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Abstract
Aim: Recent progress in cancer immunotherapy has shown its promise and prompted researchers to develop 
novel therapeutic strategies. Dendritic cells (DCs) are professional antigen-presenting cells crucial for 
initiating adaptive anti-tumor immunity, therefore a promising target for cancer treatment. Here, anti-tumor 
activities of DC-targeting chemokines were explored in murine colorectal tumor models.
Methods: The correlation of chemokine messenger RNA (mRNA) expression with DC markers was 
analyzed using The Cancer Genome Atlas (TCGA) dataset. Murine colorectal tumor cell lines (CT26 and 
MC38) stably overexpressing mouse C-C motif chemokine ligand 3 (CCL3), CCL19, CCL21, and X-C motif 
chemokine ligand 1 (XCL1) were established by lentiviral transduction. The effect of chemokines on tumor 
cell proliferation/survival was evaluated in vitro by cell counting kit-8 (CCK-8) assay and colony formation 
assay. Syngeneic subcutaneous tumor models were used to study the effects of these chemokines on tumor 
growth. Ki-67 expression in tumors was examined by immunohistochemistry. Immune cells in the tumor 
microenvironment (TME) and lymph nodes were analyzed by flow cytometry.
Results: Expression of the four chemokines was positively correlated with the two DC markers [integrin 
alpha X (ITGAX) and CLEC9A] in human colorectal tumor samples. Tumoral overexpression of DC-targeting 
chemokines had little or no effect on tumor cell proliferation/survival in vitro while significantly suppressing 
tumor growth in vivo. Fluorescence-activated cell sorting (FACS) analysis showed that CCL19, CCL21, and 
XCL1 boosted the ratios of DCs and T cells in CD45+ leukocytes while CCL3 increased the percentage of CD45+ 
leukocytes in total cells in MC38 tumor. XCL1 had an additional positive effect on antigen uptake by DCs in the 
TME and antigen transfer to tumor-draining lymph nodes.
Conclusions: CCL3, CCL19, CCL21, and XCL1 exhibited potent anti-tumor activities in vivo, although they 
might differentially regulate immune cells in the TME and antigen transfer to lymph nodes.
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Introduction
Colorectal cancer (CRC) is the third most frequently occurring cancer and the second leading cause of cancer 
death worldwide in 2020 [1]. Despite the rapid development of checkpoint inhibition immunotherapy, it is 
only effective in a small proportion of CRC patients [2, 3]. Therefore, more immunotherapeutic strategies 
need to be explored for improved clinical outcomes.

The tumor microenvironment (TME) is one of the primary regulators of CRC development, metastasis, 
and resistance to therapies [4, 5]. CRC tumors evade immunosurveillance through various extrinsic 
mechanisms, including repression and exclusion of anti-tumor effector cells such as CD8+ T cells and dendritic 
cells (DCs), and accumulation of immunosuppressive cells in the TME such as regulatory T (Treg) cells and 
myeloid-derived suppressor cells (MDSCs) [6, 7]. DCs are crucial for inducing adaptive anti-tumor immune 
responses, especially the tumor-infiltrating conventional DCs (cDCs) [8–11]. Type 1 cDC (cDC1) is regarded as 
the main subset that can cross-present antigens to activate CD8+ T cells through the major histocompatibility 
complex (MHC)-I pathway, prime CD4+ T cells via MHC-II and CD40 signaling, and promote T helper 1 (Th1) 
and natural killer (NK) cells responses through interleukin (IL)-12 [8–10, 12, 13]. On the other hand, cDC2 
can activate Th1, Th2, Th17, and CD8+ T cells in vitro and drive anti-tumor CD4+ T cell immunity [11, 14, 15]. 
Notably, cDCs are indispensable for adoptive T cell immunotherapy [16]. Therefore, efforts to increase cDCs in 
the TME would serve as an alternative therapeutic strategy and improve other immunotherapies’ efficacies.

CD11c, encoded by the gene integrin alpha X (ITGAX), is a widely established marker for DCs. It is often 
employed to define DCs and their subsets [17, 18], and can be used as a prognostic marker for cancer and 
other diseases [19]. Human CD141+ DCs belong to cDC1, and are considered as the equivalents of the mouse 
CD8α+/CD103+ cDCs in functions and lineage [20]. And it is reported that human CD141+ DCs and mouse 
CD8α+/CD103+ cDCs both express C-type lectin receptor (CLR) CLEC9A which recognizes F-actin exposed by 
dead cells to mediate the cross-presentation process [21, 22]. CLEC9A has been used as a successful target for 
antibody-mediated delivery of antigens to cDC1 [23]. Overall, ITGAX and CLEC9A are favorable DC markers 
for total DC and cDC1 respectively for the analysis of patient samples consisting of various cell types.

