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Abstract
Oncologic emergencies are a wide spectrum of oncologic conditions caused directly by malignancies or 
their treatment. Oncologic emergencies may be classified according to the underlying physiopathology in 
metabolic, hematologic, and structural conditions. In the latter, radiologists have a pivotal role, through 
an accurate diagnosis useful to provide optimal patient care. Structural conditions may involve the central 
nervous system, thorax, or abdomen, and emergency radiologists have to know the characteristics imaging 
findings of each one of them. The number of oncologic emergencies is growing due to the increased incidence 
of malignancies in the general population and also to the improved survival of these patients thanks to the 
advances in cancer treatment. Artificial intelligence (AI) could be a solution to assist emergency radiologists 
with this rapidly increasing workload. To our knowledge, AI applications in the setting of the oncologic 
emergency are mostly underexplored, probably due to the relatively low number of oncologic emergencies 
and the difficulty in training algorithms. However, cancer emergencies are defined by the cause and not by a 
specific pattern of radiological symptoms and signs. Therefore, it can be expected that AI algorithms developed 
for the detection of these emergencies in the non-oncological field can be transferred to the clinical setting 
of oncologic emergency. In this review, a craniocaudal approach was followed and central nervous system, 
thoracic, and abdominal oncologic emergencies have been addressed regarding the AI applications reported 
in literature. Among the central nervous system emergencies, AI applications have been reported for brain 
herniation and spinal cord compression. In the thoracic district the addressed emergencies were pulmonary 
embolism, cardiac tamponade and pneumothorax. Pneumothorax was the most frequently described 
application for AI, to improve sensibility and to reduce the time-to-diagnosis. Finally, regarding abdominal 
emergencies, AI applications for abdominal hemorrhage, intestinal obstruction, intestinal perforation, and 
intestinal intussusception have been described.
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Introduction
Oncologic emergencies represent a wide spectrum of conditions comprehending any acute morbid or 
life-threatening events in oncologic patients either because of the malignancy or because of their treatment 
and may arise at any time in the natural course of the disease [1, 2]. To correctly recognize oncologic 
emergencies is essential for prompt and efficient management and to avoid more serious consequences.

Mediastinal syndrome, spinal cord compression, endocranial hypertension, metabolic syndromes, and 
pulmonary thromboembolism are just a few of the several oncologic emergencies occurring in clinical practice.

The wide spectrum of oncologic emergencies may be classified according to the affected organ system, 
or may be differentiated, according to the underlying physiopathology, in metabolic, hematologic, and 
structural conditions [3]. Among these three broad categories, the radiologist has a recognized role and offers 
game-changing assistance in structural conditions, through an accurate diagnosis useful to provide optimal 
patient care.

Figure 1. List of central nervous systems, thoracic, and abdominal emergencies currently addressed by AI applications in literature

Structural conditions may involve the central nervous system, thorax, or abdomen, and emergency 
radiologists have to know the characteristics pathophysiology and imaging findings of each one of them [4]. 
In the last few years, the increasing demand for imaging exams in the emergency department has put rising 
pressure on emergency radiologists, along with the fact that oncologic emergencies stand out among all the 
possible emergencies for their complexity due to the high frailty and multiple medical comorbidities of the 
oncologic patient [5]. Indeed, the number of oncologic emergencies is growing not only due to the increased 
incidence of malignancies in the general population, but also to the improved survival of oncologic patients 
because of the advances in cancer treatment [6]. The rapid increase in oncologic emergency incidence and 
the complexity of these patients account for a thought challenge for the radiology emergency department. 
Hope lies in the advent of new technologies, such as artificial intelligence (AI), enabling adeptness to assist 
radiologists with rapidly increasing workloads [7]. AI is a subfield of computer science dealing with the 
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development of tools able to simulate human intelligence, including learning, reasoning, and self-correction [8]. 
Unfortunately, to our knowledge, the application of AI in the setting of the oncologic emergency is mostly 
underexplored, probably due to the inherent heterogeneity of the background condition and variability 
of the acquired data. However, oncologic emergencies are defined by the cause and not by a specific set of 
symptoms and radiological findings; therefore, there is no gross radiological difference between a pulmonary 
embolism (PE) caused by a predisposing neoplasm, and one caused by a coagulation disorder. Thus, it can 
be expected that AI applications developed for PE can be broadly transferred in the clinical scenario of PE 
caused by cancer. Of course, this transfer is not always for granted, and in some settings, it became much 
more complex.

