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Abstract
Aim: To screen differentially expressed genes related to gastric cancer based on The Cancer Genome Atlas 
(TCGA) database and construct a gastric cancer diagnosis model by machine learning.
Methods: Transcriptional data, genomic data, and clinical information of gastric cancer tissues and 
non-gastric cancer tissues were downloaded from the TCGA database, and differentially expressed genes 
of gastric cancer messenger RNA (mRNA) and long non-coding RNA (lncRNA) were screened out. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the differentially expressed 
genes, and the protein-protein interaction (PPI) of differentially expressed genes was constructed. Core 
differentially expressed genes were screened by Cytoscape software’s molecular complex detection 
(MCODE) plug-in. The differential genes of lncRNA were analyzed by univariate Cox regression analysis and 
lasso regression for further dimension reduction to obtain the core genes. The core genes were screened 
by machine learning to construct the gastric cancer diagnosis model. The efficiency of the gastric cancer 
diagnosis model was verified externally by the Gene Expression Omnibus (GEO) database.
Results: Finally, 10 genes including long intergenic non-protein coding RNA 1821 (LINC01821), AL138826.1, 
AC022164.1, adhesion G protein-coupled receptor D1-antisense RNA 1 (ADGRD1-AS1), cyclin B1 (CCNB1), 
kinesin family member 11 (KIF11), Aurora kinase B (AURKB), cyclin dependent kinase 1 (CDK1), nucleolar 
and spindle associated protein 1 (NUSAP1), and TTK protein kinase (TTK) were screened as gastric cancer 
diagnostic model genes. After efficiency analysis, it was found that the random forest algorithm model had 
the best comprehensive evaluation, with an accuracy of 92% and an area under the curve (AUC) of 0.9722, 
which was more suitable for building a gastric cancer diagnosis model. The GSE54129 data set was used to 
verify the gastric cancer diagnosis model with an AUC of 0.904, indicating that the gastric cancer diagnosis 
model had high accuracy.
Conclusions: Machine learning can simplify the bioinformatics analysis process and improve efficiency. 
The core gene discovered in this study is expected to become a gene chip for the diagnosis of gastric cancer.
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Introduction
Gastric cancer is the fifth most common cancer globally and ranks third in the world in terms of cancer 
mortality [1], and is one of the most common malignant tumors in China [2]. Gastric cancer is characterized 
by high malignancy, susceptibility to distant metastasis, poor prognosis, and heavy disease burden [3, 4]. 
Currently, the diagnosis of gastric cancer still relies on upper gastrointestinal endoscopy [4–6]. The invasive 
examination increases the difficulty of early screening [7]. For gastric cancer diagnosis, the specificity and 
sensitivity of traditional serum markers, such as carcinoembryonic antigen (CEA), are low [8]. Therefore, 
finding more accurate predictive markers for molecular diagnosis of gastric cancer is crucial in screening, 
early diagnosis and treatment.

With the development of high-throughput technology, RNA sequencing (RNA-seq)-based diagnostic 
markers for gastric cancer have been widely studied. Non-coding RNA (ncRNA) affects the expression 
of oncogenes or oncogenes and is expected to be a molecular marker for the early diagnosis of gastric 
cancer [9, 10]. Long ncRNA (lncRNA) has been widely studied among ncRNAs in gastric cancer. 
LncRNA is an RNA transcript that has more than 200 nucleotides in length and is usually found in the 
nucleus [11]. LncRNA plays an important role in epigenetic regulation, cell cycle, genomic imprinting, 
chromatin modification, transcriptional interference, protein activation, etc. [12, 13]. It was found that lncRNA 
is dysregulated in gastric, liver, breast, and cervical cancers and other tumors [14, 15], suggesting that lncRNA 
may be a potential biological marker for early diagnosis, efficacy chemoresistance and other assessments.

The volume of sequencing data is too large to be adequately analyzed by traditional means. Machine 
learning is algorithms that use statistical data analysis to build models for making predictions about the 
outcome of unknown data. Compared with existing statistical methods, machine learning has higher 
evaluation accuracy and personalized prediction ability when big data is used to analyze medical 
problems [16]. The New England Journal of Medicine believes that machine learning will bring a significant 
breakthrough in medicine [17]. For example, machine learning can predict the structures and functions of 
proteins based on the arrangement of genetic factors. Therefore, this study obtained core genes and built 
a diagnostic model for gastric cancer based on bioinformatics analysis of The Cancer Genome Atlas (TCGA) 
database, and then verified the model by machine learning and further validated the accuracy of the model 
using an external dataset (GEO dataset, Gene Expression Omnibus–NCBI), to provide a new method for 
early diagnosis of gastric cancer.