Chemokines are important mediators of DC migration and play a significant role in coordinating 
anti-tumor immunity [24]. Various chemokines have abilities to recruit cDCs, including C-C motif chemokine 
ligand 3 (CCL3), CCL4, CCL5, CCL19, CCL20, CCL21, and X-C motif chemokine ligand 1 (XCL1) [25, 26]. Although 
upregulation of these chemokines in the TME is expected to enhance DC-mediated anti-tumor immunity, they 
may also exert pro-tumor behavior via regulation of tumor cells and other resident cells in the TME such as 
fibroblasts, endothelial cells, or other pro-tumorigenic immune cells [27–30]. While more evidence supports 
a pro-tumor role of CCL4, CCL5, and CCL20 [27–30], the effect of others may be context-dependent, indicating 
the complexity of the underlying interrelated signaling cascades [31, 32]. Therefore, CCL3, CCL19, CCL21, 
and XCL1 were eventually chosen as the focus of the current study. Despite a few reports suggesting that they 
participated in pro-tumor activities [31–33], we should not ignore their positive roles in eliciting anti-tumor 
immunity. In this study, we sought to determine whether those four chemokines could control tumor growth 
and regulate immune cells in murine models of CRC.

Materials and methods
Analysis of human The Cancer Genome Atlas database
The correlation of messenger RNA (mRNA) expression between chemokines and DC markers was analyzed 
using the cBioPortal (http://www.cbioportal.org/). Colorectal adenocarcinoma dataset of 592 samples with 
mRNA data (RNA Seq V2) from The Cancer Genome Atlas (TCGA), Pan-Cancer Atlas, was used for the analysis. 
Expression Z-scores of tumor samples compared to the expression distribution of all log-transformed mRNA 
expression of adjacent normal samples in the cohort (log RNA Seq V2 RSEM). The Z-score threshold was 
set at ± 2.0. Analytical methods included both Spearman’s rank correlation and Pearson correlation were 
calculated, and their correlation coefficients and respective P values were shown in the Results.
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Cell lines
CT26 and MC38 cell lines were cultured in Roswell Park Memorial Institute Medium (RPMI 1640) and 
Dulbecco’s Modified Eagle Medium (DMEM), respectively, supplemented with 10% fetal bovine serum 
(FBS, Sigma-Aldrich) and 100 U/mL penicillin/streptomycin (Beyotime). Cell lines were authenticated by 
Shanghai Biowing Applied Biotechnology, and routinely tested for mycoplasma contamination. All cells 
were maintained in a 5% CO2, humidified incubator at 37℃. CT26 and MC38 were infected with CCL3-, 
CCL19-, CCL21-, and XCL1-overexpressing lentiviruses co-expressing ZsGreen, in the presence of 6 μg/mL 
polybrene to generate cell lines stably expressing the chemokines or empty vector.

RNA extraction and quantitative reverse transcription-polymerase chain reaction
Total RNA was isolated by the RNA extraction kit (TIANGEN Biotech), and complementary DNA (cDNA) 
was synthesized by reverse transcription kit (Vazyme). Real-time polymerase chain reaction (PCR) was 
carried out using TB Green® Premix Ex Taq™ (Takara®) in the ABI 7900HT fast real-time PCR system (Applied 
Biosystems). mRNA expression levels of target genes were normalized to the glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) using the 2-ΔΔCt method.

Cell counting kit-8 assay
Proliferation/survival of CT26 and MC38 cells overexpressing chemokines or vector was determined by 
cell counting kit-8 (CCK-8, TargetMol®) and measured by a microplate reader (Tecan Infinite® M Plex) every 
24 h according to the protocols from the manufacturer.

Colony formation assay
Cells were plated at densities of 500, 1,000, and 2,000 cells/well in 12-well plates using a two-layer soft 
agar setting. The bottom of each well was covered by an agar layer, consisting of 1× DMEM complete medium 
with 0.6% (w/v) agarose. Subsequently, different concentrations of cells suspended in 1× DMEM complete 
medium with 0.35% (w/v) agarose were added on top of the bottom agar layer. After 10 days, colonies were 
stained with 0.005% crystal violet solution and counted using ImageJ software.

