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Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with 
significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers 
(CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour 
location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular 
invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain 
insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to 
define tumour characteristics for staging and restaging patients with RC. During the last decades, RC 
evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The 
aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of 
staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. 
Moreover, future challenges and limitations of these tools that need to be solved to favour the transition 
from academic research to the clinical setting will be discussed.
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Introduction
Colorectal cancer (CRC) represents the third most frequent malignant tumour worldwide in men and 
women, with rectal cancer (RC) accounting for approximately one-third [1, 2]. Of note, an increasing rate of 
RC has been demonstrated in patients younger than 50 years [3]. At present, endoscopy is considered the 
gold standard for RC diagnosis. At the same time, diagnostic imaging plays a pivotal role in evaluating 
several factors capable of influencing prognosis and therapeutic management, such as local tumour extent 
(T staging), as well as the presence of lymph nodes (LNs), and presence of metastases (N and M staging) [4].
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Endoscopic rectal ultrasound (ERUS) helps diagnose or guide therapy in the early stages of tumours, 
but it does not add value to locally advanced RC (LARC). Computed tomography (CT) has a fundamental 
role to assess the presence of metastases, even if it is not capable of a valuable local tumour assessment 
because of its limited soft tissue resolution [2]. For RC evaluation, magnetic resonance imaging (MRI) is 
considered the most valuable imaging modality for primary staging and restaging after chemoradiation 
(CRT) and radiotherapy (RT), guiding any subsequent medical decision [5–8]. In particular, high-resolution 
MRI (HR-MRI) has been demonstrated to be a game changer in evaluating mucin content, invasion depth, 
LNs, metastases, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia 
(MRF) [7, 9–11]. However, conventional HR-MRI has shown some limitations in accurately guiding 
treatment plans’ development, driving the research towards identifying and validating novel strategies to 
further increase the value of diagnostic imaging. Artificial intelligence (AI) has been successfully applied in 
many medical imaging settings, demonstrating that it can automatically recognise complex patterns and 
provide a quantitative evaluation of medical images [12–16]. In this setting, radiomics has been frequently 
coupled with AI, and in particular, machine learning (ML) approaches for oncologic imaging, in order to 
establish models that may improve the accuracy of diagnosis, prognosis, and prediction by extracting and 
analysing imaging data [17–19]. This review will summarise many critical clinical applications of 
MRI-based radiomics and AI in the field of RC, including staging, prediction of high-risk factors, genotyping, 
response to therapy, recurrence, metastases, and prognosis.

Fundamentals of AI and radiomics
AI is a recently developed branch of computer science that studies and develops systems endowed with the 
intellectual processes characteristic of human beings [20]. Since it can automatically extract data from 
diagnostic imaging, make predictions, and mine clinical and radiological information, AI has gained much 
interest in imaging analysis applied to radiology [16, 18, 21].

ML is a field of AI that can develop mathematical algorithms capable of automatically learning different 
types of tasks with minimal human intervention [22]. In ML, large datasets previously labeled by scientists 
are used to train AI algorithms. Accurate performances necessarily need a large amount and significant data 
variability of the training set. Afterwards, human operators expose algorithms to different unlabeled 
datasets from multiple sources through a validation process to test and eventually calibrate the 
algorithm’s output [20].

In unsupervised AI, the algorithm automatically learns from raw data, grouping them into diverse 
classes according to the characteristics of the training set [23].

ML includes convolutional neural networks (CNNs), neural networks, and deep learning (DL); these 
last two are the most appreciate tools for creating AI systems for diagnostic imaging [22].

Radiomics is another emerging research in the AI field that involves analysing quantitative data from 
diagnostic images through automated or semi-automated systems that can be combined with ML 
techniques to identify new features beyond those obtained by radiologists [24].

Furthermore, the use of radiomics features variation in different imaging techniques throughout the 
treatment, called “delta radiomics”, has shown promising results in the literature for several 
oncological purposes [25–29].

