 
normalize the slice with a minimum of 162 and a maximum of 2,030. Dice loss [19] was used to train all the 
models. We trained the lobe segmentation model for 50 epochs and performed early stopping to avoid 
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Figure 6. Training and validation curves of stage 2 network for tumor segmentation

overfitting. For lobe segmentation, in the first stage, we trained the network for 35 epochs but the network 
failed to converge after that, so we stopped the training because the results were good enough to continue 
for the second stage network. The second stage network for tumor segmentation was trained for 40 epochs 
and it did not show any improvements after that.

Statistical analysis

Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) version 21. All 
statistics were 2-sided, and a value of P < 0.05 was considered statistically significant. Performance 
evaluation of AS was done based on the basis of Dice Score and Hausdorff95 distance. The dice score is 
essentially a measure of overlap between two samples. This measure ranges from 0 to 1, where a dice 
coefficient of 1 denotes perfect and complete overlap. The Dice score normalizes the number of true 
positives to the average size of the two segmented areas [20]. The Hausdorff distance is a measure of 
similarity with respect to their position in metrix space [21]. The Hausdorff95 distance is the 95th quartile 
of the maximum overall surface distance between the predicted surface and the ground-true surface. The 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of all 
deep learning-based predicted features were computed against radiologist-given MRI features. The 
predicted diagnosis by the model was compared with the radiologist’s diagnosis.

Results
MRI-based semantic features

Demographics revealed a median age of 8 years for ependymoma, 6 years for medulloblastoma, 9 years for 
pilocytic astrocytoma, and 7 years for brainstem glioma. Gait ataxia was a common presenting feature of 
brainstem glioma and medulloblastoma. Cranial nerve palsies were most commonly seen in patients with 
brainstem glioma.

Analysis showed 16 times more likelihood of tumors with necrosis to be ependymoma as opposed to 
tumors without necrosis. Tumors with haemorrhage were 4.9 times more likely to be ependymoma as 
opposed to tumors without haemorrhage. Tumors with diffusion restriction were 56.9 times more likely to 
be medulloblastoma as opposed to tumors without restricted diffusion on DWI. Tumors with cystic 
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components were 25.3 times more likely to be medulloblastoma as opposed to tumors with no cystic 
components. Tumors without haemorrhage were 13.8 times more likely to be pilocytic astrocytoma as 
opposed to tumors with haemorrhage.

Deep learning based AS model

For this part, a total of 94 cases (75 with tumors and 19 normal brain MRI scans) were included.

For each patient, MRI data of size 240 × 240 × 155 was used. We trained the model using 64 training 
cases, validated on 9, and tested on 21 cases. Out of 21 test cases (18 cases had tumors and 3 were normal), 
the AI-based model could identify tumors in 16 cases, and 2 cases were missed by the AI model. False 
positive cases were nil. The model didn’t predict any abnormality in normal scans or in normal slices in 
abnormal scans. Accuracy of detection of abnormality i.e., tumors in our trained mode was 0.90 i.e., 90%. 
The prediction label of a trained model is shown in Figure 7. The segmentation results for the prediction of 
tumor i.e., both enhancing and non-enhancing components were analyzed by Dice score and Hausdorff95 
distance and mentioned in Table 3.

Figure 7. Target and actual prediction labels in a case of fourth ventricle brain tumor. Figure shows prediction label of the 
trained model

Table 3. Dice scores and Hausdorff95 distance of WT, ET, and NET for all datasets

Dice score Hausdorff95 distanceDataset Evaluation parameters
WT ET NET WT ET NET

Mean 0.857 0.797 0.752 1.507 2.987 3.639
SD 0.234 0.247 0.289 1.014 4.197 3.825
25th quartile 0.870 0.751 0.693 0.870 1.000 1.000

Training data (64)

75th quartile 0.952 0.957 0.985 1.560 3.000 4.030
Mean 0.712 0.507 0.437 4.328 8.475 8.502
SD 0.136 0.285 0.215 3.181 6.862 4.596
25th quartile 0.593 0.351 0.354 0.593 2.236 5.029

Validation data (9)

75th quartile 0.804 0.747 0.599 7.039 13.140 11.720
Mean 0.606 0.586 0.312 8.130 3.412 20.430
SD 0.342 0.370 0.384 17.500 3.145 21.260
25th quartile 0.573 0.198 2.95e–8 0.573 1.207 6.140