Syngeneic mouse models of CRC
Six- to eight-week-old male C57BL/6 mice and male BALB/c mice were purchased from Shanghai 
Lingchang BioTech Co., Ltd. The 0.5 × 106 CT26 or 1 × 106 MC38 cells overexpressing chemokines or 
vector were injected subcutaneously at the lower flank of mice in 100 μL phosphate-buffered saline (PBS) 
respectively. Tumor size was measured by a vernier caliper every three days and calculated as Tumor 
Volume (mm3) = Length (mm) × Width (mm) × Width (mm)/2. Mice were euthanized when tumor size 
reached 2,000 mm3 in volume or the tumor became ulcerated.

Immunohistochemistry
Whole tumors were fixed for 24 h in 4% formalin and subsequently embedded into paraffin, sectioned, 
and then mounted onto slides. After antigen retrieval, permeabilization, and blocking, anti-Ki-67 antibody 
(Abcam, ab16667) was incubated with the epitope at 4℃ overnight, followed by the addition of horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin G (IgG; Abcam, ab6721, at 1:200 dilution) for 
another 30 min in dark at room temperature. Next, sections were treated with 3,3’ diaminobenzidine (DAB) 
substrate (Abcam, ab64238) and imaged by microscope (Leica DM6 B). The ratio of Ki-67+ cells was analyzed 
using ImageJ software. Four different fields were counted to calculate the average ratio for each tumor.

Flow cytometry
Mice were euthanized via CO2 asphyxiation 15 days after the establishment of MC38 tumors. Tumor tissues 
were excised and cut into 1–2 mm3 pieces, and then treated with 1 mg/mL Liberase™ TL (Roche) and 
100 mg/mL DNase I (Sigma-Aldrich) in gentleMACS™ Octo Dissociator (Miltenyi Biotec). After dissociation 
of tumor tissues, cell suspensions were passed through 70-μm cell strainers (BioFil®) and washed twice with 
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PBS containing 2% FBS. Inguinal lymph nodes were mechanically dissociated and passed through 70-μm cell 
strainers (BioFil®) to obtain single-cell suspensions.

Before antibody staining, single-cell suspensions were stained with Zombie dyes (BioLegend®) 
at a dilution of 1:200 for 10 min at room temperature to exclude dead cells. Markers on the cell surface 
were detected by staining cells with fluorochrome-labeled antibodies in PBS containing 2% FBS and 1 
mmol/L ethylenediaminetetraacetic acid (EDTA) for 30 min on ice. For subsequent intracellular cytokine 
analysis, cells were washed once with PBS and treated with the True-Nuclear™ Transcription Factor Buffer 
Set (BioLegend®). The following antibodies were used: CD45 (30-F11, BD Biosciences, dilution 1:200); 
CD11c (N418, BioLegend®, dilution 1:100); CD11b (M1/70, BioLegend®, dilution 1:100); CD103 (2E7, 
BioLegend®, dilution 1:100); Ly6C (HK1.4, BioLegend®, dilution 1:100); CD64 (X54-5/7.1, BioLegend®, 
dilution 1:100); MHC-II (I-A/I-E, M5/114.15.2, BioLegend®, dilution 1:100); CD3e (145-2C11, BioLegend®, 
dilution 1:100); CD4 (GK1.5, BioLegend®, dilution 1:100); NK1.1 (PK136, BioLegend®, dilution 1:100); 
CD8a (53-6.7, BioLegend®, dilution 1:100); Foxp3 (MF-14, eBioscience, dilution 1:100). The cDCs were 
defined as: CD45+CD11c+MHC-II+CD64–Ly6C–; the cDC1: CD45+CD11c+MHC-II+CD64–Ly6C–CD103+; the cDC2: 
CD45+CD11c+MHC-II+CD64–Ly6C–CD11b+; the macrophages: CD11b+CD64+Ly6C–; the conventional CD4+ T 
cells: CD45+CD3e+CD4+Foxp3–; the Treg cells: CD45+CD3e+CD4+Foxp3+; the CD8+ T cells: CD45+CD3e+CD8+; 
the NK cells: CD45+CD3e–NK1.1+; the NKT cells: CD45+CD3e+NK1.1+. Fluorescence data were acquired on a BD 
LSRFortessa™ cell analyzer (BD Biosciences). Data were analyzed on FlowJo™ software.