Applications
Radiomics and AI-based systems may improve RC diagnosis, characterisation, prognosis, and treatment, 
playing a role in tumour segmentation, evaluating histologic aggressiveness risk, or identifying genetic 
signatures that can aid the diagnosis and prognosis of RC [13, 14]. Furthermore, AI may be a valuable tool 
to help physicians in developing tailoring RC treatment. AI systems may also create three-dimensional (3D) 
models that could enhance tumour visualisation during surgery, interventional procedures, or during 
image-guided treatments, providing a precise lesion evaluation and its relationship with adjacent 
structures to eventually optimise RT treatments [13, 14, 30, 31].



Explor Target Antitumor Ther. 2023;4:406–21 | https://doi.org/10.37349/etat.2023.00142 Page 408

In the following sections, recently introduced radiomics and AI approaches explored to increase the 
value of MRI in managing RC patients will be discussed (Figure 1 and Table 1).

Figure 1. Graphic representation of radiomics and AI main applications in the setting of RC. LVI: lymphatic vascular infiltration; 
PNI: perineural invasion; TB: tumour budding

Table 1. Main studies on radiomics/AI imaging applications for staging, predicting treatment response, genotyping, and 
assessing high-risk pathological features and prognosis in the setting of RC management

References Aim of the study Study design Sample 
size

Main outcome

[32] To predict different stages of RC using 
texture analysis based on 
diffusion-weighted imaging (DWI) images 
and apparent diffusion coefficient (ADC) 
maps.

Retrospective, 
single center

115 Texture features extracted from DWI 
images and ADC maps are useful clues for 
predicting pathological T and N stages in 
RC.

[33] To predict tumour pathological features of 
RC through a T2-weighted image (T2WI) 
radiomic-based model.

Retrospective, 
single center

152 T2WI-based radiomics model could serve 
as pretreatment biomarkers in predicting 
pathological features of RC.

[34] To predict the pathological nodal stage of 
LARC by a radiomic method that uses 
collective features of multiple LNs in MRI 
images before and after neoadjuvant CRT 
(nCRT).

Retrospective, 
single center

215 Collective features from all rectal LNs 
perform better than tumour features for the 
prediction of the nodal stage of LARC.

[35] To evaluate the predictive performance of 
radiomics nomogram for the diagnosis of 
synchronous liver metastases (SLM) in RC 
patients.

Retrospective, 
single center

169 The nomogram amalgamating the 
radiomics signature and clinical risk factors 
serve as an effective quantitative approach 
to predict the SLM of primary RC.

[36] To investigate the value of T2WI 
radiomic-based MRI in predicting 
preoperative synchronous distant 
metastases (SDM) in patients with RC.

Retrospective, 
single center

177 The proposed clinical-radiomics combined 
model could be utilized as a noninvasive 
biomarker for identifying patients at high 
risk of SDM.

[37] To evaluate radiomics models based on 
T2WI and DWI MRI for predicting 
pathological complete response (pCR) after 
nCRT in LARC and compare their 
performance with visual assessment by 
radiologists.

Retrospective, 
single center

898 MRI-based radiomics model showed better 
classification performance than 
experienced radiologists for diagnosing 
pCR in patients with LARC after nCRT.

[38] To interrogate the mesorectal fat using MRI 
radiomics feature analysis in order to predict 
clinical outcomes in patients with LARC.

Retrospective, 
single center

236 Radiomics features of mesorectal fat can 
predict pCR and local and distant 
recurrence, as well as post-treatment T 
and N categories.
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References Aim of the study Study design Sample 
size

Main outcome

[39] To develop and validate an AI 
radiopathomics integrated model to predict 
pCR in patients with LARC using 
pretreatment MRI and haematoxylin and 
eosin (H&E)-stained biopsy slides.

Retrospective, 
multi-center

303 RAdioPathomics Integrated preDiction 
System (RAPIDS) was able to predict pCR 
to nCRT based on pretreatment 
radiopathomics images with high accuracy.

[40] To develop and validate a DL model that 
could preoperatively predict the 
microsatellite instability (MSI) status of RC 
based on MRI.

Retrospective, 
single center

491 DL based on T2WI HR-MRI showed a 
good predictive performance for MSI status 
in RC patients.

[41] To investigate whether DL-based 
segmentation is feasible in predicting 
Kirsten rat sarcoma viral oncogene homolog 
(KRAS)/neuroblastoma ras viral oncogene 
homolog (NRAS)/v-raf murine sarcoma viral 
oncogene homolog B1 (BRAF) mutations of 
RC using MRI-based radiomics.

