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Abstract
Aim: The process of biomarker discovery is being accelerated with the application of artificial intelligence (AI), 
including machine learning. Biomarkers of diseases are useful because they are indicators of pathogenesis 
or measures of responses to therapeutic treatments, and therefore, play a key role in new drug development. 
Proteins are among the candidates for biomarkers of rectal cancer, which need to be explored using 
state-of-the-art AI to be utilized for prediction, prognosis, and therapeutic treatment. This paper aims to 
investigate the predictive power of Ras homolog family member B (RhoB) protein in rectal cancer.

Methods: This study introduces the integration of pretrained convolutional neural networks and support 
vector machines (SVMs) for classifying biopsy samples of immunohistochemical expression of protein RhoB 
in rectal-cancer patients to validate its biologic measure in biopsy. Features of the immunohistochemical 
expression images were extracted by the pretrained networks and used for binary classification by the SVMs 
into two groups of less and more than 5-year survival rates.

Results: The fusion of neural search architecture network (NASNet)-Large for deep-layer feature 
extraction and classifier using SVMs provided the best average classification performance with a total 
accuracy = 85%, prediction of survival rate of more than 5 years = 90%, and prediction of survival rate of 
less than 5 years = 75%.

Conclusions: The finding obtained from the use of AI reported in this study suggest that RhoB expression 
on rectal-cancer biopsy can be potentially used as a biomarker for predicting survival outcomes in 
rectal-cancer patients, which can be informative for clinical decision making if the patient would be 
recommended for preoperative therapy.
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Introduction
The Precision (PRE) Medicine Initiative announced in 2015 is a new medical research effort to replace 
the practice of “one-size-fits-all” with patient-specific treatment in health care [1]. A key success of PRE 
medicine is the discovery of disease biomarkers for the prevention, prediction, prognosis, and treatment of 
diseases [2, 3]. This initiative has been found to be promising in clinical trials and its success is evidenced 
by increasing new drug approvals [4]. While good efforts for obtaining the whole molecular information of 
patients are being pursued in clinics, however, only a small number of molecular biomarkers have been used 
for targeted drug development in current PRE medicine. Artificial intelligence (AI) methods are realized as 
the cutting-edge technology for enabling to comprehend the patients’ heterogeneous landscapes across their 
molecular profiles so that new drugs can be made for personalized prevention and treatment [4].

In colorectal cancer (CRC), ensemble classification and regression were sequentially used as 
machine-learning methods for predicting the survival chance and time of patients with CRC, 
respectively [5]. An application of AI in CRC used 10 pretrained convolutional neural networks (CNNs) for 
classifying N-terminally truncated p73 (DNp73) expression identified by immunohistochemistry (IHC) on the 
biopsy and surgically resected tumor samples obtained from a cohort of rectal cancer patients [6]. Average 
validation results reported in the study showed high accuracy (ACC) rates for the prediction of less or more 
than 5-year survival rate of the rectal-cancer patients either with or without preoperative radiotherapy (pRT). 
Such a finding can be helpful for clinical decision making if the patient would be treated with pRT based on 
the predicted survival outcome [6].

Another AI-based diagnosis system, which applied deep learning for pattern classification, was 
developed for detecting patients with CRC using both quantitative and qualitative data, including 
pathology [7]. As in another study, 10 CNNs were trained for classifying images of heterogeneous 
hematoxylin and eosin (HE) stained tumor tissues that were obtained from four cohorts of CRC patients with 
good or poor disease outcomes [8]. The study discovered a prognostic marker that can locate stage II and III 
patients with CRC into separate groups. Such use of AI in HE image screening opens a new door to assisting 
clinicians in preventing low-risk cohorts from having unnecessary therapy, and otherwise recommending 
appropriate types of treatment that would produce good effects on other groups of patients. Similarly, 
AI-based classification of histopathology images was applied for detecting and diagnosing CRC patients [9]. 
Not only the AI tool could much more accurately perform the tasks than being done by pathologists 
but also was able to significantly alleviate the conventional workload that causes fatigue to human-based 
assessment [9]. Another study applied machine learning of clinical and next-generation sequencing data 
for identifying molecular characteristics in patients with metastatic CRC treated with oxaliplatin-based 
chemotherapy [10]. The identified biomarker can assist in clinical decision making if patients with 
advanced CRC should have alternative regimens to adjuvant therapy, where the latter would not benefit 
the patients [10].

Using whole slide images, a deep-learning approach was developed for predicting the survival time 
of patients with CRC in stages II and III [11]. This study suggested new prognostic features that need to 
be further validated in future clinical trials. Novel applications of AI in CRC have been recently reviewed 
and discussed how the technology would help to reduce the risk and occurrence of cancer and lead to 
personalized treatment of the disease by means of its promising ability to discover patterns and causes 
of CRC [12].

