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Abstract
Cardiovascular diseases are among the leading causes of death worldwide, imposing major health threats. 
Reactive oxygen species (ROS) are one of the most important products from the process of redox reactions. 
In the onset and progression of cardiovascular diseases, ROS are believed to heavily influence homeostasis 
of lipids, proteins, DNA, mitochondria, and energy metabolism. As ROS production increases, the heart 
is damaged, leading to further production of ROS. The vicious cycle continues on as additional ROS are 
generated. For example, recent evidence indicated that connexin 43 (Cx43) deficiency and pyruvate kinase 
M2 (PKM2) activation led to a loss of protection in cardiomyocytes. In this context, a better understanding 
of the mechanisms behind ROS production is vital in determining effective treatment and management 
strategies for cardiovascular diseases.
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Introduction
Reactive oxygen species (ROS) play an important role in the pathophysiology of cardiovascular 
dysfunction [1–3]. An increased production of ROS is associated with the development of an imbalance of 
generation and elimination in redox reactions [4]. The heart produces, nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, xanthine oxidase (XO), uncoupled nitric oxide (NO) synthase (NOS), and 
monoamine oxidases (MAOs) by oxidant systems [5]. Oxidative stress performs different functions based 
on the amount produced. Under normal conditions, oxidative stress is maintained at low levels to sustain 
physiological metabolism [3, 5, 6]. However, excessive oxidative stress can damage the cardiovascular system. 
ROS have various effects on cardiovascular diseases that lead to cell regeneration defect, lipid peroxidation, 
protein degeneration, DNA damage, mitochondrial injury and energy metabolism disorder [5, 7–11].
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ROS discovery and components
After the discovery of free radicals in biological systems in 1950 [12], free radicals have been reported to 
be involved in diverse pathological processes. Redox signaling is an essential process of an organism. ROS 
include oxygen radicals, such as superoxide anion (O2

–), hydroxyl radical (OH), hydrogen peroxide (H2O2), 
NO, peroxynitrite (ONOO) and hypochlorite (OCL–), which are highly reactive molecules [13, 14].

Biological function of ROS
In nature, many oxidase enzymes contribute to ROS generation. Oxidative stress is characterized 
by an imbalance between the pro-oxidant and antioxidant systems, resulting in an increase of ROS 
production [11, 15] (Figure 1). In vivo, there are many oxidant systems such as NADPH oxidases 
(NOXs), mitochondrial respiratory chain enzymes, XO, MAOs, uncoupled  endothelial NOS (eNOS), and 
lipoxygenases. These systems influence the formation and development of cardiovascular diseases 
through ROS production [16–21]. All these oxidases can be regulated by antioxidant systems, including 
superoxide dismutase (SOD), catalase, glutathione (GSH) peroxidases, paraoxonases, thioredoxin 
system, and peroxiredoxins [21]. In addition, mitochondrial mutations can lead to ROS production [22]. 
Mitochondrial DNA (mtDNA) is easily damaged because of its limited capacity to repair DNA [22]. In 
addition, excessive mitochondrial ROS (mtROS) generation results in increased possibility of permeability 
transition pore (PTP) opening and leads to cell death [23]. The increased ROS also leads to mtDNA leakage 
and contributes to inflammation [24]. Furthermore, ROS contributes to dysregulation of intracellular Ca2+ 
homeostasis, by causing mitochondrial membrane depolarization and Ca2+ release [25].