This narrative review aims to summarize the state-of-the-art AI applications translated to oncologic 
emergencies, where radiologists play a pivotal role in timely diagnosis that largely impacts patient care. A 
craniocaudal approach was used and central nervous system, thoracic, and abdominal oncologic emergencies 
have been addressed regarding the potential applications of AI (Figure 1 and Table 1).

Table 1. Characteristics of the oncologic emergencies addressed by AI applications in literature

Disease Cause Symptoms First-line 
imaging

Imaging features

Cerebral herniation Increased intracranial 
pressure

Headache, vomiting, 
different level of 
state of confusion

CT Midline shift in confront of opposite 
site, masses

Spinal cord 
compression

Metastases could compress 
spinal cord directly or 
indirectly dislocating 
vertebral bodies

Back pain, 
paraesthesia, 
erectile dysfunction, 
weakness

MRI Dislocation of the spinal 
cord centreline

PE Tumor invasion of artery 
branches or increased 
coagulation effectiveness by 
therapies or devices

Chest pain, 
dyspnea, 
orthopnoea, cough, 
haemoptysis

CT Hypodensity or filling defects in the 
branches of the pulmonary arterial 
system after contrast

Cardiac Tamponade Tumors infiltration of 
pericardium or due to 
therapies, lymphadenopathy, 
or infections

Chest pain, dyspnea CXR/CT Cardiomegaly and epicardial fat 
pad sign and in CT high density of 
pericardial effusion in basal condition 
(30–45 HU in acute bleeding)

Pneumothorax Drainage mispositioned or 
for lung biopsy or tumors 
infiltration of pleura

Chest pain, dyspnea CXR Radiolucent area between the lung 
parenchyma and the chest wall

Abdominal 
hemorrhage

Hypervascular neoplasm, 
splenic rupture due to 
lymphoma and tumors’ direct 
vascular invasion

Abdominal pain, 
asthenia

CT Increased density of abdominal 
effusion in basal condition that tends 
to grow after contrast

Intestinal obstruction Tumor growth within the 
intestinal wall or its lumen

Abdominal cramping 
pain, vomiting, 
inability to defecate

CXR Dilatated bowel loops with 
air-fluid levels

Bowel perforation Tumor infiltration of 
intestinal wall

Abdominal pain, 
rigid abdomen 
on examination

CXR Subphrenic free air in frontal CRX 
and Rigler sign (or the double-wall 
sign because gas outlines both sides 
of the bowel wall)

Intestinal 
intussusception

Invasion of intestinal wall 
by malignancies

Abdominal pain, 
nausea or vomiting

CT Bowel in bowel sign

CT: computerized tomography; MRI: magnetic resonance imaging; CXR: chest X-ray

AI applications in oncologic central nervous system emergencies
The most common oncologic central nervous system emergencies are cerebral herniation, carcinomatous 
meningitis, and spinal cord compression [5].

If not promptly recognized and treated, a cerebral herniation may lead to rapid deterioration of the 
patient’s condition, coma, and death. Cerebral herniation in cancer patients is mostly caused by primary 
or secondary lesions and massive intracranial hemorrhage. The cerebral herniation through the skull is 
due to the increase in intracranial pressure [9, 10]. The increase of intracranial pressure can be measured 
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through the midline shifts towards the contralateral site, which can be automatically computed through deep 
learning (DL)-based algorithms to predict the severity and support the clinical decision. Nag et al. [11] used 
a convolutional neural network (CNN) to predict the deformed left and right hemispheres on non-contrast 
CT in patients with epidural and intracranial hemorrhage. As expected, according to the Monro-Kellie 
hypothesis, the midline shift is an entity well correlated with hematoma volume and a similar result could 
be hypothesized for cerebral herniation caused by cancer [12]. Besides AI classification algorithms able to 
detect patients with midline shifts, the prediction models allowing to identify patients at risk of developing 
cerebral herniation according to either imaging or clinical features, seem to be of greater interest.

In a recent paper, Zeng et al. [13] used an ensemble machine learning (ML) model to predict the risk of 
cerebral herniation in patients with acute ischemic stroke and obtained an area under the curve (AUC) of 
0.904. To optimize the algorithm performance, the authors performed a multivariable analysis combining 
imaging data from non-contract CT, such as the volume of the hypo-hyperdense lesion, and clinical data like 
sex, age, smoking, National Institutes of Health Stroke Scale (NIHSS) score, Glasgow Coma Scale (GCS) score, 
and blood pressure [13]. A similar study could be performed in the oncologic setting, considering imaging 
variables such as the amount of edema caused by the neoplasm. Spinal cord compression recognizes an 
oncologic etiology in 5–10% of cases, mostly due to breast, lung, and prostate carcinomas metastasis [6]. 
The secondary lesion may compress the spinal cord directly encroaching into the spinal canal or indirectly 
causing the collapse and posterior displacement of vertebral bodies. Similar to midline shift measures for 
increased intracranial pressure, spinal cord compression may be derived from the mark of the spinal cord 
centerline after segmentation of the spine regions [14].