Retrospective, 
single center

202 3D V-Net architecture provided reliable RC 
segmentation on T2WI and DWI compared 
with expert-based segmentation, and auto 
segmentation was subjected to radiomics 
analysis in the prediction of KRAS/NRAS/
BRAF mutation status and may produce a 
good prediction result.

[42] To build and validate an MRI-based 
radiomics model to preoperatively evaluate 
TB in LARC.

Retrospective, 
multi-center

224 The novel MRI-based radiomics model 
combining multiple sequences is an 
effective and non-invasive approach for 
evaluating TB grade preoperatively in 
patients with LARC.

[43] To perform distant metastases (DM) 
prediction through DL radiomics.

Retrospective, 
multi-center

235 MRI-based DL radiomics had the potential 
in predicting the DM of LARC patients 
receiving nCRT.

Staging
T staging

Nowadays, HR-MRI is considered the most valuable diagnostic method for evaluating RC local extent [9]. 
However, differentiating which of the parietal layers are involved in the tumour to establish the T stage is a 
complicated task that can generate staging errors that consequently reflect on therapy [44, 45]. For these 
reasons, decision support tools based on MRI radiomics and ML have been developed in order to assist 
radiologists in solving this task [32, 46, 47].

Ma et al. [33] developed an MRI-based radiomics model derived from high-resolution T2WI to 
discriminate between patients with T1/T2 and those with T3/T4 RC showing sensitivity and specificity 
respectively of 76% and 74%. In another study, Yin et al. [32] had similar results in differentiating T1/T2 
RC forma T3/T4 RC using a logistic regression algorithm applied to DWI in 115 patients, with a sensitivity 
of 79% and a specificity of 74%.

Furthermore, Lu et al. [46] evaluated the performance of texture analysis using T2WI sagittal 
fat-suppression combined with axial T2WI using a logistic regression model that reached a sensitivity of 
88% and specificity of 61% for discerning between T1/T2 vs. T3/T4 [46]. Similarly, in a previous research 
study, Lu et al. [48] described two radiomics models based on the minimum (tumour only) and maximum 
(tumour plus blurred area around the tumour) region of interests (ROIs) and applied them to T2WI for the 
same endpoint. Their models showed an area under the curve (AUC) of 0.808 for the tumour-only ROI and 
of 0.903 for the maximum ROI [48].

Many researchers have also begun to apply DL to MRI images in order to achieve more precise 
automatic T staging [49, 50]. Wu et al. [49] explored using a faster region-based CNN (R-CNN) to develop a 
DL platform based on horizontal, sagittal, and coronal T2WI MRI capable of predicting RC T staging. Their 
results showed AUCs of 0.95–1.0 for the T1, T2, T3, and T4 stages in the three different planes, highlighting 
that this AI model could be an effective method for the T staging purpose [49].

Finally, Wang et al. [50] explored the application of the same DL model to evaluate the involvement of 
circumferential resection margins in HR-MRI. The AI model was trained with 240 RC patients with positive 
circumferential resection margins in their retrospective study. When tested on the validation group, the AI 
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platform showed an accuracy, sensitivity, and specificity of respectively 0.932, 0.838, and 0.956, with an 
AUC of 0.953 [50].

N staging

Since the lymphatic spread is one of RC’s main important metastatic routes, it is critical to identify 
pathological nodes before surgery to guarantee LN dissection in these patients [51]. However, conventional 
HR-MRI has debated a limited role in evaluating LN status in RC, since it provides only information 
regarding the size, shape, and margins of LNs, thus being characterized by a relatively low specificity [52]. 
For this reason, the precise evaluation of LN status has become of critical interest. AI has been proposed as 
a possible tool to improve MRI-based LN assessment in RC via both radiomics and ML algorithms [53]. 
Recently Ma et al. [33] developed an ML model, associating an random forest (RF) algorithm with radiomics 
features obtained from T2WI, that could differentiate N0 from N1/N2 stages with a sensitivity and 
specificity of 79% and 72%, respectively. In another study, Yin et al. [32] received similar good results but 
with an logistic regression algorithm and an ML model derived from DWI radiomics features.