Here the power of Ras homolog family member B (RhoB) protein as a biomarker in rectal cancer biopsy 
is examined from the standpoint of AI and machine learning. RhoB is a member of the Rho family of proteins, 
whose function takes part in the regulation of the actin cytoskeleton, cell adhesion, and cell growth [13]. 
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Evidence of tumor formation was found in mice when RhoB was deleted [14]. Another study indicated the 
correlation of RhoB expression in clear cell renal cell carcinoma (ccRCC) carcinogenesis and progression [15]. 
These findings strongly suggest that RhoB is one of the potential targets for anti-cancer therapeutics [13, 15].

A study found that RhoB expression plays a critical role in the radioresistance of CRC through 
Ak strain transforming (Akt) and forkhead box protein M1 (FOXM1) pathways [16]. However, our manual 
pathologist-based analysis could not confirm the predictive value of RhoB expression in biopsy samples 
of CRC patients. A recent investigation has reported the use of tensor decomposition of convolutional 
eigenvalues of RhoB expression in IHC images of biopsy collected from two groups of rectal-cancer patients 
who had survival rates of less or more than 5 years [17]. By using all IHC biopsy samples, the method of tensor 
decomposition could differentiate between the factor distributions of the two groups of patients without 
pRT, who had different survival rates, but the study did not carry out the cross-validation (classification) of 
the samples.

This study introduces the combination of pretrained CNNs and a support vector machine (SVM) 
algorithm for discovering the power of RhoB expression on IHC-stained biopsy samples obtained from two 
cohorts of rectal-cancer patients having less or more than 5 years of survival after surgery.

Materials and methods
Patients’ data
This study included rectal cancer patients from the southeast health care region of Sweden between 1984 
and 2013. About half of the patients received both pRT and surgery, and the rest had surgery alone. All 
patients were followed up to more than five years or death. Biopsy samples were obtained from the primary 
tumor of the patients before radiotherapy (RT) or surgery, fixed with formalin, embedded in paraffin, and 
made as tissue microarray (TMA). The TMAs were sliced into 4 µm sections and treated slides following 
the immunohistochemical procedures. The slides were incubated with primary antibody (anti-RhoB mouse 
monoclonal, sc-8048), secondary antibody, and envision system labelled polymer-HRP anti-mouse. For 
visualization, diaminobenzidine (DAB) was applied to the slides followed by counterstaining with HE staining 
solution and mounted with Pertex mounting media.

Biopsy samples included in this study were taken from 53 patients without pRT from the randomized 
Swedish rectal cancer trial of pRT [18], whose clinical and pathological characteristics are described 
in Table 1. The image set consists of 120 IHC-stained biopsy samples (mean of 2.26 samples per patient), of 
which 45 images are of survival rate of < 5 years, and 75 images are of > 5 years. The ratio of < 5-year image 
set to > 5-year image set (45:75) indicates a data imbalance in the two class labels, which usually happens in 
many medical datasets. The 10-fold cross-validation, which is a method for evaluating predictive models 
by randomly splitting 90% of the original dataset into a training set to train the model, and 10% of 
the original dataset into a test set to evaluate its performance, was used to compute various performance 
measures of the classification models. For this binary classification of IHC images of RhoB expression in rectal 
cancer biopsy (either < or > 5 years of survival), > 5-year survival is considered as positive (P), and < 5-year 
as negative (N). The numbers of samples of > and < 5 years of survival are denoted as P and N, respectively. 
True P (TP) is the number of samples of > 5 years that are correctly classified as > 5 years, whereas 
true N (TN) is the number of samples of < 5 years being correctly classified as < 5 years. False P (FP) is the 
number of samples of < 5 years that are misclassified as > 5 years. False N (FN) is the number of samples 
of > 5 years that are misclassified as < 5 years. Formulae for calculating classification ACC, sensitivity (SEN) 
or TP rate, specificity (SPE) or TN rate, PRE or P predictive value, and F1 score are given in Table 2.

