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Abstract
Cancer remains the second leading cause of mortality globally. In combating cancer, conventional 
chemotherapy and/or radiotherapy are administered as first-line therapy. However, these are usually 
accompanied with adverse side effects that decrease the quality of patient's lives. As such, natural bioactive 
compounds have gained an attraction in the scientific and medical community as evidence of their anticancer 
properties and attenuation of side effects mounted. In particular, quassinoids have been found to exhibit 
a plethora of inhibitory activities such as anti-proliferative effects on tumor development and metastasis. 
Recently, bruceine D, a quassinoid isolated from the shrub Brucea javanica (L.) Merr. (Simaroubaceae), has 
come under immense investigation on its antineoplastic properties in various human cancers including 
pancreas, breast, lung, blood, bone, and liver. In this review, we have highlighted the antineoplastic effects of 
bruceine D and its mode of actions in different tumor models.
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Introduction
Cancer can result from uncontrolled cellular proliferation and growth that forms an abnormal mass of tissue 
known as a tumor. It can be caused by a plethora of risk factors such as genetic mutation due to exposure to 
radiation or carcinogens, epigenetics, viral infection, and reactivation [1-5]. According to the World Health 
Organisation, cancer is the second leading cause of global mortality in 2018 [6]. It is therefore not surprising 
that cancer research remains at the cynosure of the scientific community. Chemotherapy and radiotherapy 
are commonly administered for the treatment of human malignancies with temporary relief and adverse side 
effects such as nausea, vomiting, and hair loss, drastically diminishing the quality of life of cancer patients 
[3, 7]. In the past decade, research on natural bioactive compounds derived from plants and microbes have 
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been gaining traction [8-13]. They can attenuate the side effects of conventional cancer treatment [14]. 
Importantly, these natural compounds possess anti-cancer effects [14-22]. In the field of cancer, natural 
products or their derivatives constitute approximately 49% of small molecule drugs approved by the United 
States Food and Drug Administration (FDA) from the 1940s to the end of 2014 [23]. As of 2019, 7 out of 48 
newly approved drugs by the US FDA were inspired based on natural products [24]. While these drugs were 
not naturally derived compounds per se, it still highlighted the importance of natural bioactive compounds in 
novel drug development.

Brucea javanica (L.) Merr. (Simaroubaceae) is a shrub that is widely distributed in most of Asia and 
Australia [25]. The fruits and seeds of Brucea javanica have long been used as Chinese medicine in treating 
various diseases like dysentery, malaria, and inflammatory diseases [25, 26]. Of particular interest are the 
quassinoids isolated from the fruits of Brucea javanica. There are currently 52 known quassinoids such as 
brusatol, dehydrobruceine D, and bruceine D (BD) isolated from the fruits and seeds of Brucea javanica [27]. 
These quassinoids have been shown to exhibit a wide range of inhibitory effects, including anti-viral effects 
against plant-based viruses like tobacco mosaic virus and potato virus Y to anti-proliferative and cytotoxic 
effects on various tumor cells like lung cancer tumors and breast cancer tumors [28-34]. In this review, 
we will specifically be summarizing the antineoplastic effects of BD on various cancer cell lines from the 
current literature.

Chemistry of BD
BD is a quassinoid with molecular formula C20H26O9. Many quassinoids have been found to exhibit tumoricidal 
activity and anticarcinogenic properties, with BD having found to exhibit cytotoxic effects and anti-proliferative 
effects against pancreatic cancer, breast cancer, lung cancer, leukemia, osteosarcoma, and hepatocellular 
carcinoma [35]. The structure-activity relationship of the inhibitory effects of some quassinoids, including BD, 
has only been elucidated very recently. Here, we will give particular focus to the structure-activity relationship 
of the antineoplastic effects of quassinoids. The substitution of oxygen-groups, methyl or -CH2OH, glycosyl, 
α, β-unsaturated ketone group, and olefenic bond was found to be pertinent in influencing the antineoplastic 
actions of quassinoids. Various modifications to the aforementioned chemical groups have been investigated 
and the extent of the anti-proliferative activity of the tested quassinoids against pancreatic cancer and breast 
cancer cell lines varied accordingly [29, 30, 36, 37].