Test data (21)

75th quartile 0.834 0.831 0.500 5.024 4.802 20.700
The numbers in parentheses are indicates number of examples used for training, validation and test

After training the model and segmentation, as mentioned in the materials and methodology section, all 
cases with tumors were subjected to heuristic rules over the deep learning-based segmentation model and 
features such as tumor signal intensity on T1WI, T2WI, FLAIR, enhancement pattern, cyst, necrosis, 
haemorrhage, and diffusion restriction were predicted for all cases. The diagnostic accuracy of feature 
prediction by the deep learning-based model as opposed to the radiologist detected MRI findings is shown 
in Table 4.
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Table 4. Diagnostic accuracy of feature prediction by deep learning based model as opposed to radiologist detected MRI 
findings

Predicted feature n = 70 Sensitivity Specificity PPV NPV Accuracy
Hypointensity on T1WI 86.36% 0 93.44% 0 81.43%
Isointensity on T2WI 63.16% 84.62% 94.74% 34.37% 67.14%
Hyperintensity on FLAIR 85.71% 61.9% 60% 86.67% 71.4%
Haemorrhage 54.17% 78.26% 56.62% 76.6% 70%
Cyst 79.07% 59.26% 75.56% 64% 71.4%
Necrosis 52.94% 83.02% 50% 84.62% 75.71%
Enhancement heterogeneity 81.36% 72.73% 94.12% 42.11% 80%

Mild 50% 92.86% 82.35% 73.58% 75.71%
Moderate 61.1% 71.15% 42.31% 84.09% 68.57%

Enhancement quantification

Severe 83.3% 84.78% 74.07% 90.70% 84.29%
Diffusion restriction 53.33% 96.77% 94.12% 68.16% 75.4%
n: total number of abnormal cases which were picked by AS model and on which the mentioned features are predicted by AS 
model

Deep learning-based prediction of tumor type

The deep learning-based model classified the tumors into one of the four types according to the predicted 
anatomical site and predicted features. The sensitivity, specificity, PPV, NPV, and accuracy of the deep 
learning-based model given diagnosis as well as diagnosis given by imaging findings by experienced 
radiologist were computed against the final diagnosis of all cases and mentioned in Table 5. The inter-rater 
reliability between predicted diagnosis by model and diagnosis by the radiologist was calculated by Kappa’s 
agreement coefficient. The measure of Agreement-Kappa value was 0.695 for prediction of diagnosis by 
deep learning model as compared to the diagnosis given on imaging by an experienced radiologist. 
Statistically, it shows substantial agreement (0.61–0.80).

Table 5. Diagnostic accuracy of deep learning-based model predicted diagnosis and experienced radiologist gave a diagnosis

Tumor group Sensitivity Specificity PPV NPV Accuracy
Predicted by model 88.24% 96.23% 88.24% 96.24% 94.29%Brainstem glioma
Diagnosis by radiologist 100% 98.11% 94.44% 100% 98.57%
Predicted by model 64.29% 96.43% 81.82% 91.53% 90%Ependymoma
Diagnosis by radiologist 92.86% 96.43% 86.67% 98.17% 98.18%
Predicted by model 61.9% 100% 100% 85.96% 88.57%Medulloblastoma
Diagnosis by radiologist 95.24% 100% 100% 98% 98.57%
Predicted by model 100% 78.85% 62.07% 100% 84.29%Pilocytic astrocytoma
Diagnosis by radiologist 88% 97.62% 94.12% 95.35% 95%