Table 1. Clinical and pathological characteristics of included rectal cancer patients

Characteristics Surviving > five years (%) 
n = 33

Surviving < five years (%) 
n = 20

Chi-squared test P-value

Sex 0.37 0.54
Male 19 (57) 9 (45)
Female 14 (43) 11 (55)
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Table 1. Clinical and pathological characteristics of included rectal cancer patients (continued)

Characteristics Surviving > five years (%) 
n = 33

Surviving < five years (%) 
n = 20

Chi-squared test P-value

Age (years) 0.55 0.46
< 70 15 (45) 12 (60)
≥ 70 18 (55) 8 (40)

Tumor location (cm) 6 (2–14) 4 (1–17) 198.5 < 0.05
Operation type 0.45 0.5

Anterior resection 16 (48) 7 (35)
Abdominoperineal resection 17 (52) 13 (65)

pTNM stage * < 0.05

I 14 (42) 0 (0)
II 13 (39) 2 (10)
III 6 (18) 15 (75)
IV 0 (0) 3 (15)

Local recurrence 7.28 < 0.05
No 31 (94) 12 (60)
Yes 2 (6) 8 (40)

Distal recurrence 21.6 < 0.05
No 29 (88) 4 (20)
Yes 4 (12) 16 (80)

*: Fisher’s exact test; pTNM: pathological tumor, node, and metastasis

Table 2. Performance measures of classification models

ACC SEN SPE PRE F1

P N
TP TN
+
+

P
TP

N
TN

TP FP
TP
+

CNN-based feature extraction of IHC images
Pretrained CNNs for image classification have been trained to extract differentiable features from natural 
images of various classes. These pretrained deep networks can be used for learning and recognizing new 
classes. Most of these pretrained networks were trained on subsets of the ImageNet database 20, which include 
more than a million images of 1,000 different categories. CNN architectures consist of many convolutional 
layers. While early layers at the beginning of the networks have a small receptive field size to learn low-level 
or simple features, deeper network layers at the end of the networks have larger receptive field sizes to learn 
high-level or complex features.

The three main layers of a CNN are convolutional, pooling, and fully connected layers. The basic 
purpose of the pooling layer is to down-sample the feature map learned by the convolutional layer. As a 
result of feature compression, it can help generalize the features to avoid overfitting in the model training. In 
average pooling, the layer computes the average values of elements in the feature map, resulting in producing 
the average down-sampled feature map that can be translation-invariant. Furthermore, the use of the global 
average pooling offers an advantage over the fully connected layers in that its structure is closer to the 
convolution layer that contains a set of filters for building the deep feature map of an input image [19]. This 
study adopted 6 pretrained CNNs for the deep feature extraction of the IHC images of RhoB expression on 
the biopsy samples of the two groups of rectal-cancer patients whose survival rates were < and > 5 years, 
respectively. These 6 CNNs, which were pretrained using the ImageNet database [20], represent a spectrum of 
publicly available networks of various sizes, layers, and parameters. The basic properties of these pretrained 
CNNs are shown in Table 3. These networks and their layers used for feature extraction of the IHC images 
are briefly described herein because the 6 pretrained CNNs used in this study are very well documented 
in the literature. The interested reader is referred to the cited references for detailed descriptions of the 
6 pretrained deep-learning models.
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Table 3. Properties of pretrained networks

Pretrained CNN model Layers Model size (MB) Parameters Input size (pixels)
ResNet-18 18 44 11.7 × 106 224 × 224
SqueezeNet 18 5.2 1.24 × 106 227 × 227
DenseNet-201 201 77 20 × 106 224 × 224
AlexNet 8 227 61 × 106 227 × 227
Xception 71 85 22.9 × 106 299 × 299
NASNet-Large 1244# 332 88.9 × 106 331 × 331
# indicates the network does not consist of a linear sequence of modules; NASNet: neural search architecture network; 
ResNet: residual network; DenseNet: dense convolutional network

(1) ResNet-18: This net is a version of a pretrained CNN called ResNet, which consists of 18 layers [21]. 
ResNet introduced the notion of the identity shortcut connection that stacks layers (skipping non-essential 
layers) on current networks that are still capable of providing the same performance [21]. In this study, layer 
“pool5” (global average pooling features = 512) was selected for feature extraction of the IHC images.

(2) SqueezeNet: It is a pretrained CNN, which is 18 layers deep [22, 23]. With the use of fire modules, 
which consist of “squeeze” convolution layers having only 1 × 1 filters, the net was created to have fewer 
parameters for a neural network so that it can be easily implemented on computers of standard memory and 
transmitted over computer networks. In this study, layer “pool0” (global average pooling features = 1000) 
was selected for feature extraction of the IHC images.

(3) DenseNet-201: This pretrained CNN is a variant of the DenseNet [24]. DenseNet-201 has 201 layers, 
where subsequent layers receive inputs from the previous layers by concatenation. Such an architecture that 
allows collective information received from the prior layers can reduce the number of channels, making the 
network become dense. In this study, layer “avg_pool” (global average pooling features = 1920) was selected 
for feature extraction of the IHC images.