Materials and methods
Data acquisition and processing
The transcriptomic data, genomic data, and clinical information on gastric cancer from the TCGA database 
were downloaded from the Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/) 
on June 28, 2021, including 376 gastric cancer patients and 31 non-gastric cancer tissue samples. On 
July 8, 2021, this study downloaded transcriptomic and genomic data and clinical information of lung 
cancer patients from the TCGA database as a control group, including 543 lung cancer patients with 
cancer tissues and 51 normal tissue samples. The number of gastric cancer patients reached 376, and the 
number of non-gastric cancer patients reached 625. After that, the GEO public database (https://www.
ncbi.nlm.nih.gov/geo) was searched with “gastric cancer” as the keyword, and the GSE54129 dataset 
was selected as the external validation dataset. The GSE54129 dataset is based on the GPL570 platform, 
which contains the gene expression information of 111 gastric cancer patients and 21 normal controls. 
The RNA-seq data expression matrix was merged with R language (version 4.0.4) to obtain the complete 
RNA-seq expression profile, and the count data were normalized and ID transformed. The messenger RNA 
(mRNA) and lncRNA were extracted separately to generate gene expression matrices.
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mRNA data processing
Screening for differential genes
The “DESeq2” package was called in R language to screen the differential genes with the criteria of |log2 
fold change (FC)| ≥ 3 and false discovery rate (FDR) < 0.05, and the “heatmap” package was used to plot the 
differential gene heat map and the “ggplot” package to plot the differential gene scatter map.

Functional enrichment analysis of differential genes and protein interaction network construction
Using R language, this research first performs gene ontology (GO) analysis [18] and gene function 
annotation of differentially expressed genes, including biological process (BP), cell composition (CC), and 
molecular function (MF). Subsequently, a Kyoto Encyclopedia of Genes and Genomes (KEGG) [19] analysis 
was performed to obtain signaling pathways that may have a role. This study used the search tool for the 
retrieval of interacting genes (STRING) (an online biological database that provides gene analysis and 
constructs networks of gene interactions at the protein level [20]). Then, the program downloaded and 
installed the molecular complex detection (MCODE) plug-in in Cytoscape 3.6.1 and imported the above the 
protein-protein interaction (PPI) data in tab-separated values (TSV) format with a degree cutoff = 2, Node 
score cutoff = 0.2, and κ-core = 0.2. The PPI network’s most densely associated regions were obtained using 
degree cutoff = 2, Node score cutoff = 0.2, κ-core = 2, max. depth = 100 as the screening criteria. The most 
densely associated regions in the PPI network were obtained, which are the core genes related to gastric 
cancer screening in this study [21].

LncRNA data processing
Screening for differential genes
The “DESeq2” package was called in R to screen the differential genes with the criteria of |log2 FC| ≥ 3 
and FDR < 0.05. The differential gene heat map is plotted by the “heatmap” package. The differential gene 
volcano was shown through the “ggplot” package in R language.

Screening for key genes
Since lncRNAs are ncRNAs, the univariate Cox regression model was first used to investigate the 
relationship between lncRNA expression levels and overall patient survival for the screened differentially 
expressed lncRNAs, and the identification criterion was P < 0.05. To avoid overfitting of the model, lasso 
regression was used to process the data. Lasso regression is based on linear regression, and the addition 
of a penalty term in the model estimation can compress extremely small regression coefficients to 0, at 
the cost of some estimation bias to obtain higher model prediction accuracy and model generalization 
ability. This study performed lasso regression analysis by “glmnet” package in R language to further 
screen lncRNAs associated with survival prognosis by increasing the penalty strength and narrowing the 
regression coefficients.

Construction of the model
This study used three machine learning algorithms (MLAs) [random forest (RF) [22, 23], naive Bayesian 
classification (NBC) [24], and k-nearest neighbor (KNN) [25, 26]] to construct and compare diagnostic 
models for gastric cancer (see the supplementary file for details of the algorithm).

Model optimization and validation
This study used accuracy, sensitivity, specificity, and area under the curve (AUC) to assess the performance 
of the gastric cancer diagnostic model. Accuracy refers to the proportion of samples correctly predicted 
by the model to all samples, and sensitivity refers to the proportion of correct predictions where the 
true value is a positive case. The AUC is the area under the receiver operating characteristic (ROC) curve. 
The ROC curve shows the sensitivity and specificity of the model prediction, and the larger the value, the 
better the prediction. To further verify the model’s efficacy, data from the GEO dataset GSE54129 were 
applied to further validate the accuracy of the model.
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Results
Acquisition of key mRNA genes for gastric cancer
Screening for gastric cancer differential genes
Expression data were downloaded from the TCGA database for 407 patients, including 376 gastric 
cancer tissues and 31 control tissues. By differential comparison, this study screened a total of 947 
differential mRNAs, of which 419 were upregulated and 526 downregulated, and plotted a heat map and 
volcano map (Figure 1).