Antineoplastic effects of BD in human malignancies
Anti-proliferative and pro-apoptotic effects of BD
It is known that dysregulation of cell cycle leading to uncontrolled cell proliferation and apoptosis evasion 
are hallmarks of all cancer cell types [29, 38-41]. Indeed, through various cell proliferation assays like 
Sulforhodamine B assay, MTT assay, and Cell Counting Kit 8 assay, BD has been established to exhibit 
anti-proliferative properties against pancreatic cancer cells (PANC-1, SW1990, CAPAN-1) [29, 37], lung 
cancer cells [A549, NCI-H292, non-small cell lung cancer (NSCLC) H460] [28, 42, 43], chronic myeloid 
leukemia (K562) [44], breast cancer cells (MDA-MB-231) [30], hepatocellular carcinoma cells (Bel7404, 
HepG2, Hep3B, Huh7, PLC) [45, 46], and osteosarcoma cells (MNNG/HOS, U-2OS, MG-63, Saos-2) [47]. In 
all of the investigated cancer cell lines, there was increased activation of pro-apoptotic proteins like B-cell 
lymphoma 2 (Bcl-2) associated protein (Bax) and Bak and downregulation of anti-apoptotic proteins like 
Bcl-2 and myeloid cell leukemia 1 (Mcl-1) [48], all of which are tightly linked to cellular proliferation and 
apoptotic pathways like phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target 
of Rapamycin (mTOR), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinases (MAPK), and 
canonical Wnt signaling pathways (Figure 1) [49-52]. The anti-proliferative effects of BD and IC50 values on 
the aforementioned in vitro cancer cell lines and in vivo cancer models are summarized in Table 1 and Table 2, 
respectively. It has been noticed that the anti-proliferative effect of BD varied in a time-dependent and dose-
dependent manner in all of the experiments. Importantly, no significant toxicity of BD was observed against 
normal control cell lines.
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Effect of BD against triple-negative breast cancer (TNBC)
TNBC is characterized by the absence or down-regulation of estrogen receptors, progesterone receptors, 
and human epidermal growth factor 2 receptors [53-55]. Due to its aggressiveness, malignancy, and distant 
recurrence, TNBC is usually accompanied by a poor clinical prognosis and short life expectancy [55, 56]. To 
date, the best therapeutic treatment for TNBC is restricted only to chemotherapy, surgical tumor removal, and 
limited clinical drugs which are still being evaluated in clinical trials [55, 57-59]. It is therefore imperative 
to uncover new sources of adjuvant or stand-alone treatment for TNBC, be it to combat TNBC or to alleviate 
discomfort from standard chemotherapy and surgical procedures. Luo et al. [30], have investigated the 
inhibitory effects of BD on MDA-MB-231 (TNBC) cells. They investigated the role of PI3K/AKT signaling 
in tumor metastasis with low doses of BD that does not affect cell viability as it was previously reported 
that the PI3K/AKT signaling pathway was implicated, albeit in colorectal cancer cells [60]. It was found 
that BD significantly decreased PI3K expression and AKT phosphorylation in a dose-dependent manner 
while total AKT levels remained constant, leading them to conclude that the PI3K/AKT signaling pathway 
was implicated in tumor metastasis of TNBC. While the role of PI3K/AKT signaling in cell proliferation 
was not clearly established in the study, it has long known that the PI3K/AKT signaling pathway regulates 
cellular proliferation, cell cycle, and apoptosis. Its dysregulation is also implicated in various in vitro cancer 
models, where PI3K and it's downstream molecular targets are constitutively active, leading to uninhibited 
cell proliferation and cell growth [61]. Further, it was also found that the PI3K/AKT/mTOR pathway is 
frequently activated in TNBC [62]. With knowledge from existing literature, there is a high possibility that 
anti-proliferative and pro-apoptotic effects of the BD on TNBC could be mediated through the PI3K/AKT 
pathway. However, we can only hypothesize at best since it was never explicitly investigated in the context of 
proliferation and apoptosis.