In another paper, the authors tried to predict the pathological nodal stage of LARC through an 
alternative radiomics method that exploits collective features of LNs extracted from T2WI acquired before 
and after nCRT [34]. In detail, they used a training set of 143 patients and a validation set of 72 patients 
where their logistic regression model predicted pathological node status after nCRT with a sensitivity of 
95% and a specificity of 60% in the validation set [34].

Ding et al. [54] built a DL model based on the faster R-CNN to determine the N stage in patients with 
RC. The authors retrospectively selected MRI images of 414 RC patients discharged from 6 different medical 
institutes and then applied Faster R-CNN to identify pathological LNs. The results were compared to the 
radiologists’ scores, with consistency between radiologists and the DL algorithm of 0.912. They concluded 
that Faster R-CNN is superior to radiologists in the evaluation of metastatic LNs of RC [54, 55].

M staging

Finally, the M stage in RC patients is usually established with other diagnostic tools, particularly total body 
CT. However, a recently published paper demonstrated that the radiomics features obtained from the 
segmentation of RC could deliver critical data to predict SLM or metachronous liver metastases [35, 56, 57] 
and SDM to other organs [36]. In particular, Liang et al. [57] used radiomics features extracted from T2WI 
and post-contrast T1WI dynamic contrast-enhanced (DCE) together with two types of ML models, a support 
vector machine (SVM) and logistic regression, to predict metachronous liver metastases in 108 RC patients. 
The algorithm performed slightly better than SVM, with a sensitivity of 83% and a specificity of 76%, 
suggesting the potential of radiomics to predict which patient will develop liver secondarisms 
after therapy [57].

Finally, Shu et al. [56] constructed a radiomics nomogram combining clinical risk factors and radiomics 
features extracted from T2WI MRI images of the primary RC of 194 patients in order to predict the 
presence of SLM. They used least absolute shrinkage and selection operator (LASSO) and principal 
component analysis (PCA) models to select the features and then logistic regression and the decision curve 
analysis algorythms to build the prediction model. Their nomogram showed a good predictive performance 
with an AUC of 0.912 in the validation set, highlighting the possibility of predicting SLM through radiomics 
characteristics of the primary tumour [56].

Predicting treatment response

Surgery, nCRT, or adjuvant chemotherapy are considered the main therapeutical options for patients 
affected by LARC. As explained above, HR-MRI represents the most valuable tool for tumour assessment for 
staging, but it is also fundamental for restaging after therapy [6]. However, it did not show great accuracy in 
discerning fibrotic scars induced by treatments from minimal residual disease [58].
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In this setting, the progress of radiomics and AI in diagnostic imaging has paved the way for the 
development of new tools to assess the treatment response of RC patients [59–61].

Shin et al. [37] created different radiomics models based on T2WI and DWI to predict pCR in a group of 
898 LARC patients who underwent nCRT. They used surgical histopathologic analysis as the reference 
standard for pCR, which was defined as evaluating only the primary tumour. The authors built three 
models: T2WI, ADC, and a merged one. Among the three models, the T2WI radiomics one showed higher 
classification performance with an AUC of 0.82 and sensitivity of 80.0% and was superior to experienced 
radiologists’ performance in diagnosing pCR [37].

Pang et al. [62] projected a system combining radiomics analysis and DL. The model was based on a 
post-nCRT T2WI MRI, automatically segmenting an ROI on a “suspicious region”, defined as an area with a 
distinct possibility of containing a tumour or fibrosis as assessed by radiologists. Their method achieved an 
AUC of 0.815 on the external validation dataset [62].

Jayaprakasam et al. [38] designed a retrospective study to explore the potential of T2WI MRI radiomics 
feature analysis of the mesorectal fat to predict the nCRT response in 236 patients with LARC. They created 
a model that could predict pCR with an AUC of 0.89, a sensitivity of 78%, and a specificity of 85.1% [38].