Figure 1. Heat map and volcano map of mRNA differential genes in gastric cancer. (A) Heat map of 947 mRNA differential genes 
in gastric cancer, and the top 50 most representative genes were selected to draw the heat map; (B) volcano map of 947 genes 
obtained at a cutoff value of 3, of which 419 were upregulated and 526 downregulated

Biological process analysis of differential genes in gastric cancer
GO enrichment analysis showed that gastric cancer upregulated differential genes (UDEGs) were 
mainly distributed in the extracellular region part, proteinaceous extracellular matrix (ECM), the ECM, 
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and other tissues. The UDEGs were involved in biological processes such as cell adhesion, biological 
adhesion, response to wounding, and mainly had molecular functions such as ECM structural constituent 
and glycosaminoglycan binding. Gastric cancer downregulated differential genes (DDEGs) were mainly 
distributed in the apical part of cells, the extracellular region and other tissues, involved in biological 
processes such as digestion, lipid catabolic process and response to the metal ion. The DDEGs mainly had 
molecular functions such as steroid binding and coenzyme binding (Figure 2).

Figure 2. Biological process analysis of differential genes in gastric cancer. (A–C) The results of GO analysis of UDEGs in 
gastric cancer; (D–F) the results of GO analysis of DDEGs in gastric cancer. CXCR: CXC chemokines; NAD+: Dihydrouracil 
Dehydrogenase; p. adjust: adjust P-values for multiple comparisons; P granule: germ cell ribonucleoprotein granules

Analysis of the signaling pathways involved in differential genes of gastric cancer
KEGG enrichment analysis showed that gastric cancer UDEGs were highly expressed in signaling pathways 
such as focal adhesion, ECM-receptor interactions, and leukocyte transendothelial migration. In contrast, 
gastric cancer DDEGs were enriched in expression in pathways such as metabolism of xenobiotics by 
cytochrome P450, drug metabolism-cytochrome P450, and retinol metabolism (Figure 3).

PPI network construction and core gene identification
Interactions between differential genes were predicted using the STRING database, and the information 
of 947 differential genes was imported into Cytoscape software for visualization study. Nine hundred and 
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eighteen nodes and 1,209 edges were involved in the PPI network (Figure 4A). Ten gastric cancer-associated 
core differentially expressed genes were screened, and they were cyclin dependent kinase 1 (CDK1), 
non-SMC condensin I complex subunit G (NCAPG), cyclin B1 (CCNB1), kinesin family member 11 (KIF11), 
Aurora kinase B (AURKB), cell division cycle associated 8 (CDCA8), threonine kinase B (BUB1B), nucleolar 
and spindle associated protein 1 (NUSAP1), TTK protein kinase (TTK), and mitotic arrest deficient 2 like 1 
(MAD2L1) according to the degree of node association from highest to lowest (Figure 4B).

Figure 3. KEGG pathway analysis of differential genes in gastric cancer. Red represents UDEGs, and blue represents DDEGs. 
PPAR: peroxisome proliferator-activated receptor; cAMP: cyclic adenosine monophosphate

Figure 4. PPI network of differential genes and top 10 core genes in gastric cancer. (A) PPI map of differentially expressed genes 
in gastric cancer; (B) top 10 core genes in gastric cancer

https://doi.org/10.37349/emed.2022.00094
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Acquisition of key lncRNA genes in gastric cancer
The expression data of patients were downloaded from the TCGA database, including 31 control tissues 
and 376 cancer tissues, and 66 differentially expressed lncRNAs were screened using the “DESeq2” package, 
of which 29 lncRNAs were upregulated, and 37 lncRNAs were downregulated. Among the 66 differentially 
expressed lncRNAs, 19 lncRNAs were further analyzed by univariate Cox regression with P < 0.05. 
Subsequently, lasso regression was used to further downscale the model, and the results showed that the 
model error was minimized when the number of variables was 5, which corresponded to λ = 0. 075. The 
five screened lncRNAs were long intergenic non-protein coding RNA 1821 (LINC01821), AL138826.1, gastric 
cancer associated transcript 3 (GACAT3), AC022164.1, and adhesion G protein-coupled receptor D1-antisense 
RNA 1 (ADGRD1-AS1), which were used as gastric cancer lncRNA key genes (Figure 5).