Discussion
AI has recently made substantial strides in perception (the interpretation of sensory information), allowing 
machines to better represent and interpret complex data. Deep learning is a subset of machine learning that 
is based on a neural network structure inspired by the human brain. These neural networks learn 
discriminative features from data automatically, giving them the ability to approximate very complex 
nonlinear relationships. Recent methods based on deep convolutional neural networks have outperformed 
all traditional machine learning methods in various domains like medical image segmentation, image 
classification, object detection, and tracking. In the first part of the present study, clinical features and MRI 
based semantic features were evaluated. A total of 75 cases were included. In the second part of the study 
deep learning based algorithm was developed and tested to detect the abnormality in the MRI scan and 
segmentation into enhancing and non-enhancing components and tumor subtypes. A total of 94 cases were 
included in this part of the study.
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The median age at diagnosis of brainstem glioma was 7 years and more common in males. A study by 
Hong et al. [6] revealed similar demographic features [22]. A study by Hong et al. [6] had 84% brainstem 
glioma cases with cranial nerve palsy involvement and 67% brainstem glioma cases with cerebellar ataxia 
as compared to 83.3% brainstem glioma cases with cranial nerve involvement and 94.4 % brainstem 
glioma cases with gait ataxia in the present study. In the present study, pilocytic astrocytoma was the 
second most common of these four tumors to have cranial nerve involvement (47.4%) and 
medulloblastoma was the second most common of these four tumors to have gait ataxia (55.6%). 
Univariate analysis of all tumor groups for clinical features is mentioned in the following Table 6. P-values 
of combined univariate analysis of all tumor groups for MRI semantic features are mentioned in Table 7.

Table 6. A P-value of combined univariate analysis of all tumor groups for clinical features

Clinical features Ependymoma, 
n = 14

Medulloblastoma, 
n = 21

Pilocytic astrocytoma, 
n = 19

Brainstem glioma, 
n = 21

P-value

Yes 0 1 (5.6%) 4 (21.1%) 2 (11.1%)Seizures
No 11 (100.0%) 17 (94.4%) 15 (78.9%) 16 (88.9%)

0.264

Yes 3 (27.3%) 10 (55.6%) 5 (26.3%) 17 (94.4%)Gait ataxia
No 8 (72.7%) 8 (44.4%) 14 (73.7%) 1 (5.6%)

< 0.001

Yes 3 (27.3%) 6 (33.3%) 6 (33.3%) 15 (83.3%)Cranial nerve 
palsy No 8 (72.7%) 12 (66.7%) 10 (52.6%) 3 (16.7%)

0.006

The brackets in the table show the percentage of statistics

The median age at diagnosis of ependymoma was found to be 8 years and more common in males. The 
mean age of ependymoma was 4.5 years according to a study by Duc et al. [23]. Ependymoma were mostly 
hypointense on T1WI, isointense on T2WI, and hyperintense on FLAIR. Infratentorial location was seen in 
57.1% of cases. Almost all tumors (92.9%) showed heterogeneous enhancement. Hemorrhage was present 
in 64.3% of cases, higher than the rest of the tumor groups. Calcification was present in 35.7% of cases, 
relatively more common than in other groups. Diffusion restriction was present in 23.1 % of cases. Necrosis 
was seen in 71.4% of cases, higher than other groups. Cystic changes were seen in 71.4% of cases. 
Hydrocephalus was seen in 64.3 % of cases at presentation. A study by Mangalore et al. [24] with 41 cases 
had hydrocephalus in 34% of cases, calcification in 78% of cases and heterogeneous enhancement in all 
cases. However, the study by Mangalore et al. [24] mainly considered computerized tomography (CT) 
imaging findings as only 8 cases had baseline MRI imaging [24]. Multivariate analysis showed 16 times 
more odds of a tumor with necrosis having a final diagnosis of ependymoma than tumors without necrosis. 
It was also found that tumors with hemorrhage had 4.9 times more odds to have a final diagnosis of 
ependymoma than tumors without hemorrhage. Median age at diagnosis of medulloblastoma was found to 
be 6 years and more common in males. Median age of medulloblastoma was 9 years according to a study by 
Arora et al. [25]. Medulloblastoma was hypointense on T1WI and mostly isointense on T2WI and FLAIR. 
Midline tumor seen in 90.5 % of cases. Heterogeneous enhancement was seen in 76.2% of cases, whereas 
23.8% cases showed homogeneous enhancement. Hemorrhage was present in 38.1% of cases, less than 
ependymoma. Calcification was seen in only 4.8% i.e., in only one case. Restricted diffusion was observed in 
94.1% of cases. Cystic changes were seen in 90.5% of cases. All cases had hydrocephalus at presentation. 
Multivariate analysis showed 56.9 times more odds of a tumor showing restricted diffusion on DWI to have 
a final diagnosis of medulloblastoma than tumors not showing diffusion restriction. It was also observed 
that tumors with cystic changes had 25.3 times more odds to have a final diagnosis of medulloblastoma 
than tumors without cystic changes. Comparative analysis of a few MRI findings of medulloblastoma in the 
present study with two previously published studies is given in following Table 8 [26, 27].