Effect of BD against pancreatic adenocarcinoma
Pancreatic adenocarcinoma comprises 95% of the diagnosed pancreatic cancer cases, with other cases 
being rarer forms of neuroendocrine cancers [63, 64]. Patients with pancreatic cancer have worse prognosis 
due to its aggressive, metastatic, and drug-resistance nature [65, 66]. Chemotherapeutic agents such as 
gemcitabine, 5-fluorouracil, and capecitabine are commonly administered for patients with pancreatic 
adenocarcinoma. To date, gemcitabine remains the chemotherapeutic agent of choice [64, 67], but acquired-
gemcitabine resistance of pancreatic adenocarcinoma cells is the unsolved mystery [68-70]. Natural bioactive 
compounds like camptothecin (DNA topoisomerase I poison) could also be used as a chemotherapeutic agent 
but it showed only low therapeutic efficacy with severe toxicity [71]. It has been previously demonstrated 
that Brucea javanica fruit extract was able to exert cytotoxic and pro-apoptotic effects against pancreatic 
adenocarcinoma cell lines PANC1, SW1990, and CAPAN-1 [37, 72]. In a follow-up study in 2009 by the 
same team, BD was used directly instead of Brucea javanica fruit extract. It was shown that there was a BD 
dose-dependent apoptogenic effect on PANC-1 cells following Annexin V-PI double staining. Western blot 
analysis was also congruent with the results of the Annexin V-PI assay, whereby induction of caspase 3 and 8, 
enhancement of pro-apoptotic protein Bak, and decrease in anti-apoptotic protein Bcl-2 were seen. Further 
investigation elucidated that BD-induced cellular apoptosis was mediated through the necessary activation 
of the p38-MAPK signaling pathway as prior incubation with p38-MAPK inhibitor SB203580 attenuated 
caspase activation and DNA fragmentation.

MAPK participates in signaling pathways that are crucial for the maintenance of normal cellular 
processes like cell-cycle progression, cell proliferation, and apoptosis [73-77]. p38-MAPK constitutes one 
of the four subgroups within the MAPK family and respond to a wide range of extracellular stimuli such as 
stress or growth factor stimulation [78]. It is known that p38-MAPK activation could induce apoptosis and 
cell-cycle arrest, leading to tumor suppression. Conversely, inactivation, or down-regulation of p38-MAPK 
increases the tumorigenic potential of cells as DNA damage accumulates with each successive cell cycle [79]. 
Downstream molecular targets of p38-MAPK include c-Jun, signal transducers and activator of transcription 
1 (STAT1), and p53 proteins amongst an abundance of other proteins, all of which are involved in regulating 
the balance between cellular proliferation and apoptosis [79-84].
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It was proposed in the study that BD could have participated in both extrinsic and intrinsic apoptotic 
pathways. In the intrinsic pathway, BD would have acted as an extracellular stress signal which activates the 
p38-MAPK pathway. In the extrinsic pathway, BD would have acted as a ligand to membrane death receptors. 
No discrimination was made between those two apoptotic pathways when it came to examining the expression 
of caspase 3, caspase 8, and caspase 9 is known to be implicated in both mitochondrial-mediated apoptosis 
and receptor-mediated apoptosis [85].

Effect of BD against chronic myeloid leukemia
Chronic myeloid leukemia is a myeloproliferative malignancy that is usually caused by a chromosomal 
rearrangement event between chromosome 22 and chromosome 9 to form the Philadelphia chromosome 
[86, 87]. It is characterized by over-expression of a fusion oncoprotein BCR-ABL1 that acts as a constitutively 
active defective tyrosine kinase, implicating downstream signaling pathways such as PI3K/AKT/mTOR, Janus 
kinase (JAK)/STAT and Ras protein family (Ras)/mitogen-activated protein kinase kinase (MEK), all of which 
are crucial in maintaining normal cellular proliferation and apoptosis [86, 88]. Conventional therapeutic 
agents like imatinib, nilotinib, dasatinib, ponatinib, and bosutinib, therefore, act as tyrosine kinase inhibitors 
to prevent constitutive activation of the receptor tyrosine kinases in CML [86, 89-91].