Interestingly, Feng et al. [39] projected the RAPIDS, an ML model based on three feature sets associated 
with pCR: radiomics MRI features, pathomics nucleus features, and pathomics microenvironment 
characteristics. Their objective was to predict pCR in patients with LARC starting from a baseline MRI and 
whole slide images of H&E-stained biopsy slides. Patients had undergone a pretreatment MRI and nCRT 
followed by surgery. The accuracy of RAPIDS in predicting pCR in LARC was externally validated in two 
different cohorts with an accuracy of 0.86 and 0.87, respectively. Finally, RAPIDS showed an AUC of 0.812, a 
sensitivity of 0.888, and a specificity of 0.74 in predicting pCR in the prospective validation study. These 
results indicated that RAPIDS could represent a novel tool to assist physicians in the tailored management 
of patients with LARC [39].

Additionally, Aker et al. [63], Yang et al. [64] also evaluated the applicability of texture analysis to 
multiple MRI sequences to identify potentially significant imaging biomarkers that can accurately detect 
patients with pCR, highlighting promising results.

Furthermore, some authors also explored the possibility of developing radiomics nomogram to 
predict pCR [65, 66].

In particular, Wang et al. [65] created an MRI-based radiomics signature to distinguish good 
responders and poor responders to nCRT and merged it within a nomogram with MRI T stage, ADC values, 
and circumferential resection margin. Their nomogram could predict a good response to nCRT with a 
sensitivity of 71% and a specificity of 88% [65]. Similarly, Liu et al. [66] developed a radiomics nomogram 
based on the combination of a radiomic signature, pre- and post-treatment MRI (T2WI and DWI) images, 
and the post-treatment tumour length that managed to reach an accuracy of 94% in predicting pCR.

In general, the results of the different models are promising, even if it is not easy to draw a conclusion 
from the available evidence. However, an early and accurate prediction of the treatment response could 
significantly improve the management of patients with LARC and favour the development of 
tailored treatment.

Genotyping

Radiogenomics represents a recently developed field of imaging whose objective is to obtain genotypic 
characteristics of a disease through diagnostic images and could optimistically represent a game changer in 
a radiology-pathology correlation [67].

MSI and KRAS/NRAS/BRAF mutations represent critical, independent prognostic factors in RC patients, 
and their presence is routinely searched through a genetic test on samples from biopsy or surgery to 
determine personalised treatment and prognosis [6, 40, 68].
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However, biopsy and surgery are invasive, time-consuming techniques with potential complications 
and depend on specific equipment [40, 41].

Therefore, radiogenomics could represent a non-invasive, low-cost, and time-sparing field of diagnostic 
imaging that could identify RC genotypic characteristics.

KRAS/NRAS/BRAF are critical proteins in the epidermal growth factor receptor (EGFR) signaling 
pathway. They control the proliferation, differentiation, and invasion of tumoral cells [69]. Their mutations 
are responsible for poor response to biological therapy and are linked with a higher risk of developing 
DM [70, 71]. For this reason, Zhang et al. [72] evaluated the possibility of identifying a radiomics signature 
from T2WI MRI capable of predicting KRAS status in patients with LARC. The LASSO regression was used to 
evaluate the associations between the features and gene status. Of the 253 features obtained from T2 
images of 83 patients, one feature named X. LL_scaled_std was selected and presented a radiomics-based 
C-index value of 0.703, suggesting that radiomics features could differentiate KRAS status in 
these patients [72].

In another paper, Cui et al. [73] used an SVM classifier with T2WI-based radiomics features to evaluate 
KRAS status in 213 RC patients, providing internal and external validation with an AUC of 0.682 and 0.714, 
respectively. This result underlines that their radiomics signature could be helpful in predicting KRAS 
status and may support genomic analysis to establish KRAS expression [73]. Finally, Oh et al. [74] used 
T2WI MRI-based texture analysis to select three radiomics features significantly associated with KRAS 
mutational status (P < 0.05) in patients with RC. The three features were used to create a model with a 
decision tree to evaluate the presence of KRAS mutation. The model comprised four terminal nodes, two of 
which were able to identify KRAS mutation with a sensitivity, specificity, and accuracy of 84%, 80%, and 
81.7%, respectively [74].

MSI is a genetic anomaly subsequent to damaged one or more mismatch repair (MMR) proteins [75].