In a systematic review of AI methods for imaging of spinal metastasis, Ong et al. [15] described several 
workflow steps which could benefit from AI implementation, ranging from image acquisition to reporting 
and integrated diagnostics. Particularly, AI was demonstrated able to precisely provide prognostic information 
regarding the risk for spinal cord compression due to vertebral fracture after radiotherapy of spinal metastasis 
or metastatic epidural disease [16].

These tools may be extremely helpful to early identify patients who require prompt surgical or 
palliative treatments.

AI applications in oncologic thoracic emergencies
Oncologic thoracic emergencies are broadly categorized into 3 groups: cardiovascular, respiratory, and 
mediastinal emergencies.

The most relevant cardiovascular emergencies in oncologic patients are PE, cardiac tamponade, and 
superior vena cava syndrome [5]. PE represents a common disease with a high risk of morbidity and mortality 
due to an obstruction of one or more pulmonary arteries’ branches of the lung. In oncologic patients, PE may 
occur due to locoregional tumor seeping in the artery or because chemotherapies induce cancer to release 
factors that increase coagulation effectiveness. In addition, some devices, like a central vascular catheter, 
may induce local inflammation reducing blood rate or changing/inducing damage to endothelium [17].

Computed tomographic pulmonary angiography (CTPA) represents the gold standard to diagnose PE 
but still remains a challenging diagnosis requiring a lot of time and radiologists’ expertise, leading to an 
increase in error ratio and misdiagnosis [18]. AI could help to detect PE increasing sensibility and reducing 
the time of diagnosis, leading to early management of this condition and improvement of patients’ outcomes.

First, AI may help the physician to identify patients at high risk of PE requiring medical imaging 
examination. Indeed, clinical suspicion of PE cannot rely on pathognomonic symptoms. For example, patients 
could complain of chest pain and dyspnea, and the D-dimer value could be high [19]. Many pathological 
conditions are characterized by these symptoms and signs like heart attack, pericarditis, pulmonary edema, 
pneumonia, pneumothorax, and heart failure.

ML has been investigated as a tool able to identify the hospitalized patient at high risk of PE by 
combining clinical, therapeutic, and laboratory data. It has been shown that the gradient boosted decision 
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trees outperform logistic regression and neural networks, achieving an area under the receiver operating 
characteristic (AUROC) of 0.85 with high specificity, positive and negative likelihood ratios, and diagnostic 
odds ratio [20].

The importance of integrating clinical and laboratory data was highlighted by Rucco et al. [21], who 
implemented a neural hypernetwork analyzing 28 diagnostic clinical features to recognize patients 
developing PE. The model was integrated into the emergency setting as a first screening tool and achieved 
a 94% accuracy in predicting PE [21].

In the clinical setting of oncologic patients, many other clinical data could be integrated into the 
model, such as tumor histotype and site, therapy, vascular devices’ presence, laboratory data, and vital sign 
measurement. However, to bring AI models closer to clinical implementation, some limitations must be 
overcome, and prospective multicentric studies are needed to test their real functioning and utility [22]. AI 
could also assist radiologists in several ways. Many studies already implemented DL algorithms to enhance 
the radiologists’ workflow by automated triaging and flagging PE on CTPA, which helps to prioritize important 
cases and hasten the diagnoses for at-risk patients [23–25].

Indeed, early diagnosis and communication to the referring physician may lead to earlier treatment, 
and to achieve these results and to improve the communication between the radiologist and the clinician 
electronic notification systems were developed. However, Schmuelling et al. [26] demonstrated that the DL 
algorithm combined with an electronic notification system did not significantly affect the report reading 
time or the time to administer treatments.

Alternatively, AI could be used to provide prognostic biomarkers, such as right ventricular to left 
ventricular (RV/LV) diameter ratio. ML algorithms were developed to automatically compute this parameter 
from CTPA.

Cardiac tamponade is a severe form of pericardial effusion and is characterized by a profuse accumulation 
of fluid, usually blood, in the pericardium [27]. In oncologic patients, this pathological condition is due to 
the tumor’s infiltration of the pericardium, especially in the case of lung, breast, melanoma tumor, or some 
lymphomas/leukemia [28].

In oncologic patients, cardiac tamponade may occur also due to therapies, infections, or lymphadenopathy. 
CT is the more accurate imaging modality to diagnose it [29].