Figure 1. Multiple oxidant systems contribute to the production of ROS

Oxidant systems
NOX
NOXs are multi-transmembrane enzyme complexes composed of a plasma membrane and cytosolic 
components [26, 27]. They are also the major enzymes involved in the generation of ROS that contribute 
to cardiovascular diseases [28] (Figure 1). NOXs consist of seven isoforms NOXs: NOX1, NOX2/gp91(phox), 
NOX3, NOX4, NOX5, dual oxidase 1 (DUOX1) and dual oxidase 2 (DUOX2) [26, 29]. Each oxidase expresses 
itself differently in cardiovascular, endothelial, and vascular smooth muscle cells [30–32]. Activated NOXs 
can utilize NADPH as an electron donor and transfer an electron to molecular oxygen. This reaction generates 
a superoxide molecule that plays an important role in the redox reaction [23, 27, 33, 34]. Several studies 
have identified that NOXs contribute to cardiovascular diseases, such as atherosclerosis, hypertension, 
heart failure, and ischemia-reperfusion injury (I/R) [30]. The increased expression and activation of 
NOX can contribute to ROS production [1, 35–37]. ROS signaling is vital in establishing communication 
between mitochondria and NOXs in the cardiovascular system [3, 13]. Further research indicates that 
NOX can also activate the nucleotide-binding and oligomerization domain (NOD)-like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome in macrophages which contributes to the progression 
of atherosclerosis [38, 39].
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Mitochondrial respiratory chain
The structure of the mitochondrion was first described in 1888. Mitochondria are known as the source 
of chemical energy within a cell, but also participate in aerobic respiration which generates ROS [40, 41]. 
mtROS production has been observed in vivo at complex I and complex III in the electron transport chain 
(ETC) [42–44]. The process of electron transfer generates mtROS that play an important role in the 
intracellular redox state [38, 45]. Under physiological conditions, the loss of electrons is minimal. However, 
during conditions of oxidative stress, the production of mtROS is increased and causes damage to 
mitochondria [46]. This reaction indicates that mitochondria themselves may also be susceptible to the 
overexpression of ROS they produce. These effects cause damage to mitochondrial DNA and membranes, 
further impairing the normal activity of the ETC and generating ROS through positive feedback [47]. In 
addition, the changes in mtROS impact K+ and Ca2+ channels that influence cell functions [48, 49].

XO
XO is a cytoplasmic enzyme that can be converted from xanthine dehydrogenase [38]. XO catalyzes 
the oxidation of hypoxanthine to xanthine by the transfer of an electron to oxygen and produces 
superoxide [23, 30] (Figure 1). Allopurinol is an inhibitor of XO that can be used to reduce levels of uric 
acid [50]. Recently, allopurinol has been found to have potential cardiovascular protection by modulating 
ROS and Ca2+ [50, 51].

MAOs
MAOs are located at the outer membrane of mitochondria [52]. There are two isoforms of MAO namely 
MAO-A and MAO-B [23]. Under pathological conditions, the increased activation of MAOs generates 
excessive H2O2 and aldehyde, leading to dysfunction of mitochondrion [53, 54] (Figure 1). MAO is also 
an oxidase which has been closely associated with cardiovascular diseases such as vascular dysfunction, 
I/R, maladaptive hypertrophy and heart failure [55–57]. Some research indicates that the increased 
activation of MAOs disturbs the balance of redox and leads to excessive production of ROS that may damage 
cardiomyocytes [23]. Moreover, MAOs can increase the production of mtROS resulting in the activation 
of inflammasome [23].

Uncoupled eNOS
NOS consists of three isoforms: eNOS, neuronal NOS (nNOS) and inducible NOS (iNOS) [30] (Figure 1). 
Under physiological conditions, eNOS maintains the balance of endothelial function by binding to L-arginine 
with the assistance of tetrahydrobiopterin (BH4) during NO synthesis [58]. BH4 is an important element 
for maintaining the stability of eNOS and is also the basic cofactor for NO synthesis [58]. However, during 
oxidative stress, BH4 will be converted to dihydrobiopterin (BH2) and promotes uncoupling by interacting 
with eNOS [59, 60].

The role of ROS in cardiovascular diseases
ROS play an important role in the pathogenesis of cardiovascular diseases, such as I/R, vascular endothelial 
and atherosclerosis, hypertension, diabetic cardiomyopathy (DCM), heart failure, cardiac arrhythmias, and 
aortic aneurysms [3, 42].

I/R
A large number of ROS are produced during the process of I/R, due to activation of the ETC and several 
enzymes [54]. ROS also accelerate the loss of adenosine triphosphate (ATP) during the period of I/R [61]. 
In early reperfusion, the production of ROS exceeds the removal capacity of antioxidant systems leading 
to mitochondrial respiratory complex peroxidation [30] (Figure 2). These changes lead to oxidative damage 
and cardiomyocyte death [6, 61, 62].

https://doi.org/10.37349/emed.2022.00085


Explor Med. 2022;3:188–204 | https://doi.org/10.37349/emed.2022.00085 Page 191

Figure 2. The development of cardiovascular diseases is caused by an imbalance of redox system. GPx: GSH peroxidase; 
Trx: thioredoxin