The median age at diagnosis of pilocytic astrocytoma was found to be 9 years and more common in 
males. The median age of pilocytic astrocytoma was 10 years according to a study by Arora et al. [25]. 
Pilocytic astrocytoma was mostly hypointense on T1WI, isointense on T2WI, and hyperintense on FLAIR. 
Tumor was seen to be localized in forebrain in 68.4% of cases whereas 31.6% of cases were infratentorial. 
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Table 7. P-value of combined univariate analysis of all tumors groups for MRI semantic features

MRI features Ependy-
moma, n = 14

Medullo-
Blastoma, n = 21

Pilocytic 
astrocytoma, n = 19

Brainstem 
glioma, n = 21

P-value

Hypointense 12 (85.7%) 21 (100.0%) 17 (89.5%) 20 (95.2%)T1WI
Isointense 2 (14.3%) 0 2 (10.5%) 1 (4.8%)

0.336

Hyperintense 2 (14.3%) 0 6 (31.6%) 6 (28.6%)
Hypointense 1 (7.1%) 0 0 0

T2WI

Isointense 11 (78.6%) 21 (100.0%) 13 (68.4%) 15 (71.4%)

0.047

Hyperintense 11 (78.6%) 1 (4.8%) 12 (63.2%) 6 (28.6%)FLAIR
Isointense 3 (21.4%) 20 (95.2%) 7 (36.8%) 15 (71.4%)

< 0.001

Homogenous 1 (7.1%) 5 (23.8%) 5 (26.3%) 0Enhancement 
pattern Heterogeneous 13 (92.9%) 16 (76.2%) 14 (73.7%) 21 (100.0%)

0.053

Mild < 25% 3 (21.4%) 6 (28.6%) 5 (26.3%) 17 (81.0%)
Moderate 25–75% 5 (35.7%) 5 (23.8%) 6 (31.6%) 4 (19.0%)

Enhancement 
pattern

Severe > 75% 6 (42.9%) 10 (47.6%) 8 (42.1%) 0

0.001

No 5 (35.7%) 13 (61.9%) 18 (94.7%) 16 (76.2%)Haemorrhage
Yes 9 (64.3%) 8 (38.1%) 1 (5.3%) 5 (23.8%)

0.003

No 9 (64.3%) 20 (95.2%) 19 (100.0%) 21 (100.0%)Calcification
Yes 5 (35.7%) 1 (4.8%) 0 0

< 0.001

No restriction 10 (76.9%) 1 (5.9%) 13 (76.5%) 14 (70%)DWI
Restriction 3 (23.1%) 16 (94.1%) 4 (23.5%) 6 (30%)

< 0.001

No 4 (28.6%) 2 (9.5%) 5 (26.3%) 20 (95.2%)Cyst
Yes 10 (71.4%) 19 (90.5%) 14 (73.7%) 1 (4.8%)

< 0.001

No 4 (28.6%) 20 (95.2%) 19 (100.0%) 13 (61.9%)Necrosis
Yes 10 (71.4%) 1 (4.8%) 0 8 (38.1%)

< 0.001

Well defined 6 (42.9%) 19 (90.5%) 15 (78.9%) 3 (14.3%)Tumor margins
Ill defined 8 (57.1%) 2 (9.5%) 4 (21.1%) 18 (85.7%)

< 0.001

Forebrain 6 (42.9%) 0 13 (68.4%) 0
Brainstem 0 0 0 21 (100.0%)

Tumor location

Cerebellum and fourth 
ventricle

8 (57.1%) 21 (100.0%) 6 (31.6%) 0

< 0.001

Right 2 (14.3%) 1 (4.8%) 4 (21.1%) 3 (14.3%)
Left 4 (28.6%) 1 (4.8%) 4 (21.1%) 2 (9.5%)

Laterality

Midline 8 (57.1%) 19 (90.5%) 11 (57.9%) 16 (76.2%)

0.225

No 4 (28.6%) 15 (71.4%) 7 (36.8%) 5 (23.8%)
Less than tumor 
volume

9 (64.3%) 6 (28.6%) 10 (52.6%) 16 (76.2%)