Statistical analysis
Statistical tests were performed in GraphPad Prism 8. CCK-8 assay, colony formation assay, 
immunohistochemistry, and tumor growth in vivo were analyzed via two-way analysis of variance (ANOVA) 
followed by multiple comparisons; data from flow cytometry were analyzed via one-way ANOVA followed by 
multiple comparisons. Results were presented as mean values ± standard error of the measurement (SEM), 
and P < 0.05 was considered statistically significant.

Results
Expression of CCL3, CCL19, CCL21, and XCL1 correlates with DC markers in human CRC patient samples
To explore the potential in vivo role of the selected chemokines in regulating DCs in human CRC patients, 
we first analyzed the correlation of their mRNA expression with DC markers. Expression of all the four 
chemokine genes, including CCL3, CCL19, CCL21, and XCL1, was positively correlated with that of both 
ITGAX encoding the general DC marker CD11c and CLEC9A, which is a cDC1 marker, in human CRC 
samples (Figure 1) [34]. These findings implied that all the four chemokines played a positive role in 
DC infiltration in human colorectal tumors, although they might have discrepant activities in regulating 
different DC subsets and other immune cells.
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Figure 1. Correlation of mRNA expression between chemokines and DC markers. RNA-sequencing dataset from 592 colorectal 
adenocarcinoma patients (TCGA, Pan-Cancer Atlas) was used to analyze the expression correlation between CCL3/CCL19/
CCL21/XCL1 and ITGAX/CLEC9A. Dot plots indicate mRNA expression levels in tumor samples relative to normal samples 
(Z-score, log2 RNA Seq V2 RSEM)

Tumoral overexpression of DC-targeting chemokines showed no or little effects on tumor cell 
proliferation/survival in vitro
To clarify the anti- or pro-tumor effects of the DC-targeting chemokines, we generated murine CRC cell 
lines that stably expressed the four chemokines. Successful overexpression of mouse CCL3, CCL19, CCL21, 
and XCL1 (encoded by Ccl3/Ccl19/Ccl21/Xcl1) in CT26 and MC38 cell lines was confirmed by quantitative 
reverse transcription-PCR (Figure 2A and 2B). CCK-8 assay demonstrated that overexpression of these 
genes did not significantly change the total numbers of cells during the 72-h culture period, compared to 
empty vector control, except that CCL3 and CCL21 reduced the growth rate of CT26 cells but to a limited 
extent (Figure 2C and 2D). Moreover, the colony-forming ability of MC38 cells was not affected by these 
chemokines (Figure 2E). It suggested that the chemokines had trivial or no direct effect on the proliferation 
or survival of tumor cells.

Figure 2. Chemokine overexpression hardly affects tumor cell proliferation or survival. A. and B. The expression of mouse 
chemokine genes (Ccl3/Ccl19/Ccl21/Xcl1) in CT26 (A) and MC38 (B) cell lines was confirmed by quantitative PCR (qPCR, 
n = 4−5); C. and D. CCK-8 assay was used to quantify the amount of CT26 (C, n = 3) and MC38 cells (D, n = 5) overexpressing 
chemokines or vector over a 72-h culture period; E. representative images for colony formation assay and statistics of colony 
numbers of MC38 overexpressing chemokines or empty vector at indicated seeding densities (n = 4). *** P < 0.001; **** P < 0.0001

Tumoral overexpression of DC-targeting chemokines inhibits tumor growth in mice
We then established subcutaneous tumor models using CT26 and MC38 overexpressing the four chemokines. 
In both models, tumoral overexpression of CCL3, CCL19, CCL21, and XCL1 significantly repressed tumor 
growth (Figure 3A–C), despite the differential overexpression levels in these cell lines (Figure 2A and 2B). 
Consistently, these chemokines also decreased the ratio of Ki-67+ cells in MC38 tumors indicating a negative 
effect on tumor cell growth in vivo (Figure 4A and 4B). Taking the results from CT26 and MC38 models 
together, CCL19 seemed to be the most potent anti-tumor chemokine among the four. Since these chemokines 
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had no or little effects on the proliferation or survival of tumor cells (Figure 2C and 2D), their anti-tumor 
activities in vivo were very likely to depend on their immunomodulatory effects in the TME.