Figure 5. Lasso regression process. (A) Lasso diagram shows the dynamic process of screening variables; (B) the selection 
process of the cross-validation parameter Log(λ)

Construction of data tables for gastric cancer diagnosis model
The 10 key genes of mRNA and 5 key genes of lncRNA were used to construct a gastric cancer diagnosis 
model, with column names as gene names, row names as the number of each sample, and content as the 
expression of each gene in each sample, and the genetic data of 543 cases of lung cancer tissues and 51 
cases of paired paracancerous normal tissues were added as non-gastric cancer patients introduced into 
the model for the validation of the gastric cancer prediction model. As a result, the number of gastric cancer 
patients reached 376 cases, and the number of non-gastric cancer patients reached 628 cases.

Model performance analysis
The above 15 genes were further screened by the “Feature Importance” algorithm to identify 10 key genes, 
namely LINC01821, AL138826.1, AC022164.1, ADGRD1-AS1, CCNB1, KIF11, AURKB, CDK1, NUSAP1, TTK. The 10 
genes were modeled using the best feature subset, by three MLAs: RF, NBC, and KNN. As for the performance 
of RF, NBC, and KNN, algorithm boosting was measured with 6 main metrics, namely AUC, ROC, correctness, 
sensitivity, specificity, and precision. Among the three models, RF has the highest AUC and ROC of 0.9722, 
higher than the NBC of 0.9088 and the KNN algorithm of 0.8656. RF has the highest accuracy of 0.920 
among all models, slightly higher than the NBC of 0.824 and the KNN algorithm of 0.797 (Figures 6 and 7). 
Therefore, the RF algorithm was finally chosen to construct the model.

External validation of the gastric cancer diagnostic model
The GSE54129 dataset was selected as an external validation dataset in the GEO database. The 
GSE54129 dataset was based on the GPL570 platform, which contained the gene expression information 
of 111 gastric cancer patients and 21 non-gastric cancer patients. As is shown in Figure 8, the area of the 
ROC curve (AUC) for the validation sets was 0.9144. As a result, 0.9144 greater than 0.70 indicates that the 
model has good predictability.
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Figure 6. Feature selection and machine learning. (A) The initial screening of 15 genes by the “Feature Importance” algorithm 
and further screening of 10 key genes; (B) the NBC algorithm model; (C) the KNN algorithm model; (D) the RF algorithm model

Figure 7. Internal test set ROC curves. Red dashed line is the reference line, red solid is the NBC algorithm model, green is the 
KNN algorithm model, and blue is the RF algorithm model

Figure 8. External validation set ROC curve. The red dashed line is the reference line, and the blue is the ROC curve
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Discussion
This study downloaded the transcriptomic and genomic data of 372 gastric cancer patients and 625 
paired non-gastric cancer patient samples. All patients’ clinical information was included in the study 
through the TCGA database. This study first analyzed the data quality using R software, and the results 
showed that the data quality was good, indicating that the data of this study were reliable. Subsequently, 
the mRNA and lncRNA differentially expressed gastric cancer genes were screened out, and the core 
differentially expressed genes were initially screened out after the related pathway analysis. By using the 
“Feature Importance” algorithm, 10 key genes related to gastric cancer were finally screened: LINC01821, 
AL138826.1, AC022164.1, ADGRD1-AS1, CCNB1, KIF11, AURKB, CDK1, NUSAP1, and TTK. It was found 
that the accuracy of the model built by the RF algorithm was 92% with an AUC of 0.897, which was more 
suitable for building a diagnostic model of gastric cancer. Then external validation was performed by 
data in the database, and the AUC of the model was found to be 0.9144 through validation, indicating that 
the gastric cancer diagnostic model has high accuracy and is expected to be an early diagnosis model for 
gastric cancer.