BD was found to induce cellular apoptosis via the intrinsic mitochondrial-apoptotic pathway to K562 
cells in a time-dependent manner [44, 80]. The intrinsic apoptosis pathway is characterized by a loss of 
membrane potential leading to the release of cytochrome c (cyt c) to the cytosol. Cyt c then binds to apoptotic 
peptidase activating factor 1 and caspase-9 to form an apoptosome, which cleaves caspase 3 to trigger 
apoptosis [44, 92]. It was postulated that the PI3K/AKT and Ras/Raf/extracellular signal-regulated kinase 

Figure 1. Mechanisms of BD for its anticancer effect in human cancers. BD treatment suppressed the AKT/ERK and activate 
the JNK signaling cascades to induce apoptosis of cancer cells. BD caused apoptosis of cancer cells by regulating ROS and 
mitochondrial proteins
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(ERK) pathways were upstream targets of BD in the study. Indeed, phosphorylated AKT and phosphorylated 
ERK levels were attenuated in cells treated with BD. However, since ERK activation need not always lead to 
pro-survival signals as ERK activation was reported to exhibit pro-apoptotic functions [93, 94], ERK activity 
must be interpreted in context. It remains unclear whether BD acted as a receptor tyrosine kinase inhibitor 
prior to PI3K and ERK activation or as an activator of phosphatases to PI3K and ERK.

Table 1. Details of the anticancer efficacy of BD in several human malignancies using in vitro models

Cancer type Cell lines Anti-cancer 
efficacy

Mode of action Concentration 
(µM)

IC50 (anti-
proliferation)

References

NSCLC A549
NCI-H292

Anti-proliferative ↑ROS, ↑pJNK, 
↑Apoptosis;
↑LC3-II, 
↑Autophagy 

0-40 A549: 17.89 (48 h)
NCI-H292: 14.42 
(48 h)

[28]

A549
H460
PC9
H1975

Anti-proliferative A549, H460: 
↑pJNK, ↓Bcl-2, 
↑BAX, ↑caspase 
3 and PARP, 
↑Apoptosis

0-12.5 A549: 0.6 (48 h)
H460: 0.5 (48 h)
PC9: 1.0 (48 h)
H1975: 2.7 (48 h)

[41]

Pancreatic 
adenocarcinoma

PANC1
SW1990
CAPAN-1

Anti-proliferative PANC1: ↑p38-
MAPK, ↓Bcl-2, 
↑BAX, ↑caspase 
3 and 8

< 0.1-> 30 PANC1: 2.53 (72 h)
SW1990: 5.21 (72 h)
CAPAN-1: 1.35 (72 h)

[29, 37]

Chronic Myeloid 
Leukemia

K562 Anti-proliferative ↓pAKT and 
pERK;
↓Ψm, ↑caspase 
3 and 9, ↑PARP

0-12 6.37 ± 0.39 (72 h) [44]

TNBC MDA-MB-231 Anti-proliferative
Anti-invasive
Anti-migration

↓PI3K, ↓pAKT, 
↑E-cadherins, 
↓vimentin and 
β-catenin,  
partial EMT 
reversal

0-100 5.84 (48 h); 2.364 
(72 h)

[30]

Osteosarcoma MNNG/HOS
U-2OS
MG-63
Saos-2

Anti-proliferative
Anti-invasive
Anti-migration
Anti-CLC

↓pSTAT3, 
↓Cyclin D1, 
CDK4, CDK2, 
↑Apoptosis;
↓pSTAT3, 
↓CD133, SOX2, 
Oct-4, Nanog

0-20 MNNG/HOS: 0.9 
(48 h)
U-2OS: 0.05 (48 h)
MG-63: 0.65 (48 h)
Saos-2: 0.51 (48 h)

[47]

Hepatocellular 
carcinoma

Huh7
Hep3B

Anti-proliferative ↑Proteasome, 
↓Total β-catenin, 
↓Active 
β-catenin, 
↓JAG1, ↓NICD, 
↑Apoptosis

0-20 Approx. 2.5 (48 h) [45]

Bel7404
HepG2
Hep3B
Huh7
PLC

Anti-proliferative ↓miR-95, 
↑CUGBP2, 
↑Apoptosis

0.25-1.5 Bal7407: ~1.0 (72 h)
HepG2: ~0.8 (72 h)
Hep3B: ~0.75 (72 h)
Huh7: ~0.6 (72 h)
PLC: ~0.8 (72 h)