Figure 3. Tumoral overexpression of chemokines inhibits colorectal tumor growth. Volumes of CT26 tumors (n = 5/group, A) or 
MC38 tumors (n = 8/group, B) overexpressing chemokines or vector were monitored overtime; C. images and weights of MC38 
tumors, scale bar = 1 cm. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001

Figure 4. Immunohistochemistry for Ki-67 in MC38 tumors. A. Representative images of Ki-67 staining, scale bar = 50 μm; 
B. statistics of Ki-67+ ratios (n = 6/group). * P < 0.05; ** P < 0.01; **** P < 0.0001

Regulation of DCs in MC38 tumors and lymph nodes by chemokines
Next, we sought to investigate the effects of these chemokines on DC migration in MC38 tumor models by 
fluorescence-activated cell sorting (FACS). MC38 cells expressed ZsGreen simultaneously as an indicator 
of tumor-specific antigen. Tumoral overexpression of CCL19, CCL21, and XCL1 significantly increased 
ratios of total cDCs, cDC1, and cDC2 subtypes among CD45+ leukocytes in the TME, as compared to the 
empty vector control tumors (Figure 5A and 5B). However, CCL3 did not change the ratios of total cDCs 
or the two subtypes. In contrast, the percentages of macrophages were not affected by either chemokine, 
suggesting these chemokines were DC-specific. In particular, the ratio of ZsGreen+ cDCs was upregulated in 
XCL1-overexpressing tumors, suggesting an enhanced uptake of tumor antigens (Figure 5C).
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Figure 5. FACS analysis of tumor-infiltrating cDCs and macrophages in MC38 tumor model. A. Gating strategies for cDCs, cDC1, 
cDC2, and macrophages; B. ratios of cDCs, cDC1, cDC2, and macrophages in CD45+ cells; C. ratios of ZsGreen+ cells in cDCs. 
* P < 0.05; ** P < 0.01; *** P < 0.001; SSC-A: side scatter-area

Interestingly, cDCs, including cDC1 and cDC2 in the tumor-draining lymph nodes, were significantly 
decreased by tumoral expression of these chemokines, implying an efflux of cDCs from the lymph 
nodes or a biased upregulation of other immune cells such as T cells upon antigen presentation and 
stimulation (Figure 6A and 6B). Higher percentages of ZsGreen+ cDCs were found in the lymph nodes of CCL3- 
and XCL1-overexpressing tumor models (Figure 6C). This finding suggested that more tumor antigens were 
delivered by cDCs from tumors overexpressing these two chemokines, and possibly more tumor-specific T 
cells would be generated. The increased tumor antigen ZsGreen in the lymph nodes of XCL1-overexpressing 
tumor models may be partially attributed to the increased antigen uptake in the tumor (Figure 5C). These 
data demonstrated that tumoral expression of these chemokines did not impair or even promote the antigen 
transfer from the tumor site to tumor-draining lymph nodes.

Regulation of tumor-infiltrating lymphocytes by chemokines
Confirming a positive effect on cDCs in TME and lymph nodes, we further analyzed the tumor-infiltrating 
effector lymphocytes by FACS (Figure 7A). CD45+ leukocytes in total live cells were upregulated only in 
CCL3-overexpressing tumors, although the ratios of lymphocytes in CD45+ cells were not changed by 
CCL3 (Figure 7B). Consistent with their effects on cDCs, CCL19, CCL21, and XCL1 significantly increased the 
ratios of conventional Foxp3–CD4+ T and CD8+ T cells. These three chemokines also elevated ratios of Treg 
cells, although the effect of CCL19 was not statistically significant. NK cells were upregulated by CCL19 and 
XCL1, while CCL19, CCL21, and XCL1 upregulated NKT. Together, these results revealed that these chemokines 
boosted anti-tumor adaptive immunity and enrichment of other effector cells with anti-tumor activities such 
as NK and NKT cells.
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Figure 6. FACS analysis of cDCs in tumor-draining lymph nodes in MC38 tumor model. A. Gating strategies for cDCs, cDC1, 
and cDC2; B. ratios of cDCs, cDC1, and cDC2 in CD45+ cells; C. ratios of ZsGreen+ cells in cDCs. * P < 0.05; ** P < 0.01; 
*** P < 0.001; **** P < 0.0001