(4) AlexNet: It is 8 layers deep [25], where the first 5 layers are convolutional, some followed by 
max-pooling layers, and the last 3 layers are fully connected. By using the non-saturating rectified linear 
activation function, the network was shown to be able to improve its training performance over tanh and 
logistic sigmoid activation functions [25]. In this study, layer “pool15” (max-pooling features = 256, whereas 
global average pooling features do not exist) was selected for feature extraction of the IHC images.

(5) Xception: The term Xception refers to extreme inception that is of depthwise separable 
convolutions [26]. This pretrained CNN consists of 71 layers. The network was designed with repeating 
modules called inceptions, where each of which carries out different transformations of the same input. 
Multiple transformed results obtained from the inception modules are combined and selected by the network 
for deep learning. In this study, layer “avg_pool” (global average pooling features = 2048) was selected for 
feature extraction of the IHC images.

(6) NASNet-Large: This is a variant of the NASNet models [27]. This net was designed to consist of 
normal and reduction cells to carry out search space, search strategy, and performance estimation to 
identify the best algorithm in order to achieve the best optimal performance over a certain piece of work. 
The NASNet search requires a large amount of computing processing for searching and training with 
particular reference to computer vision problems to achieve the best results [28]. In this study, layer 
“global_average_pooling2d_2” (global average pooling features = 4032) was selected for feature extraction 
of the IHC images.

SVM-based classification of IHC images

As pretrained CNNs can be utilized for obtaining effective features of images of new classes by using their 
layer activations. These activation-based features can be readily adopted for training an SVM for binary image 
classification. The rationale for extracting learned image features from a pretrained CNN and then using these 
features for training an SVM is that not only the extraction of pretrained CNN-based features is computationally 
efficient but also has been proven more effective for binary classification of pathological images by an SVM 
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classifier than the transfer learning [29, 30]. Particularly when the new dataset is relatively very small, it can 
be anticipated that the fine-tuning of pretrained deeper layers cannot improve the classification performance 
as there is little information to learn from the new data.

The SVM classifier tries to find a hyperplane that can well separate class features into two different 
groups for pattern classification. The classifier used in this study for learning the pretrained CNN-based 
features of the IHC images is a linear SVM binary learner. The linear SVM classifier works as follows [31, 32]. 
Let x = x1, …, xN be the set of CNN-based feature vectors of N IHC images. Each xi, i = 1, …, N, is classified as 
class yi = 1 for the survival of > 5 years (P class) or yi = –1 for the survival of < 5 years (N class). To determine a 
hyperplane for classification, the linear SVM function, which classifies feature set x, is defined as: 

,                                                                                       (1)

where two parameters w and b, which are used to identify the hyperplane, are the vector of coefficients and 
a bias (scalar), respectively.

The two hyperplanes can be determined as f x 1i =^ h  if yi = 1 and f x 1i = -^ h  if yi = –1. These conditions 

alternatively yield , i = 1, …, N. The optimal margin length is w2
1 , giving the 

optimization problem
Minimize w2

1 2

subject to , i = 1, …, N.                                                                                 
(2)

The objective function expressed in Eq. (2) can be optimized using the method of Lagrange multipliers, 
which introduces coefficients α1, …, αN as:

Minimize 

subject to ; αi ≥ 0, i = 1, …, N.                                                                              
(3)

By solving Eq. (3) for αi, i = 1, …, N, the resulting linear SVM algorithm that classifies feature set x by using 
the following sign function as:

.
                                                                                                    (4)

A diagram showing the main steps for classifying the IHC images into either < 5-year or > 5-year class 
using CNN and SVM is given in Figure 1.
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Figure 1. Training and testing procedures. A. Diagram of main steps for building an SVM classifier with extracted CNN features of 
training IHC and B. testing the trained SVM classifier in predicting the survival time given a test IHC

Results
For the direct classification of IHC images using ResNet-18, SqueezeNet, DenseNet, AlexNet, Xception, and 
NASNet-Large, parameters for the transfer learning of the pretrained deep-learning models were specified 
as: minimum batch size = 30, the maximum number of epochs = 20 (convergence reached), initial learning 
rate = 0.0003, number of epochs for dropping the learning rate = 10, factor for dropping the learning 
rate = 0.1, factor for L2 regularization (weight decay) = 0.0001, gradient threshold method = L2 norm, gradient 
threshold = ∞, and training and validation data were shuffled once before training using stochastic gradient 
descent with momentum.

The average results of the statistical measures (see Table 4) obtained from 5 runs of 10-fold 
cross-validation, which were obtained from 6 individual pretrained CNNs (ResNet-18, SqueezeNet, 
DenseNet, AlexNet, Xception, and NASNet-Large), and the extracted features of these pretrained CNNs 
for classification with the SVM (ResNet-18 & CNN, SqueezeNet & CNN, DenseNet & CNN, AlexNet & CNN, 
Xception & CNN, and NASNet-Large & CNN). The P-values of all the statistical measures are less than 0.00001.