[46]

Ψm: mitochondrial membrane potential; CD133: prominin-1; CDK2: cyclin dependent kinase 2; CUGBP2: Elav-like family 
member 2; JAG1: Jagged1; LC3-II: autophagy marker; Nanog: homeobox protein NANOG; NICD: cleaved intracellular domain 
of Notch receptor; Oct-4: octamer-binding transcription factor 4 (also known as POU5F1); PARP: poly (ADP-ribose) polymerase; 
p38-MAPK: p38 mitogen-activated protein kinases; pAKT: phosphorylated protein kinase B; pERK: phosphorylated extracellular 
signal regulated kinase; pJNK: phosphorylated c-Jun N-terminal kinase; pSTAT3: phosphorylated signal transducer and 
activator of transcription 3; SOX2: SRY (sex determining region Y)-box 2; CDK4: cyclin-dependent kinase 4; EMT: epithelial-
mesenchymal transition; miR-95: microRNA-95
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Effect of BD against NSCLC
NSCLC constitute the majority of lung cancer cases in the world [95-100]. The effects of BD on the NSCLC cell 
lines A549, NCI-H292, and H460 has been investigated by different groups and reported that BD-induced 
intrinsic cellular apoptosis was mediated through the MAPK/JNK pathway [28, 42, 43]. Similar to p38-MAPKs, 
JNKs belong to the MAPK superfamily and regulate important biological processes like cellular proliferation 
and apoptosis. Phosphorylation of JNK will translocate it to the nucleus, where it phosphorylates c-Jun and 
forms activator protein 1, a transcription factor that is involved in the expression of pro-apoptotic proteins 
in both extrinsic and intrinsic apoptosis pathways [101]. In addition to apoptosis, BD was able to enhance 
autophagic flux in cell lines A549 and NCI-H292, another cellular process that can inhibit tumorigenesis and 
cancerous cell proliferation [28, 43].

Furthermore, it was highlighted that JNK activation and subsequent cellular apoptosis and autophagy 
was mediated mostly through BD-induced reactive oxygen species (ROS) production. Pre-treatment of cells 
with N-acetylcysteine, an antioxidant, before BD administration abolished apoptosis and autophagy almost 
entirely [28]. ROS are constantly being produced by cellular metabolic processes, and they are removed by 
antioxidant proteins [102]. Failure to maintain the dynamic equilibrium between ROS production and ROS 
elimination would result in oxidative stress to the cell [102, 103]. To this effect, ROS can activate different 
MAPK pathways to elicit different cellular responses. Herein, it is widely recognized that ROS oxidizes Trx 
(an antioxidant protein) to dissociate from apoptosis signal-regulating kinase 1 (ASK-1) (MAP3K5, another 
member of the MAPK family). The active ASK-1 would then activate downstream JNK pathways [102, 103]. 
BD also demonstrated the same effects in vivo, at least for A549 and NCI-H292 cell lines [28, 43].

Effect of BD against osteosarcoma
Osteosarcoma is a relatively rare type of primary bone malignancy that occurs mostly during adolescence and 
young adulthood [104]. While tumors can be treated efficiently with traditional chemotherapy, increasingly 
resistant cancer stem cells (CSCs) pose a significant threat to recurrent cancer progression [104]. This 
highlights the need to develop agents that could target CSCs specifically in addition to proliferating tumors 
[105-108]. In this light, the effect of BD against osteosarcoma cell lines MNNG/HOS and U-2OS was explored 
by Wang et al. [47]. It was demonstrated that BD-induced inhibition of cellular proliferation was through 
modulating key proteins involved in cell cycle progression and promoting apoptosis. There was significant 
downregulation of Cyclin D1, CDK4, and CDK2 expression. Cyclin D1 is vital in regulating the transition from 
G1 to S phase, and over-expression of cyclin D1 has been associated with tumorigenesis [47]. Increased pro-