Figure 7. FACS analysis of tumor-infiltrating lymphocytes in MC38 tumor model. A. Gating strategies for conventional (conv.) 
CD4+ T, Treg, CD8+ T, NK, and NKT cells; B. ratio of CD45+ cell in total live cells, and ratios of lymphocytes in CD45+ cells. 
* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001
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Discussion
In agreement with their anti-tumor potentials, a higher density of tumor-infiltrating cDCs is associated with 
a better prognosis for patients with various tumor types [35–37]. Here we evaluated the anti-tumor activities 
of several DC-targeting chemokines in parallel to explore the possibility of using them for immunotherapy. 
We focused on the chemokines with less evidence of a pro-tumor role. In mouse CRC models, we demonstrated 
that all four chemokines, including CCL3, CCL19, CCL21, and XCL1, effectively inhibited tumor growth. Since 
these chemokines showed hardly any effect on the proliferation/survival of tumor cells in vitro, their functions 
in vivo would largely depend on the regulation of TME cells. Accordingly, they significantly increased the ratios 
of cDCs and T cells in CD45+ cells in the MC38 tumor, except CCL3 (Figures 5 and 7). However, CCL3 was the 
only chemokine that upregulated the percentage of CD45+ cells out of total cells from the tumor (Figure 7B), 
suggesting it might have a broad impact on a variety of leukocytes leading to an unbiased ratio of cDCs or 
T cells in CD45+ cells. Indeed, CCL3 has a complex role in mediating a great range of cell types via three 
distinct receptors, including C-C motif chemokine receptor 1 (CCR1), CCR4, and CCR5 [25, 38]. Interestingly, 
our FACS analysis indicated that CCL3 promoted the transfer of tumor antigens to lymph nodes (Figure 6C). 
As a result, it can be speculated that more tumor-specific T cells will appear, contributing to the anti-tumor 
activity of CCL3.

Both CCL19 and CCL21 signal through CCR7 and are essential to building an effective interaction 
between T cells and DCs in lymphoid tissues [25, 38]. Differing from CCL19, CCL21 has a long C-terminal 
tail with 37 amino acids and is competent to interact with glycosaminoglycans (GAGs) and then immobilizes 
the chemokine [39, 40], which may explain the differential activities of these two chemokines [41]. CCL21 
was shown to be superior to CCL19 in promoting chimeric antigen receptor (CAR)-T activity [41]. In both 
CT26 and MC38 tumor models of our study, CCL19 and CCL21 showed powerful anti-tumor activities, with 
CCL19 being more potent than CCL21 (Figure 3), although the overexpression levels varied in the two tumor 
cell lines. In addition to a role in recruiting cDCs, CCL19 and CCL21 may also induce the proinflammatory 
differentiation program in DCs [42]. Moreover, they may regulate migration and proliferation/survival of T 
cells [43, 44]. The other mechanisms besides DC recruitment added to the complexity of their anti-tumor 
actions. Accordingly, in MC38 tumors, conventional CD4+ T and CD8+ T cells were boosted by these two 
chemokines. Notably, CCL19 overexpression induced higher ratios of tumor-infiltrating conventional CD4+ T 
and NK cells but fewer Treg cells compared to CCL21, which may partially contribute to the more prominent 
anti-tumor effect of CCL19. Nevertheless, both seem to be promising immunotherapeutic molecules, and 
more context-dependent studies are needed to select the optimal one.

Consistent with the previous report that XCL1 was able to attract CD103+ DCs in murine models [45, 46], 
XCL1 was found to increase CD103+ cDC1 and CD11b+ cDC2 in MC38 tumors in our study (Figure 5B). 
Furthermore, our findings also revealed an unexpected role of XCL1 in enhancing tumor antigen uptake by 
cDCs and antigen transfer to lymph nodes (Figure 5C and 6C). Whether the regulation of DC function by XCL1 
is via direct activation of X-C motif chemokine receptor 1 (XCR1) on DCs remains to be elucidated.

The major limitation of the current study is that the overexpression levels of these chemokines were 
not equal in tumor cells due to technical difficulties. Thus, the study of these chemokines by tumoral 
overexpression is relatively qualitative, and a comparison of their activities is somewhat preliminary 
and suggestive. However, CCL19 seemed to be the most potent anti-tumor chemokine among the four if 
considering results from both CT26 and MC38 models. Nevertheless, our study still provides the foundation 
for prompting these chemokines into more sophisticated preclinical studies.

A variety of DC-based immunotherapeutic strategies are being perused in preclinical and clinical 
studies [34]. The delivery of DC-targeting chemokines to the tumor site represents an ideal way to boost local 
anti-tumor immunity. This approach may stand alone or be combined with other immunotherapies such as 
immune checkpoint inhibition. Recent progress in tumor-targeting nanoparticles [47], and cellular vehicles 
such as mesenchymal stem cells [48, 49], will facilitate more precise delivery of these chemokines to the 
tumor site to generate the chemotactic gradients and local effects.
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