Table 4. Ten-fold cross-validation results of binary classification of RhoB expression in rectal-cancer biopsy

Methods ACC (%) SEN (%) SPE (%) PRE (%) F1

ResNet-18 59.09 ± 8.83 75.71 ± 15.13 30.00 ± 19.72 65.65 ± 5.86 0.70 ± 0.08
ResNet-18 & SVM 67.28 ± 10.36 68.57 ± 27.48 65.00 ± 28.50 81.43 ± 12.21 0.70 ± 0.16
SqueezeNet 61.82 ± 10.32 70.00 ± 22.79 47.50 ± 21.89 71.75 ± 11.12 0.68 ± 0.14
SqueezeNet & SVM 67.28 ± 4.98 77.14 ± 21.30 50.00 ± 46.77 80.72 ± 17.78 0.73 ± 0.12
DenseNet-201 60.00 ± 8.78 72.86 ± 10.54 37.50 ± 24.30 68.11 ± 8.91 0.70 ± 0.07
DenseNet-201 & SVM 69.09 ± 10.36 82.86 ± 18.63 45.00 ± 20.92 78.89 ± 7.40 0.77 ± 0.10
AlexNet 54.55 ± 17.14 74.29 ± 25.02 20.00 ± 19.72 60.34 ± 14.70 0.66 ± 0.18
AlexNet & SVM 72.74 ± 11.13 85.71 ± 0.00 50.00 ± 30.62 76.67 ± 13.69 0.80 ± 0.07
Xception 60.91 ± 9.63 80.00 ± 13.36 27.50 ± 34.26 68.48 ± 13.20 0.72 ± 0.06
Xception & SVM 74.55 ± 7.61 74.29 ± 18.63 75.00 ± 30.62 87.14 ± 13.01 0.78 ± 0.08
NASNet-Large 71.82 ± 15.72 77.14 ± 22.54 62.50 ± 21.25 78.28 ± 11.94 0.76 ± 0.15
NASNet-Large & SVM 84.55 ± 7.48 90.00 ± 11.76 75.00 ± 20.41 87.70 ± 9.55 0.88 ± 0.06

The combination of NASNet-Large & SVM achieved the best average values with ACC = 85%, SEN = 90%, 
SPE = 75%, PRE = 88%, and F1 score = 0.9. The results particularly show the robust prediction of biopsy 
samples of > 5-year survival rate (90%). Without the use of the SVM, NASNet-Large provided ACC = 72%, 
SEN = 77%, SPE = 63%, PRE = 88%, and F1 = 0.8, which are lower than those obtained by the NASNet-Large & SVM. 
The second highest ACC (75%) was obtained from the Xception & SVM that also resulted in SEN = 74%, 
SPE = 75%, PRE = 87%, and F1 = 0.78. The performance ranking of the other 4 individual pretrained CNN 
classifiers from highest to lowest ACC rates are: SqueezeNet (62%), DenseNet-201 (60%), ResNet-18 (59%), 
and AlexNet (55%). The performance ranking of the other 4 classifiers with the combination of the 
pretrained CNNs & SVM from highest to lowest ACC rates are: AlexNet & SVM (73%), DenseNet-201 & SVM (69%), 
and either ResNet-18 & SVM (67%) or SqueezeNet & SVM (67%).

Discussion
The high statistical performance measures provided by the NASNet-Large & SVM strongly suggest the 
potential of RhoB expression captured on the IHC samples of the rectal-cancer biopsy as a protein biomarker 
for predicting the 5-year survival rate of rectal-cancer patients without undergoing pRT. Such finding of 
the discrimination power of RhoB in rectal-cancer biopsies is useful for clinical decision making and can 
be of guidance for recommending treatments to rectal-cancer patients. It has been known that invasive 
surgical operations for patients with cancer can be prevented if their short-term survival expectancy after 
diagnosis can be correctly predicted, and treatment can be provided to cancer patients with longer time 
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of survival expectancy [33]. This kind of pathological prediction can only be carried out using biopsies. In 
fact, the molecular information of tumors has been increasingly utilized for predicting response to cancer 
treatments, and the use of image-guided needle biopsy and biopsy-based biomarkers play an essential role 
in PRE medicine that promises a path to accurate prognosis, prediction of treatment response, or resistance 
in cancers [33, 34]. The use of advanced AI and machine learning for discovering intricate and complex 
patterns in tumor biopsies can open new doors to assisting clinical researchers in studying the effects and 
pharmacodynamics of cancer treatment drugs and timely identification of relevant biomarkers [35, 36].