Table 2. Details of the anticancer efficacy of BD in several human malignancies using in vivo models
Cancer type Model 

used
Dose Duration Measurement 

frequency
Route of 
administration

Observed 
effects

Mode of 
action

References

NSCLC A549 
cells in 
BALB/c-
nu mice

40 mg/
kg/day

15 days Every 2 days Intraperitoneal 
injection

↓Tumour 
growth

↑pJNK, 
↑caspase 9 
↑Apoptosis;
↑LC3-II, 
↑Autophagy 

[28]

Osteosarcoma MNNG/
HOS cells 
in BALC/
c-nu mice

2.5 mg/
kg/2 
days;
5.0 mg/
kg/2 days

12 days Every 2 days Intraperitoneal 
injection

↓Tumour 
size
↓Tumour 
weight

↓pSTAT3, 
↓MMP2 and 
MMP9, ↓Ki67

[47]

Hepatocellular 
carcinoma

Huh7 
cells in 
BALC/c-
nu mice 

0.75 mg/
kg/day;
1.5 mg/
kg/day

10 days Daily Intravenous tail 
vein injection

↓Tumour 
growth

↑Proteasome, 
↓Total 
β-catenin, 
↓Active 
β-catenin, 
↓JAG1, 
↓NICD, 
↑Apoptosis

[45]

MMP2: matrix metalloproteinase-2 (gelatinase A); MMP9: matrix metallopeptidase 9 (gelatinase B)
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apoptotic protein expression was also detected for cells treated with BD. The repression of the JAK2/STAT3 
signaling pathway was seen to be implicated for cells with BD treatment, with particular attention being paid 
to the upregulation of phosphatase Tyrosine-protein phosphatase non-receptor type 6 (SHP1) that negatively 
regulates STAT3 [47].

Most notably however was that BD treatment was able to decrease the proportion of stem-like 
osteosarcoma cells and impaired the self-renewal ability of osteosarcoma stem cells [47]. This was quantified 
through the downregulation of biomarkers via flow cytometry and Western blot analysis of multiple CSC 
markers like CD133 and stem cell markers like SOX2, Oct-4, and Nanog (Figure 2) [47].

Effect of BD against hepatocellular carcinoma (HCC)
HCC is one of the most common malignancies in the world [109-111]. To date, only a few targeted therapies 
have found to be effective against HCC and natural products may also exhibit their diverse anti-cancer 

Figure 2. Mechanisms of BD for anti-metastatic effect in human malignancies. BD results in increased expression of E-cadherin 
and decreased expression of vimentin and N-cadherin leading to decreased EMT. BD treatment leads to decreased expression 
of OCT4 and SOX2 to eradicate the CSCs. BD exposure attenuates the expression of MMP2 and MMP9 to inhibit migration and 
invasion of cancer cells 
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actions against this malignancy [112-114]. Hence, there is a need for the development of cheaper and more 
encompassing therapeutic options. Two modes of action of BD-induced inhibition cellular proliferation 
were uncovered. In one study, BD suppresses proliferation via β-catenin/JAG1 pathways [45]. BD was 
demonstrated, both in vivo and in vitro, to induce proteasomes that degraded β-catenin and active β-catenin 
and pro-survival proteins from the transcriptional activities of active β-catenin from the canonical Wnt/β-
catenin signaling pathway [45], which includes the JAG1 protein [115]. JAG1 in turn acts as a ligand to the 
canonical Notch signaling pathway, in which over-expression of JAG1 and/or aberrant activation of the Notch 
pathway is associated with cancer [116].

In a separate study using Hep3B, PLC, HepG2, Huh7, and Bel7407, BD suppressed cellular proliferation 
via miR-95 expression and induction of pro-apoptotic protein CUGBP2 [46]. There is growing evidence 
that miRNAs are capable of effecting oncogenic or tumor-suppressive functions, dysregulation of which 
have significant influence over tumorigenesis and its underlying cellular processes [117]. The oncogenic 
function of miR-95 is implicated in a wide range of cancers like osteosarcoma, recurrent NSCLC, and HCC, 
where down-regulation of miR-95 has been found to suppress tumor growth [38, 118]. BD was suggested as 
a negative regulator of the promoter of miR-95, whereby BD treatment decreased miR-95 expression. Using 
bioinformatics analysis via TargetScan and PicTar, it was further identified that the 3’ untranslated region 
of CUGBP2 mRNA was a direct downstream target for miR-95, and miR-95 binding interfered with CUGBP2 
translation [119]. While CUGBP2 was previously shown to induce apoptosis in colon cancer cells via active 
stabilization and translation inhibition of pro-survival protein Mcl-1 [120], the mechanism of CUGBP2 within 
HCC has not been elucidated.