Equal to tumor volume 0 0 1 (5.3%) 0

Oedema

More than tumor 
volume

1 (7.1%) 0 1 (5.3%) 0

0.048

No 12 (85.7%) 21 (100.0%) 17 (89.5%) 21 (100.0%)Midline shift
Yes 2 (14.3%) 0 2 (10.5%) 0

0.133

Absent 5 (35.7%) 0 8 (42.1%) 12 (57.1%)Hydrocephalus
Present 9 (64.3%) 21 (100.0%) 11 (57.9%) 9 (42.9%)

0.001

Heterogeneous enhancement was seen in 73.7% cases, whereas 26.3% cases showed homogeneous 
enhancement. Hemorrhage was present in 5.1%, less than ependymoma and medulloblastoma. Calcification 
was not detected in any case. Restricted diffusion observed in 23.5% of cases. Cystic changes were seen in 
73.7% cases. Around 57.9% of cases had hydrocephalus at presentation. Multivariate analysis showed 13.8 
times less odds of a tumor with hemorrhage to have a final diagnosis of pilocytic astrocytoma than tumors 
without hemorrhage.
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Table 8. Comparative analysis of MRI sematic features of medulloblastoma in the present study with previous studies by 
Hussain et al. [26] and Yeom et al. [27]

Medulloblastoma Present study n = 21 Study by Hussain et al. [26] n = 29 Study by Yeom et al. [27] n = 38
Midline 90.5% 89.7% 82%Tumor 

location Others i.e., 
lateral

9.5% 10.3% 18%

Well defined 90.5% 51.7% 82%Tumor 
margins Ill defined 9.5% 48.3% 18%

Homogeneous 23.8% 24.1%Enhancement
Heterogeneous 76.2% 75.9%

-

Cyst 90.5% 69% ≤ 1 cm (55%)

> 1 cm (24%)
Necrosis 4.8% 20.7% -
Peritumoral oedema 28.6% - 50%
-: blank cell

Brainstem glioma was mostly hypointense on T1WI and isointense on T2WI and FLAIR. Heterogeneous 
enhancement was seen in all the cases. Haemorrhage was present in 23.8% of cases, less than ependymoma 
and medulloblastoma. Restricted diffusion was observed in 30% of cases. Necrosis was seen in 38.1% of 
cases, however, cystic changes were rarely seen (only in one case). Around 42.9% of cases had 
hydrocephalus at presentation. A multivariate analysis of a few significant univariate MRI features of 
ependymoma, medulloblastoma, and pilocytic astrocytoma is shown in Table 9.

Table 9. Multivariate analysis of significant univariate MRI features

MRI features P-value Odds ratio
Necrosis

Present

0.001 16.1Ependymoma

Haemorrhage
Present

0.024 4.9

Diffusion restriction
Present

< 0.001 56.9Medulloblastoma

Cyst

Present

0.006 25.3

Pilocytic astrocytoma Haemorrhage

Absent

0.015 13.8

Imaging findings were congruent with published literature by Poretti et al. [28], Plaza et al. [29], and 
Camacho et al. [30]. Survival analysis was not statistically significant in the present study, however findings 
concurrent with literature i.e., best for pilocytic astrocytoma and worst for brainstem glioma. A deep 
learning-based algorithm was developed and tested to detect the abnormality in the MRI scan and 
segmentation into enhancing and non-enhancing components. The sensitivity and specificity of this model 
for detecting abnormalities are 0.88 and 1 respectively (accuracy is 0.9 i.e., 90%). For the classification of 
paediatric brain tumors, this model showed the highest accuracy in the detection of brainstem glioma i.e., 
94.2%. The accuracy of detection of pilocytic astrocytoma by this model was least i.e., 84.29%. The accuracy 
of detection of ependymoma and medulloblastoma was 90% and 88.57% respectively. Quon et al. [31], 
developed a deep learning model in a study with 617 children, which had overall classification accuracy of 
92% and sensitivity of 0.96 and specificity of 1 for tumor detection [31]. However, it was a multi-
institutional study. Their model was most accurate at predicting diffuse midline glioma followed by 
pilocytic astrocytoma and medulloblastoma [31]. Ependymoma prediction was the least accurate [31]. They 
considered the interpretation by four radiologists for comparison, out of which the model showed greater 
accuracy than two radiologists [31]. Another multi-institutional study of the deep learning-based model 
with 288 patients for tumor classification by Zhou et al. [32] showed an accuracy of 85% for 
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medulloblastoma versus non-medulloblastoma, the accuracy of 80% for ependymoma versus non-
ependymoma, and an accuracy of 88% for pilocytic astrocytoma versus non-pilocytic astrocytoma [32] as 
shown in Table 10. It had significantly higher accuracy than the average qualitative expert MR imaging 
review [32].