The combination of pretrained CNNs (used for feature extraction) and SVM (used for pattern 
classification) appears to be a useful machine-learning tool for discovering or validating biomarker candidates 
through their molecular expression on biopsies, such as RhoB expression on IHC imaging as addressed in 
this study. Except for the Xception & SVM and ResNet-18 & SVM classifiers, where the results for SEN and SPE 
are similar, other classifiers yielded SPE much lower than SEN. The differences are mainly due to the effect of 
unbalanced data, where the number of samples of < 5 years (n = 45) is less than those of > 5 years (n = 75). 
From the machine-learning standpoint, it is expected that the SPE rate can be improved if more biopsy 
samples can be obtained for enhancing the power of transfer learning from pretrained CNNs and SVM-based 
classification. Regarding the use of data augmentation, which is introduced in deep learning for creating more 
data by modifying existing samples, this study applied translation, rotation, and reflection to the training 
data but the classification performance was not better than without the use of data augmentation. Similar 
findings on the ineffectiveness of augmenting medical image data for transfer learning were reported in 
the literature [37, 38].

To gain insight into the deep-layer features of IHC images extracted from NASNet-Large, a 10-fold 
cross-validation was carried out in this study. The confusion matrixs shown in Figure 2 are the results 
provided by NASNet-Large & SVM and its associated IHC images. The features of these IHC images (Figure 3) 
extracted at the NASNet-Large layer of global average pooling “global_average_pooling2d_2” (layer 
number 1240), which is just before the fully connected layer of the network, can be visualized. It can be 
visualized that the feature images obtained from a much deeper layer as shown in Figure 3 are much more 
different than those of a low-level shown in Figure 4, where information about different colors and edges was 
captured. As in deeper layers, NASNet-Large learned to uncover finer-detail features of the input IHC 
images by further transforming the image properties extracted from earlier layers. Strong N (dark pixels), 
strong P (bright pixels), and weak (gray pixels) activations of the network transfer learning are shown 
in Figure 3. However, only the P activations were used because of the rectified linear unit (ReLU) that follows 
the “global_average_pooling2d_2” layer. The ReLU is a linear activation function defined as  which 
transforms the input as it is if the input is P; otherwise, it returns a zero if the input is N. Distinct patterns of 
P-activation patches between correctly classified images of < and > 5 years can be 
visualized (Figure 3B–3D vs. Figure 3F–3K).

Some observations about the activations of the feature maps as shown in Figure 3 can be elaborated as 
follows. Having mentioned previously, the network learns to detect complex features in deep convolutional 
layers and results in producing areas that are either bright (P) or dark (N). However, only the P activations 
are useful features for differentiating images of different classes. For the < 5-year class, the relatively most 
P (brightest) patches on the 8 × 8 grids are (3, 5) in Figure 3A, (7, 3) in Figure 3B, (8, 6) in Figure 3C, and (3, 5) 
and (6, 1) in Figure 3D. For the > 5-year class, the relatively brightest patches on the 8 × 8 grids are (7, 3) 
in Figure 3E, (7, 3) in Figure 3F, (7, 3) in Figure 3G, (7, 3) in Figure 3H, (7, 3) in Figure 3I, (3, 5) and (6, 7) 
in Figure 3J, and (3, 5) in Figure 3K. Although the spatial distribution of P activations in the IHC images of < 5 
years are different from those of the ones of > 5 years, no consistency of locations of the relatively brightest 
patches can be found among the 4 IHC images of the < 5-year class. However, there is a consistency of the 
location of the relatively brightest patches among the 7 IHC images of the > 5-year class, which is a patch (7, 3), 
where patches (7, 3) in Figure 3I and 3K exhibit P activations to some degrees. Such a consistent P-activation 
pattern of the IHC images of > 5-year survival can be a useful factor for the relatively high performance of 
the NASNet-Large.
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Figure 2. A 10-fold cross-validation using NASNet-Large & SVM. A. Confusion chart; B. an IHC sample of RhoB expression 
for < 5 years (60 months) misclassified as > 5 years; C. > 5 years misclassified as < 5 years; D, E, and F are 3 samples of correctly 
classified as < 5 years; G, H, I, J, K, and L are 6 samples correctly classified as > 5 years

Figure 3. Extracted features at NASNet-Large layer “global_average_pooling2d_2” for IHC images of RhoB expression in rectal 
cancer biopsy. A, B, C, and D are deep features for < 5-year samples shown in Figure 2B, D, E, and F, respectively; E, F, G, H, I, 
J, and K are deep features for > 5-year samples shown in Figure 2C, G, H, I, J, K, and L, respectively
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Figure 4. NASNet-Large features. A. Convolution layer “stem_conv1” (2nd layer), B. average pooling layer “normal_left3_8” (617th layer), 
and C. global average pooling layer “global_average_pooling2d_2” (1240th layer)