Anti-metastatic effects of BD
Metastasis can be defined as the spread of neoplastic tissue to organs and systems beyond the origin of a benign 
tumor, usually resulting in the formation of new tumors [121-123]. It is an extremely complex process that 
involves a sequential series of steps known as the invasion-metastasis [124-129]. In brief, metastasis begins 
with the invasion of cancer cells into the local extracellular matrix, followed by penetration of endothelium 
basal membrane and entry into blood vessels and/or lymph nodes, usually ending with extravasation into the 
surrounding tissue of a distant organ [128-133]. In particular, it was proposed that EMT is paramount to the 
start of the cascade. It is worth noting that EMT is not exclusive only to tumorigenesis as it also participates in 
many other normal cellular processes like embryonic development, wound healing, tissue regeneration, and 
fibrosis [127, 134-136]. However, when EMT is reactivated (partially or fully) in cancer cells indiscriminately, 
these cells acquire mobility, a mesenchymal feature that augments invasiveness and metastasis of cancer 
cells [128, 136, 137]. Through extensive research of in vitro cancer cell-based models, it has been found that 
the hallmarks of EMT are overexpression of EMT regulatory transcriptional factors such as the family of zinc-
finger proteins (SNAIL)1/2 and Twist-related proteins (TWIST)1/2 as well as dysregulation of key proteins 
like E-cadherin, N-cadherin, vimentin, and β-catenin (Figure 2) [128, 136, 138, 139]. The anti-metastatic 
effects of BD have only been studied in human TNBC and osteosarcoma. In a study by Luo et al. [30], have 
used low concentrations of BD (1 μM to 4 μM) to determine its effect on the migration and invasion of breast 
cancer cells. This study displayed that MDA-MB-231 cells treated with BD had lowered migratory and invasive 
capabilities which varied in a dose-dependent manner [30]. It was also observed that loss of E-cadherin and 
overexpression of vimentin and β-catenin was abrogated in cells treated with BD varying in a dose-dependent 
manner, suggesting that the EMT program was successfully reversed, if not partially, in MDA-MB-231 cells 
(Figure 2). In another study, it was reported that BD-treated osteosarcoma cell lines MNNG/HOS and U2-OS 
displayed reduced expression of N-cadherin, MMP-2, and MMP-9, all of which are EMT biomarkers and play 
important roles in tumorigenesis [47]. Wang et al. [47], took it one step further and exemplified the partial 
involvement of the JAK2/STAT3 signaling pathway in BD-induced inhibition of osteosarcoma growth and 
migration. Constitutively active STAT3 has been shown to induce tumor formation in osteosarcoma. In both 
cell lines, phosphorylated JAK2 and STAT3 was decreased while phosphatase SHP1, a negative regulator of 
STAT3, was upregulated, indicating that BD reversed the constitutive activation of the JAK2/STAT3 signaling 
pathway in the osteosarcoma cell lines [47].
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Although the anti-metastatic effects of BD seem promising, both studies only demonstrated the effect 
of BD against their respective cancer cell lines in vitro. In vitro, modeling can model certain aspects of 
tumorigenesis such as cellular migration and invasion, but it suffers from certain inherent limitations as it 
lacks the complete physiological interactions in vivo. In order to fully assess the anti-metastatic effects of BD, 
in vivo animal models should be carefully examined before concluding.