Table 10. Comparison of diagnostic accuracy of deep learning-based approach in the present study with a study by Zhou 
et al. [32]

Tumor group Present study (n = 94) Study by Zhou et al. [32] (n = 288)
Brainstem glioma 94.2% Not included
Medulloblastoma 88.57% 85%
Ependymoma 90% 80%
Pilocytic astrocytoma 84.29% 88%

Our study shows that the prediction of tumor types by experienced radiologists was more accurate 
than deep learning model prediction. This primarily is related to the fact that a smaller number of cases 
were included in this study for training and validation purposes. The accuracy of the model can be 
increased further in a greater number of cases. Nevertheless, the model may form the basis of molecular 
genetics prediction by deep learning of the most common paediatric brain tumors.

In conclusion AI has the potential in localizing paediatric brain tumors and feature detection as well as 
diagnosis. The proposed deep learning-based model had very high accuracy and specificity for predicting 
the individual MR characteristics and close to 80% accuracy in predicting tumor type. This model can serve 
as a potential tool to aid to make timely and accurate diagnosis for radiologist not specialized/trained in 
neuroradiology and neuro-oncology. Nevertheless, the model may also form the basis of a multi-omics 
(clinical radiological and pathological) model for predicting molecular genetics by deep learning/machine 
learning.

Abbreviations
AI: artificial intelligence

AS: automated segmentation

DWI: diffusion-weighted imaging

ET: enhancing tumor

FLAIR: fluid-attenuated inversion recovery

MR: magnetic resonance

MRI: magnetic resonance imaging

NET: non-enhancing tumor

SD: standard deviation

T1WI: T1 weighted image

WT: whole tumor

Declarations
Acknowledgments

We acknowledge our institute Tata Memorial Hospital, for providing us with the means and resources to be 
able to write this article and access the images.

Author contributions

A Mahajan: Conceptualization, Project administration, Investigation, Methodology, Supervision, Validation, 
Writing—review & editing. MB: Conceptualization, Data curation, Formal analysis, Investigation, 



Explor Target Antitumor Ther. 2023;4:669–84 | https://doi.org/10.37349/etat.2023.00159 Page 682

Writing—review & editing, Writing—original draft. BK: Supervision. A Mlv: Data curation, Formal analysis, 
Software. MB, UA, BK, A Mlv, AG, A Sahu, AC, V Pawar, V Punia, SE, A Sahay, TG, GC, PS and A Moiyadi: Data 
curation, Investigation. All authors read and approved the submitted version.

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical approval

The study was conducted after clearance from Institutional Ethics Committee [3296] and conducted in 
accordance with the guidelines of the Indian Council of Medical Research 2017. The research of this article 
meets the requirements of the Declaration of Helsinki.

Consent to participate

Informed consent to participate in the study was obtained from all participants.

Consent to publication

Informed consent to publication was obtained from relevant participants.

Availability of data and materials

The datasets generated in this study are available on request to the corresponding author, Abhishek 
Mahajan (drabhishek.mahajan@yahoo.in; abhiradiology@gmail.com).

Funding

Not applicable.

Copyright

© The Author(s) 2023.

References
Madhavan R, Kannabiran BP, Nithya AM, Kani J, Balasubramaniam P, Shanmugakumar S. Pediatric 
brain tumors: an analysis of 5 years of data from a tertiary cancer care center, India. Indian J Cancer. 
2016;53:562–5.

1.     

AlRayahi J, Zapotocky M, Ramaswamy V, Hanagandi P, Branson H, Mubarak W, et al. Pediatric brain 
tumor genetics: what radiologists need to know. Radiographics. 2018;38:2102–22.

2.     