Because NASNet-Large could provide differentiable features of the two groups of the IHC images, the 
use of the SVM, which is well-known for its power of binary classification by being capable of separating data 
points into two classes, could therefore improve the classification performance over the direct use of the 
pretrained network for pattern classification. Regarding the computational time, NASNet-Large took about 
500 min for data training with 20 epochs. The NASNet-Large & SVM-based classifier took less than 6 min 
for the network activations to extract the global average pooling features of the training IHC images and the 
SVM required only about 2 min for training the same data (total training time = 8 min). Both classification 
models were implemented on a single processor: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz. Such a time 
ratio of 500:8 illustrates an advantage of the NASNet-Large & SVM over the individual NASNet-Large in terms 
of computational speed by reducing the training time to about 63 times faster than the use of the single 
pretrained network. The time saving would become significantly higher for training a much larger dataset.

The dimensions of features extracted from the 6 pretrained CNN in ascending order are: 256 (AlexNet), 
512 (ResNet-18), 1000 (SqueezeNet), 1920 (DenseNet-201), 2048 (Xeption), and 4032 (NASNet-Large). 
The classification ACC rates for CNN-SVM models in ascending order are: 67.28% (ResNet18-SVM), 
67.28% (SqueezeNet-SVM), 69.09% (DenseNet201-SVM), 72.73% (AlexNet-SVM), 74.55% (Xception-SVM), 
and 84.55% (NASNet-Large-SVM). Although NASNet-Large-SVM and Xception-SVM, which have the largest 
feature dimensions, achieved higher ACC rates than the other four models, the whole comparison between 
feature dimensions and ACC rates does not indicate that the larger the dimensions are the higher the ACC 
is (AlexNet has the smallest number of feature dimensions but provided the third highest ACC).

Regarding the dimensions of the IHC samples, the largest, median, and smallest sizes of the images are 
about 3500 × 3300, 3200 × 3200, and 2700 × 2000 pixels, respectively, for each of the three red, green, 
blue (RGB) channels. By using the pretrained CNNs, all original images were resized to fit into the fixed input 
image size of each pretrained model as specified in Table 3. It is therefore not expected that different original 
image sizes would significantly affect the CNNs in learning the IHC expression of RhoB.

By definition, the standard deviation (σ) is calculated as 

where xi, x , and n are the value of sample i, sample mean, and the number of samples, respectively. In other 
words, standard deviation measures the dispersion of the samples relative to its mean. Hence it is not 
uncommon to have the SEN of NASNet-Large & SVM (90% + 11.76% > 100%). The problem is that the 
mathematical definition for σ does not consider an assumption of normality and the distribution of the SEN 
rates is heavily skewed [39, 40]. Here, σ indicates the square root of the average squared deviation, which is 
11.76. If the standard error of the mean (σM), which is defined as nMv v=  [40], is used then 

, giving the mean of SEN between 84.74% and 95.26%.

CNNs, whose architectures are analogous to that of the brain connectivity, learn to recognize images of 
different patterns by assigning learnable weights and biases to various aspects and details in the images. 
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CNNs are also able to capture both spatial distribution and temporal information in images through the 
transformation of image kernels. Such artificial neural architectures can be trained to realize the complexity 
of images that are hidden from the human eye or too sophisticated to be revealed by conventional pattern 
analysis methods. Pathologists are used to investigating molecular characteristics in cancerous tissues 
stained by IHC for certain types of proteins and use statistical color descriptions and subjective experience 
to conclude the visual effects of the protein under study. In addition, manual analysis of RhoB expression 
in cancer biopsy is more limited than the analysis of tumor tissues obtained from surgical resection. Such 
limitation adds more challenge to the path of biomarker discovery. The use of AI for discovering RhoB as a 
potential biomarker captured on rectal-cancer biopsy illustrated in this study relieves the time-consuming, 
error-prone, and subjective task encountered by pathologists. Furthermore, results obtained from the 
proposed approach can be reproduced and improved when more relevant data become available.

Some limitations of the current study are as follows. This study used only the deep global average feature 
selected at the pooling layer before the fully connected layer of each pretrained CNN. Although the extraction of 
global average pooling features has certain advantages for SVM-based training and classification, exploration 
of features extracted at other deep layers and fusion of both shallow and deep features for classification 
are worth investigating. Another limitation, which is due to currently limited data for training AI models, 
is that the prediction of survival rates by means of the binary classification of either > or < 5 years does not 
consider the pTNM stage of patients with rectal cancer. The inclusion of cancer staging and other clinical 
and pathological characteristics together with their prior information into the IHC classification would be 
expected to improve the AI-based prediction and the outcome would be more clinically meaningful.