The research screened 10 key genes respectively from 947 differentially mRNAs and 66 differentially 
expressed lncRNAs. CCNB1 is one of the major members of the cell cycle protein B family and has an 
important role in the G2/M transition phase of the eukaryotic cells [27]. Yasuda et al. [28] showed that 
overexpression of CCNB1 mainly occurred in the early stages of gastric malignancies; Gao et al. [29] 
found that down-regulation of CCNB1 expression could help cordycepin-induced cell arrest at the G2/M 
phase, and high expression of CCNB1 could be one of the diagnostic genes for gastric cancer. KIF11 is a 
member of the kinesin family that affects the formation of spindle bipolarity [29, 30], causes chromosomal 
instability, leads to abnormal cell division and proliferation, promotes tumor formation, and plays 
a role in gastric cancer progression [31, 32]. AURKB is a member of the aurora kinase family, which 
plays a role in the assembly of the two-level spindle, maintains normal mitosis, and regulates stem 
cell self-renewal, reprogramming, and differentiation [33, 34]. In recent years, AURKB has been highly 
expressed in breast cancer, bladder cancer, gastric cancer, and other tumors [35–37]. Nie et al. [38] found 
that AURKB may promote gastric tumorigenesis through epigenetic activation of CCND1 expression. 
NUSAP1 is a microtubule-associated protein that plays an important role in cell division and chromosome 
segregation [39–41]. NUSAP1 can also be used as a molecular marker for prostate cancer, promoting cell 
proliferation and migration [42, 43]. Recently, it has been shown that NUSAP1 is highly expressed in gastric 
cancer cell lines and tissues and promotes malignant proliferation and invasion of gastric cancer cells [44]. 
Furthermore, the genes of LINC01821, AL138826.1, AC022164.1, ADGRD1-AS1, CDK1, and TTK in gastric 
cancer need to be further investigated.

Machine learning can summarize the patterns in a large amount of data information, explain the 
inner connection, and efficiently explore the value of data [45, 46]. The biggest advantage of this study is 
using an MLA, which reduces manual repetitive work, makes the efficiency of detection greatly improved, 
and accomplishes complex computational work that is impossible to be done manually by computer. 
It has been used to predict tumors by learning from gene expression data, such as Leng et al. [47] 

collected a large amount of data, including 474 lung adenocarcinoma samples and 491 lung squamous 
carcinoma samples, and learned 1,099 differentially expressed mRNA data by the extreme gradient 
boosting (XGBoost) algorithm to predict lung cancer subtypes, lung squamous cell carcinoma and lung 
adenocarcinoma. The XGBoost algorithm showed high predictive power in this study, outperforming 
the logistic regression algorithm and supporting vector machine algorithm for lung early diagnosis 
and treatment of squamous and lung adenocarcinoma. Yang et al. [48] selected the most important DNA 
methylation features as a model using RF, and the authors construct a support vector machine classifier 
for hepatocellular carcinoma diagnosis. Tian et al. [49] proposed that the normal gastric cell and its cancer 
counterpart can be distinguished by multiple cellular mechanical phenotypes (CMPs) based on MLA. More 
accurate prognostic biomarkers can be obtained through MLA, which provides a new method to verify the 
prognosis of cancer.
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The advantages of the model created in this study: 1. the AUC of the model is greater than 0.9 in 
both the internal validation group and the external validation group, indicating that the model has 
high accuracy; 2. the model includes not only coding RNA but also ncRNA (lncRNA), which further 
improves the accuracy of the model and avoids the bias caused by a single gene; 3. the potential for 
clinical translation application: for those who are financially well-off and unwilling to receive invasive 
examinations, after obtaining the whole genome sequencing through blood samples, the core gene model 
can be used to assist in the diagnosis of gastric cancer, which is expected to avoid invasive examinations 
such as gastroscopic biopsies for the negative population. However, the model still has shortcomings: 
1. since the original purpose of our study was to establish a model for diagnosis of gastric cancer, this 
study did not select data from gastric cancer tissues and paracancerous tissues for validation but used 
gastric mucosal tissues from non-gastric cancer patients as controls, considering that the sampling of the 
paracancerous tissue specimens is not standardized in the clinical practice. The definition of paracancerous 
tissues (length from cancerous tissues, etc.) is not uniform. This avoided the bias caused by sampling and 
increased our difficulty in finding external validation data sets, resulting in a sample size that was not 
ideal. In addition, in the external validation, the final selection of the GSE54129 dataset by the microarray 
resulted in the lack of 2 lncRNAs (AL138826.1 and AC022164.1) among the 10 core genes due to the 
insufficient number of lncRNA annotations, but this did not have a significant impact on this model, and 
the AUC of the model remained at 0.9144. 2. In the study, the number of available samples was limited. 
It would be better to collect more samples to strengthen the machine learning ability and improve the 
model’s accuracy. 3. The machine learning process used sample tissues of lung cancer as a control group 
because there were not enough normal sample tissues, which may also bias the study results. 4. Since the 
TCGA database did not provide us with the population source, there are differences between databases 
in terms of ethnicity, region, nationality, and disease characteristics, which pose a challenge to the 
generalizability of this finding. 5. This study has not been designed to validate the fresh specimens from 
clinical patients, and there is no answer to whether the finding can be applied to the Chinese population. 
The next step will be to improve the design of the study so that the future research can better answer the 
above questions.
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