Lacayo A, Farmer PM. Brain tumors in children: a review. Ann Clin Lab Sci. 1991;21:26–35.3.     
Panigrahy A, Blüml S. Neuroimaging of pediatric brain tumors: from basic to advanced magnetic 
resonance imaging (MRI). J Child Neurol. 2009;24:1343–65.

4.     

Packer RJ. Childhood brain tumors: accomplishments and ongoing challenges. J Child Neurol. 
2008;23:1122–7.

5.     

Hong S, Kim IH, Wang KC. Outcome and prognostic factors of childhood diffuse brainstem glioma. 
Cancer Res Treat. 2005;37:109–13.

6.     

Ali ZA, Habib RM, Fotoh SA. Role of magnetic resonance imaging in diagnosis of pediatric posterior 
fossa tumors. Menoufia Medical J. 2020;33:326–31.

7.     

Mahajan A, Vaidya T, Gupta A, Rane S, Gupta S. Artificial intelligence in healthcare in developing 
nations: the beginning of a transformative journey. Cancer Res Stat Treat. 2019;2:182.

8.     

Bothra M, Mahajan A. Mining artificial intelligence in oncology: Tata Memorial Hospital journey. 
Cancer Res Stat Treat. 2020;3:622–4.

9.     

Davatzikos C, Barnholtz-Sloan JS, Bakas S, Colen R, Mahajan A, Quintero CB, et al. AI-based prognostic 
imaging biomarkers for precision neuro-oncology: the ReSPOND consortium. Neuro Oncol. 
2020;22:886–8.

10.     

mailto:drabhishek.mahajan@yahoo.in
mailto:abhiradiology@gmail.com


Explor Target Antitumor Ther. 2023;4:669–84 | https://doi.org/10.37349/etat.2023.00159 Page 683

Cherian Kurian N, Sethi A, Reddy Konduru A, Mahajan A, Rane SU. A 2021 update on cancer image 
analytics with deep learning. WIREs Data Mining Knowl Discov. 2021;11:e1410.

11.     

Akbari H, Mohan S, Garcia JA, Kazerooni AF, Sako C, Bakas S, et al. Prediction of glioblastoma cellular 
infiltration and recurrence using machine learning and multi-parametric mri analysis: results from 
the multi-institutional respond consortium. Neuro-Oncology. 2021;23:vi132–3.

12.     

Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. Identifying the best machine learning 
algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in 
the BRATS challenge. arXiv: 1811.02629 [Preprint]. 2019 [cited 2019 Apr 23]. Available from: https:/
/doi.org/10.48550/arXiv.1811.02629

13.     

Baid U, Rane SU, Talbar S, Gupta S, Thakur MH, Moiyadi A, et al. Overall survival prediction in 
glioblastoma with radiomic features using machine learning. Front Comput Neurosci. 2020;14:61.

14.     

Baid U, Ghodasara S, Mohan S, Bilello M, Calabrese E, Colak E, et al. RSNA-ASNR-MICCAI BraTS 2021 
Benchmarkon brain tumor segmentation and radiogenomic classification. arXiv:2107.02314 
[Preprint]. 2021 [cited 2021 Sep 12]. Available from: https://doi.org/10.48550/arXiv.2107.02314

15.     

Mehta R, Filos A, Baid U, Sako C, McKinley R, Rebsamen M, et al. QU-BraTS: MICCAI BraTS 2020 
challenge on quantifying uncertainty in brain tumor segmentation--analysis of ranking metrics and 
benchmarking results. arXiv:2112.10074 [Preprint]. 2022 [cited 2022 Aug 23]. Available from: https:/
/doi.org/10.48550/arXiv.2112.10074

16.     

Baid U, Talbar S, Rane S, Gupta S, Thakur MH, Moiyadi A, et al. A novel approach for fully automatic 
intra-tumor segmentation with 3D U-Net architecture for gliomas. Front Comput Neurosci. 
2020;14:10.

17.     

Rudie JD, Weiss DA, Colby JB, Rauschecker AM, Laguna B, Braunstein S, et al. Three-dimensional U-Net 
convolutional neural network for detection and segmentation of intracranial metastases. Radiol Artif 
Intell. 2021;3:e200204.

18.     