Radiomics [41, 42] is a relatively new concept in radiology that is mostly addressed in oncology. 
Radiomics aims to extract informative features or discover imaging biomarkers from tomographic data for 
the detection, diagnosis, and prognosis of cancer. As an extension, delta radiomics [43, 44] explores medical 
image features such as texture extracted from multiple image modalities at different time points of acquisition 
before and after chemotherapy and/or radiation therapy. In the case of rectal cancer, delta radiomics or delta 
texture analysis of magnetic resonance imaging (MRI) was carried out for predicting pathological complete 
responses and outcomes of patients who were treated with neoadjuvant chemoradiotherapy [45, 46]. 
Furthermore, texture analysis of computed tomography (CT) data for extracting radiomic features was found 
useful for differentiating malignant from benign lymph nodes in primary lung cancer [47, 48].

Texture analysis of radiology data such as MRI or CT in radiomics is based on grayscale levels of tissues. 
Features of IHC images extracted from pretrained deep-learning models such as the NASNet-Large used 
in this study are a kind of deep color texture generated mainly through a series of image convolution and 
transformation. It can be expected that these deep textural features can add a new dimension to the field of 
radiomics, where radiology data can be readily represented as input with pseudo color into a pretrained CNN 
model for mining deep textural features, to advance the state of the art of radiomics in cancer research.

In conclusion, based on the results presented and discussed in the foregoing sections, the integration 
of NASNet-Large and SVM appears a promising approach for validating RhoB as a biomarker expressed on 
the biopsy tissue of rectal-cancer patients. The ability to predict the cancer patient’s survival using biopsy is 
helpful because results given from the analysis of a biopsy can guide clinicians to determine the best course 
of action for the patient with a particular cancer type. Because the biopsy samples used in this study were 
taken from patients who were not treated with pRT or preoperative chemoradiotherapy (pCRT), assessment 
of tumor regression grading (TRG) was not clinically applicable. Evaluation of the impact of TRG is used for 
the management of rectal carcinoma patients treated with pCRT [49].

Not only the combined approach can provide high classification ACC, but also its data training requires 
much less computational time than the use of the transfer learning of a pretrained CNN for classifying IHC 
images. This advantage is particularly desirable for handling big pathological image data. It is because the SVM 
is trained with CNN-based features for image classification instead of retraining a pretrained deep-learning 
model for doing the same task, where the former strategy is much faster than the latter.
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Furthermore, it can be expected that the classification ACC can be improved, particularly for the survival 
rate < 5 years (SPE), if more data and better data balance between the two survival rates become available as 
these two factors help build more reliable classification models through supervised learning with increased 
and balanced training data. This kind of real data balance may or may not be possible, depending on the 
on-going clinical collection of available data from future patients with rectal cancer. Otherwise, the use of 
artificial data augmentation is an alternative strategy for improving the AI-based prediction model.

The major limit of this research is the lack of external validation of the finding. We aim to externally 
validate the proposed prognostic model in a future study. External validation aims to provide evidence on the 
generalization of prognostic models, and there are several kinds of validation, depending on the hypothesis 
and patient size [50]. The biopsy samples used in this study were collected from the southeast health care 
region of Sweden, future patients’ data included in external validation are expected to be from different regions 
of Sweden or even countries. When new data become available, we may modify the AI approach, including 
parameter tuning, to make it more robust to be helpful for deeper clinical understanding and interventions. 
Furthermore, the main purpose of this study is to show that the predictive power of RhoB expression in rectal 
cancer biopsy can be discovered by the use of AI while our manual analysis could not reveal the prognostic 
capacity of the protein. Multivariate analysis of clinical parameters together with RhoB expression is worth 
conducting in our future study to strengthen evidence about the usefulness of this AI approach.

Being one of the leading causes of cancer-related death, the path to achieving PRE or personalized 
medicine for CRC is still far to travel because of the current lack of sufficient effective tools for early detection, 
prediction, prognosis, and treatment of the disease. It was reported that although the use of genetic profiles 
of CRC patients has been used for patient-specific treatment and measure of response to drugs, the clinical 
practice still suffers from the availability of a few CRC biomarkers [51]. Therefore, there is an urgent demand 
for discovering noninvasive or minimally invasive CRC biomarkers to pave the way for the development of 
effective new treatments for CRC and gain insights into the carcinogenesis of the disease [51].
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