Potential anti-inflammatory effects of BD
Chronic inflammation has been hailed as one of the significant hallmarks of cancer progression and 
tumorigenesis. Through chronic inflammation, a conducive tumor microenvironment is formed from 
the plethora of inflammatory cells and cytokines available in the vicinity, promoting tumor survival and 
proliferation[140-142]. One of the prominent players involved in the inflammation-tumorigenesis cross-
talk is nuclear factor-κB (NF-κB). NF-κB is a nuclear transcription factor that regulates genes responsible 
for the body’s immune responses as well as other essential physiological responses like inflammation, cell 
proliferation, and apoptosis [143, 144]. BD has been observed to be the second most potent inhibitor of 
inflammation in rodents, with the first being brusatol, another quassinoid extracted from Brucea javanica 
as well [145]. Recently, the anti-inflammatory properties of Brucea javanica oil emulsion (BJOE) in dextram 
sulfate sodium-induced ulcerative colitis has been investigated [146]. Oleic acid and linoleic acid have been 
found to have major components of BJOE, and that both oleic acid and linoleic acid have been shown to 
display anti-inflammatory properties. Despite BD not being a component of BJOE, it was found that the NF-κB 
pathway was significantly attenuated via inhibition of NF-κB and nuclear factor of kappa light polypeptide 
gene enhancer in B-cells inhibitor, alpha (IκBα). Another study on ulcerative colitis directly used BD in 0.5% 
sodium carboxymethyl cellulose solution and BD delivered using a self-nanoemulsifying drug delivery system 
(BD-SNEDDS) [146, 147]. It was reported that in addition to attenuating the NF-κB pathway, BD was also 
capable of suppressing cyclooxygenase-2, an enzyme implicated in inflammation [18]. In a separate study on 
Parkinson’s disease, BD was also found to inhibit inflammation as well albeit via the nuclear factor erythroid 
2-related factor 2 (Nrf2) signaling pathway.

Although there is currently no evidence of BD’s anti-inflammatory properties in cancer models, given 
the highly intertwined nature of NF-κB in the cross-talk between inflammation and cancer, it would therefore 
not be surprising if BD exhibited anti-inflammatory properties in inhibiting tumorigenesis and cancer 
development.

Pharmacokinetics, toxicity and metabolism
As mentioned previously, BD was explored as an anti-inflammatory agent to ulcerative colitis. The 
pharmacokinetics of BD-suspension in 0.5% sodium carboxymethyl cellulose solution was only established 
in the same ulcerative colitis murine model study relative to BD-SNEDDS. The concentration used for both BD 
and BD-SNEDDS was 3.0 mg/kg-1.

As established by the aforementioned BD research, all of them noted non-significant toxicity against 
normal cell lines in vitro (cell viability maintained) and in vivo (maintenance of growth parameters like 
weight). There is currently no study indicating any other toxicity, allergies, or contraindications when using 
BD. Drug metabolism of BD in vitro and in vivo and whether any adverse metabolites are produced remain 
unknown.

Clinical application of BD
Currently, BD is commonly used with other quassinoids and bioactive compounds within BJOE as adjuvant 
therapy to chemotherapy and radiotherapy of various malignancies in China, some of which include brain 
cancers, gastrointestinal cancers, and urological malignancies. BJOE is administered for its anticancer effects 
and/or attenuation of side effects from conventional cancer treatment [26]. Clinical trials involving BD as a 
stand-alone treatment option or adjuvant therapy had yet to be conducted. Further research on its clinical use 
should, therefore, be conducted to fully ascertain its inhibitory effects on tumorigenesis in human patients.
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Conclusion and future directions
This review highlights the antineoplastic effects of BD in various cancer models. The BD has been demonstrated 
to exhibit anti-proliferative and pro-apoptotic effects against various cancer cell lines via inhibition of the 
key regulatory signaling pathways like PI3K/AKT/mTOR, JAK/STAT, JAG1/Notch. Also, there were promising 
metastatic regulatory effects on breast cancer and osteosarcoma cell lines and potential anti-inflammatory 
effects. However, there is still much to be learned about the exact molecular targets of BD as many of the 
studies were mainly concerned with finding its antineoplastic effects and not its direct molecular target per 
se. Given the mounting evidence of BD efficacy against various cancer cell lines in vitro and in vivo, BD could 
potentially be considered as yet another novel anticancer drug and a future candidate for clinical trials and 
development. In the future, the combination of BD with standard chemotherapeutic drugs may be explored 
for developing better treatment options with the aim of long-term disease-free survival.
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