Zhang J, Shen X, Zhuo T, Zhou H. Brain tumor segmentation based on refined fully convolutional 
neural networks with a hierarchical dice loss. arXiv:1712.09093 [Preprint]. 2018 [cited 2018 Feb 13]. 
Available from: https://doi.org/10.48550/arXiv.1712.09093

19.     

Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised dice overlap as a deep 
learning loss function for highly unbalanced segmentations. In: Cardoso MJ, Arbel T, Carneiro G, 
Syeda-Mahmood T, Tavares JMRS, Moradi M, et al., editors. Deep learning in medical image analysis 
and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2017. 
pp. 240–8.

20.     

Piramuthu S. The Hausdorff distance measure for feature selection in learning applications. In: 
Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-
32. Abstracts and CD-ROM of full papers. 32nd Annual Hawaii International Conference on System 
Sciences; 1999 Jan 5–8; Maui, HI, USA. IEEE; 2002.

21.     

Zimmerman RA. Neuroimaging of pediatric brain stem diseases other than brain stem glioma. Pediatr 
Neurosurg. 1996;25:83–92.

22.     

Duc NM, Huy HQ. Magnetic resonance imaging features of common posterior fossa brain tumors in 
children: a preliminary vietnamese study. Open Access Maced J Med Sci. 2019;7:2413–8.

23.     

Mangalore S, Aryan S, Prasad C, Santosh V. Imaging characteristics of supratentorial ependymomas: 
study on a large single institutional cohort with histopathological correlation. Asian J Neurosurg. 
2015;10:276–81.

24.     

Arora RS, Alston RD, Eden TO, Estlin EJ, Moran A, Birch JM. Age–incidence patterns of primary CNS 
tumors in children, adolescents, and adults in England. Neuro-oncology. 2009;11:403–13.

25.     

Hussain IZ, Mohd Zaki F, Mukari SA, Md Pauzi SH, Loh CK, Alias H. Correlation between MRI 
characteristics of medulloblastoma with histopathological subtypes and 2-year survival. Indian J 
Radiol Imaging. 2020;30:46–51.

26.     

https://doi.org/10.48550/arXiv.1811.02629
https://doi.org/10.48550/arXiv.1811.02629
https://doi.org/10.48550/arXiv.2107.02314
https://doi.org/10.48550/arXiv.2112.10074
https://doi.org/10.48550/arXiv.2112.10074
https://doi.org/10.48550/arXiv.1712.09093


Explor Target Antitumor Ther. 2023;4:669–84 | https://doi.org/10.37349/etat.2023.00159 Page 684

Yeom KW, Mobley BC, Lober RM, Andre JB, Partap S, Vogel H, et al. Distinctive MRI features of 
pediatric medulloblastoma subtypes. AJR Am J Roentgenol. 2013;200:895–903.

27.     

Poretti A, Meoded A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review 
of the literature. J Magn Reson Imaging. 2012;35:32–47.

28.     

Plaza MJ, Borja MJ, Altman N, Saigal G. Conventional and advanced MRI features of pediatric 
intracranial tumors: posterior fossa and suprasellar tumors. AJR Am J Roentgenol. 2013;200:1115–24.

29.     

Camacho AC, Chaljub G, Uribe T, Patterson JT, Swischuk LE. MR imaging of pediatric posterior fossa 
tumors. Contemp Diagn Radiol. 2007;30:1–6.

30.     

Quon JL, Bala W, Chen LC, Wright J, Kim LH, Han M, et al. Deep learning for pediatric posterior fossa 
tumor detection and classification: a multi-institutional study. AJNR Am J Neuroradiol. 
2020;41:1718–25.

31.     

Zhou H, Hu R, Tang O, Hu C, Tang L, Chang K, et al. Automatic machine learning to differentiate 
pediatric posterior fossa tumors on routine MR imaging. AJNR Am J Neuroradiol. 2020;41:1279–85.

32.     


	Abstract
	Keywords
	Introduction
	Materials and methods
	Patient cohort
	Radiology review
	Development of deep learning algorithm and classification
	Statistical analysis

	Results
	MRI-based semantic features
	Deep learning based AS model
	Deep learning-based prediction of tumor type

	Discussion
	Abbreviations
	Declarations
	Acknowledgments
	Author contributions
	Conflicts of interest
	Ethical approval
	Consent to participate
	Consent to publication
	Availability of data and materials
	Funding
	Copyright

	References