In a recent forensic study, DL was used to classify pericardial effusion as hemopericardium or a tamponade 
caused by other fluids, and to quantify the amount of effusion [30]. The best-performing classification 
network classified correctly almost all cases of hemopericardium. However, these enthusiastic results 
have to be confirmed in vivo in an emergency setting on electrocardiogram (ECG)-guided CT. Regarding 
the quantification of the tamponade, the algorithm tended to underestimate the effusion’s quantity [30].

Oncologic patients may suffer from several respiratory emergencies, such as respiratory failure, 
massive hemoptysis and pneumothorax. Among these, the current evidence supports that pneumothorax 
gains important benefits from medical image AI analysis. Pneumothorax represents the presence of free air 
within the pleural space and in oncologic patients may be caused by mispositioning of drainage or other 
devices like the central venous catheter, or by invasive procedures such as lung biopsy or rarely to tumor 
infiltrating pleura [31–33].

Pneumothorax requires intervention with needle aspiration or chest intubation, and it can compromise 
health-related quality of life. The quantification of the amount of pneumothorax is necessary to properly 
manage the patient. AI is useful to objectively quantify pneumothorax amounts automatically and accurately 
on CXR and CT scans, leading to a decreased time to diagnosis and treatment, particularly in patients 
suffering from tension pneumothorax. The amount of pneumothorax is calculated as the radiolucent area 
between the lung parenchyma and the chest wall on CXR and as the radiolucent volume within the pleural 
cavity on chest CT [34].

Zhou et al. [35] effectively trained a DL model to identify, segment, and semi-quantify pneumothorax 
on CXR using the degree of lung compression. Similarly, Kim et al. [36] used the U-net architecture to identify 
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and quantify the pneumothorax on CXR, and the amount calculated by the model did not significantly 
differs from the volume estimated on CT imaging, defined as the gold standard.

Finally, mediastinal oncologic emergencies include esophageal perforation, acute mediastinitis, and 
tracheoesophageal fistula. However, to our knowledge, no studies addressed the potential role of AI in 
these clinical scenarios.

AI applications in oncologic abdominal emergencies
The most common abdominal oncologic emergencies are uncontrolled intraabdominal hemorrhage, intestinal 
obstruction, bowel perforation, intestinal ischemia, intussusception, and urinary tract obstruction [5]. 
Intraabdominal bleeding is a life-threatening complication in oncologic patients. Different causes have been 
described in the literature, ranging from spontaneous bleeding of hypervascular neoplasm such as renal 
cell carcinoma, the spontaneous splenic rupture caused by lymphomas or leukemias and large masses with 
peripheral increased vascularity, to direct vascular invasion [37].

These patients usually present with acute hemoperitoneum, appearing as hyperdense with attenuation 
values of 45–70 HU on unenhanced CT, and as active contrast medium extravasation at the bleeding site after 
intravenous contrast administration. However, the identification of hemoperitoneum may be challenging in 
ultrasound (US) examination, particularly in patients with superimposed ascites.

Lin et al. [38] trained a DL model to identify free fluid on US in a post-traumatic setting. As result, the 
authors achieved optimal sensitivity, specificity, and accuracy, with slightly lower values for perihepatic 
and perisplenic effusion, probably due to the lower amount of effusion in these anatomic sites [38]. Hopefully, 
these results could be transposed to the oncology setting in patients with suspected bleeding, to effectively 
select patients for contrast-enhanced CT.

Intestinal obstruction in cancer patients usually occurs in advanced gastrointestinal and gynecological 
malignancies. About 10% to 30% of patients with colorectal cancer and 20% to 50% of those with ovarian 
cancer develop acute intestinal obstruction. Intestinal obstruction may be caused by a growth within the wall, 
causing impaired bowel motility and linitis plastica by a growth of the neoplasm within the intestine lumen 
leading to intraluminal occlusion; or from an extraluminal occlusion such as from serious metastases [39, 40].

In particular, small bowel obstruction is a surgical emergency that can lead to bowel necrosis, 
perforation, and death. Abdominal X-rays are the first-line imaging test for small bowel obstruction typically 
demonstrating dilated bowel loops with air-fluid levels. Abdominal multiphasic CT is more sensible, and 
it is pivotal to confirm the site, severity, and cause of the obstruction and eventually to stage the patient and 
select the treatment plan [41, 42].