In a recent paper, Zhang et al. [40] explored the feasibility of using an MRI-based DL model, named 3D 
MobileNetV2 model, to predict MSI status. The group created three models: one based exclusively on 
clinical factors, one MRI-based, and another combining clinical and imaging characteristics. The 
imaging-based and the combined model correctly classified 75.0% and 85.4% of MSI status in the test set, 
with AUC values of 0.820 and 0.868, respectively. Their T2WI MRI-based model showed a good predictive 
performance for MSI status in RC patients and may represent a helpful tool to select patients who would 
benefit from chemotherapy or immunotherapy [40].

Furthermore, Li et al. [76] developed a radiomic model based on MRI images to predict preoperative 
MSI status in RC patients. They created three main models: a T2-based, an ADC-based, and a combined 
model, which showed an AUC of 0.895, 0.796, and 0.926 in the testing set, respectively [76].

Assessing high-risk histopathological features

RC may present numerous histopathological features, such as differentiation degree, EMVI, TB, LVI, and PNI 
that are linked with poor prognosis and have to be taken into account for stratifying the risk of RC 
patients [5]. A reliable pre-treatment assessment of these factors would probably favour and accelerate the 
progress  of  ta i lored treatment  strategies  and consequently ,  the  transit ion  toward 
precision medicine [5, 77–79].

Tumour grading measures cell anaplasia in the sampled tumour and has an essential role in RC 
prognosis. Well-differentiated tumours generally show better outcomes in this setting [80]. In a recent 
paper, Meng et al. [81] evaluated the performance of three ML classifiers to recognise well-differentiated 
RCs on the basis of radiomics characteristics obtained from T2WI, DWI, and DCE MRI sequences. The LASSO 
algorithm outperformed the other two ML classifiers, with an AUC of 0.72 in the validation group [81]. 
Furthermore, He et al. [82] developed a feature selection method and ML-based prediction model using 
MRI-based radiomics features to discern among different pathological grades for RC. The model showed 
relatively acceptable performance in tumour grading of RC with AUC values of grades 1, 2, 3, and 4 of 0.717, 
0.683, 0.690, and 0.827, respectively, in the validation set [82].
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TB is an emerging prognostic biomarker in RC. TBs are defined as single cancer cell or clusters of up to 
four cancer cells located at the invasive tumour front [83]. Recently a group of researchers constructed a 
model based on multiple MRI-sequences radiomics to identify TB in LARC before surgery, which presented 
an accuracy of 81.2% [42].

MRI is also considered one the most valuable tool to establish the presence of EMVI; however, HR-MRI 
performances in evaluating EMVI are still not that high [84].

For this reason, Zhao et al. [85] built a radiomic nomogram based on multiple MRI sequences (T1WI, 
T2WI, and proton density) to identify EMVI, with an AUC of 0.899, which resulted in being superior 
to radiologists.

Another interesting nomogram was created by Yu et al. [86], including a DCE MRI radiomics signature 
and clinical features. They found that the nomogram performed better than quantitative perfusion 
parameters such as Ktrans in predicting EMVI, with 88.9% sensitivity and 78.3% specificity in the 
test dataset [86].

Moreover, Shu et al. [87] projected a system based on T1WI, T2WI, DWI, and DCE MRI sequences to 
detect EMVI. The algorithm was also merged with clinical features and presented an AUC of 0.835, a 
sensitivity of 0.714, and a specificity of 0.885 [87].

LVI and PNI rapresent two negative prognostic factors in RC. LVI and PNI occur when cancer invades 
the layers of the lymphovascular wall or spreads along the nerve sheath [88].

Zhang et al. [89] designed a multi-modality radiomic nomogram based on T2WI and DWI MRI 
sequences plus enhanced CT images to predict the presence of LVI in RC patients. Their nomogram had 
significant predictive power in the validation cohort with an AUC of 0.876. Instead, Guo and his group [90] 
operated similarly to project radiomic nomograms to predict PNI in RC patients, obtaining an AUC of 0.884 
in the test dataset.

Finally, Chen et al. [91] realised a different radiomics nomogram based only on oblique T2WI MRI 
sequences that could predict PNI status with an accuracy of 0.71 and an AUC of 0.85.

Prognosis

Nowadays, although the progress of surgery and CRT protocols have considerably improved the outcomes 
of patients affected by RC, local recurrence (LR) and DM still represents two critical negative prognostic 
factors [92, 93]. HR-MRI has a pivotal role in detecting LR during follow-up scans in this setting. Recently, 
researchers tried to understand the potential of HR-MRI-based radiomics and AI to predict LR in patients 
with RC [38]. Jayaprakasam et al. [38] developed a T2WI MRI radiomics-based model to predict LR in 236 
patients who underwent nCRT. The eight most significative radiomics features were extracted from axial 
T2WI of mesorectal fat to develop a model using SVM. They found that it could predict LR with a sensitivity 
and specificity of 68.3% and 80.7%, respectively [38].

DM represents another critical prognostic factor that influences the outcomes of RC patients. Recently, 
many authors developed different promising radiomic signatures from segmented tumour regions based on 
multiple HR-MRI sequences that could be used to predict DM-free survival (DMFS) in patients 
with LARC [94–96].

Moreover, a group of researchers recently designed a retrospective study to explore the capability of 
an AI radiomics-based model to predict 3-year DMFS in patients with LARC after receiving nCRT, with a 
C-index of 0.747 and an AUC of 0.894 [43]. Another group built up a radiomic nomogram constructed on an 
MRI-based radiomic signature that exhibited high performance in predicting DMFS, with C-indices of 0.848, 
0.831, and 0.825 in the test groups, respectively [97]. Furthermore, Liu et al. [36] investigated the 
possibility of predicting SDM in RC patients via a clinical-radiomics model before surgery. They realised a 
model based on the preoperative T2WI MRI images of 177 patients that showed an AUC of 0.827, which 
proved that the model could help stratify patients with a higher risk of SDM before surgery [36].
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Limitations
MRI-based radiomics and AI have shown an exciting potential to increase MRI accuracy in T and N staging, 
to evaluate the patients’ response to nCRT, to obtain genotypic characteristics of the tumour, and to assess 
prognosis and high-risk variables. However, there is still a long way to go to complete the transition from 
research to clinical application. First of all, high-quality images are critical to obtaining the best 
performance from different systems. Since the rectum is a constantly involuntary moving organ, this 
creates challenges for MRI that has to be solved to improve radiomics and AI models’ performance. Many 
authors demonstrated that using multimodal imaging and pre- and post-therapy images may be useful to 
solve this task [39, 98]. ROI segmentation requires trained and skilled operators, which is time- and 
cost-consuming. In this setting, developing a reliable, fully automated AI segmentation model requires 
collaboration between engineers and doctors. This AI model should be able to segment precise areas on 
different MRI sequences rather than only on a single one to speed up the process and save time.

Moreover, the standardisation of radiomics and AI workflow, including the standardisation of the 
scanning protocol, image reconstruction and preprocessing, and of its evaluation, as well as the validation 
of the relative models are critical elements affecting the transition towards clinical applications. 
Furthermore, the currently available models cannot explain the biological meaning of the extracted 
features. Finally, the majority of studies available developed their algorithm on a small amount of data from 
a single center [32–36]. Thus, the time has probably come for appropriately designed prospective 
multicenter trials to build and externally validate reliable MRI-based systems that could guarantee better 
guidance for the tailored management of patient affected by RC.

Conclusions
AI models, including radiomics, ML, and DL, have been widely applied in diagnostic imaging. Nowadays, 
national and international guidelines suggest HR-MRI as the most suitable imaging technique for staging 
and restaging RC. Recently, many authors explored the feasibility and the potential of these models based 
on MR images in LARC, mainly to increase its accuracy in T and N staging but also for the evaluation of the 
patient’s response to nCRT, to obtain genotypic characteristics of the tumour, to assess prognosis and 
high-risk variables [40–43]. In the next decades, the development of AI systems based on MRI could 
represent a game changer to support physicians in the transition towards a tailored diagnosis and 
treatment of RC patients. However, there is still an urgent need to standardise the radiomics and AI 
workflow, improve efficiency, and primarily design and carry out solid prospective multicenter studies to 
validate the results of these systems and favour the transition from academic research to the 
clinical setting.
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