The detection of small bowel obstruction on a conventional radiograph may be challenging, especially 
for young inexperienced radiologists, and to facilitate it, much research focused on AI applications for 
this task [43]. In a study by Cheng et al. [43], DL was evaluated to identify small bowel obstruction on 
conventional radiography. The authors obtain a sensitivity of 83.8% and a specificity of 68.1%. The low 
value of specificity was caused by the small number of positive cases presented to the neural network. Thus, 
the authors retrain the model only with images classified positive for bowel obstruction and the specificity 
increased to 91.9%. Kim et al. [44] assessed several convolutional neural networks and obtained an almost 
overlapping sensitivity and specificity.

Another relevant abdominal oncologic emergency is intestinal perforations, which are caused by 
malignancies in 8–10% of perforations in patients with pneumoperitoneum [45]. Bowel perforation can 
precipitate peritonitis followed by fulminant sepsis and cardiocirculatory shock. Diagnosis of acute abdominal 
pain usually begins with abdominal radiography, as recommended by the American College of Radiology. 
The key finding to detect pneumoperitoneum is the presence of subphrenic free air on frontal CXR [46].

Again, CT is more sensitive and allows the detection of the primary neoplasm, the site of the perforation, 
and in cases of administration of oral contrast material, extravasation of intestinal contents [41]. Although 
less sensitive, abdominal radiography has significantly lower radioactivity compared to abdominal CT 

https://doi.org/10.37349/etat.2023.00138


Explor Target Antitumor Ther. 2023;4:344–54 | https://doi.org/10.37349/etat.2023.00138 Page 350

scans, and, for this reason, it is usually utilized in the follow-up of abdominal obstruction and non-obstructive 
ileus [47, 48]. However, as above-mentioned, many emergency physicians lack sufficient experience to 
recognize pneumoperitoneum promptly and for this reason, it is essential to develop an automated method 
for frontal review of the X-ray images of the chest to warn of the danger of the clinical picture and to have 
a second look.

Su et al. [49] proposed a DL method for alerting emergency physicians about the presence of subphrenic 
free air on frontal CXR, and achieved 0.875, 0.825, and 0.889 in sensitivity, specificity, and AUC scores, 
respectively. This tool may provide a sensitive additional screening to detect pneumoperitoneum. Alternatively, 
pneumoperitoneum may also be detected through the use of artificial neural network (ANN) on abdominal 
radiographs, leading to increased effectiveness of clinical practice and patient care [50, 51].

Another relevant cause of obstruction is intestinal intussusception, which can be caused by both 
primary and secondary malignancies involving the wall of the small intestine and colon. Intussusception 
in adults is rare, and accounts for only 5% of bowel obstructions, but almost 50% of these intussusceptions 
recognize a neoplastic etiology; among these the most frequent are intestinal lymphoma, gastrointestinal 
neoplasms, and metastases of the intestinal wall [51]. The CT findings of telescoping or “bowel-in-bowel”, 
with or without incorporation of mesenteric fat and vessels, are pathognomonic for intussusception [47].

Abdominal radiography has a low sensitivity of about 45% in detecting intestinal intussusception, while 
US offers both high sensitivity (97.9%) and specificity (97.8%) for detecting intussusception.

Many studies have been carried out to investigate the potential role of AI to increase sensitivity [52] in 
the diagnosis of intestinal intussusception. DL-based algorithms have been developed for the detection of 
ileocolic intussusception on abdominal radiography and abdominal US [53–55]. Kim et al. [53] demonstrated 
that a DL may increase radiologists’ diagnostic performance in detecting intestinal intussusception. Indeed, 
it is not surprising that the sensitivity of the algorithm was demonstrated higher than that of the radiologists, 
but it is particularly interesting that the specificity was almost superimposable (0.92 vs. 0.96) [54]. Another 
study by Li et al. [55] assessed the performance of DL for the automatic detection of “concentric circle” signs 
in US images.

Due to epidemiological issues, all these studies have been conducted on a pediatric population and 
many challenges have to be addressed to transpose these results to an adult oncologic population. However, 
many studies have already reported an acceptable performance of AI-based software approved for adults 
when used on pediatric population, and vice versa the same result could be expected when implementing 
software designed for pediatric population for adult studies [56].

Conclusions
In conclusion, this review demonstrated the lack of studies focusing on AI applications specifically aimed 
at oncological emergency setting. However, many scientific papers concerning the application of AI on 
superimposable central nervous system, and thoracic and abdominal emergencies have been published. 
It can be hypothesized that these applications may be transposed in the oncological emergency scenario. 
Unfortunately, it is not possible to draw firm conclusions regarding the real effectiveness of this transposition, 
as further studies are needed to investigate the required adaptations. After this premise, it can be expected 
that AI will be widely tailored and used in the near future to early recognize time-critical oncologic emergencies 
and to improve patient management.
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