During the period of hypoxia/reoxygenation, the changes of intracellular calcium in aortic 
endothelial cells impact the uptake of Ca2+ in mitochondria [22] (Figure 2). The generation of Ca2+ 
can be modulated by ROS derived from the NOX [22]. Research indicates that the upregulation of 
receptor-interacting protein 3 (Ripk3) increases production of mtROS and cell death in I/R [63]. 
The increased production of mtROS is modulated by Ca2+ overload and XO in the overexpression of 
Ripk3 [63, 64] (Table 1, Figure 3). In combination with oxidative stress, calcium surplus leads to the opening 
of mitochondrial permeability transition pore (mPTP) and cardiomyocyte death [6, 22]. In addition 
to the Ca2+ overload, mitochondrial dysfunction and ROS-induced ROS release (RIRR) also promote cell 
death [61]. The release of ROS can be reduced by activation of adenosine monophosphate-activated protein 
kinase (AMPK)/Akt/glycogen synthase kinase-3β (GSK-3β) pathway in I/R [65] (Table 1). Inhibition of 
transforming growth factor-activated kinase 1 (TAK1) can also reduce ROS production in I/R [66] (Table 1). 
Moreover, evidence shows that signal transducer and activator of transcription 3 (STAT3) is able to 
control ROS production [67]. During ischemia, STAT3 overexpression reduces the production of superoxide 
in the heart [61, 68]. Activation of STAT3 can improve resistance in I/R and prevent cardiac remodeling by 
modulating interleukin-11 (IL-11) [69] (Figure 3). Additionally, nicotinamide phosphoribosyltransferase 
(Nampt) was proven to be effective for protection in I/R [36, 70]. Nampt inhibits apoptosis by regulating the level 
of nicotinamide adenine dinucleotide (NAD+) and ATP [71]. Additionally, mitochondrial connexin 43 (Cx43) 
modulates the production of mtROS [6, 72]. Cx43 protects the function of cardiomyocytes by casein kinase 1 
(CK1) which leads to the phosphorylation of Cx43 [73]. Recently, research findings demonstrated that 
Cx43 deficiency can lead to a loss of protection in I/R [6, 72, 74, 75] (Figure 3). Furthermore, the 
citric acid cycle (CAC) is an important element of metabolism. However, it has been reported to be 
associated with mtROS production recently [76]. The research indicates that succinate was increased 
in ischemia and then oxidized by succinate dehydrogenase during the period of reperfusion leading to 
mtROS production [76] (Figure 3). Iron-catalysed reactions are another condition which causes 
increased ROS production [77]. However, the role of Fe–S clusters is an area for further research [49]. 
Recent evidence indicates that at the end of I/R, activation of hypoxia-inducible transcription factor (HIF) 
can increase levels of mitochondrial NADPH and reduce levels of mtROS which prevent cardiac fibroblast 
formation [78, 79] (Figure 3). Similarly, Gap junction protein Alpha 1-20 kDa (GJA1-20k) and pleckstrin 
homology-like domain, family A, member 1 (PHLDA1) are also two important factors capable of reducing 
ROS [80, 81] (Table 1, Figure 3). GPx is also found to inhibit left ventricular (LV) remodeling and 
improve cardiac tissue survival in I/R [36] (Figure 2, Figure 3). Glutathione exhibits protective effects 
in cardiomyocytes by reducing the formation of ROS [82] (Figure 3). The reduction of ROS is essential in 
providing protection during I/R.
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Table 1. Response of ROS under different mechanisms in cardiovascular diseases

Disease types ROS Mechanisms PMIDs Publication dates
I/R ↑

↓

↓

↓

↓

↓

Ripk3–Ca2+ overload–XO–ROS

HIF-1–NADPH–mtROS

AMPK–Akt–GSK-3β–ROS

TAK1↓–ROS

GJA1-20k–ROS

PHLDA1–ROS

29502045

34763860

28128361

32378287

34608863

31981628

2018-02

2022-02

2017-01

2020-10

2021-10

2020-03
Hypertension ↓

↓

↓

↓

↓

↓

↓

↑

↓

JMJD1A–ROS

AMPK–PAR1–ROS

AMPK–PINK1–parkin–ROS

AMPK–O-GlcNAC↓–ROS

Sirt1–LKB1–MAPK–ROS

Foxo1–SOD2–ROS

ROS–Nrf2–ARE–ROS

AngII–ROS

CELF1↓–PEBP1–MAPK↓–ROS

32461996

29287725

29285690

29285690

23707558

30677512

33656904

30643968

34669021

2020-05

2018-01

2018-03

2018-01

2013-10

2019-06

2020-12

2019-01

2022-01
Atherosclerosis ↓

↑

↓

↑

↓

↓

↓

IRS-1–ROS

HIF-1–ROS

PON2–ROS

AMPK–NOX↓–ROS

PKM2↓–G6P–NADPH–ROS

Sirt3–Foxo3α–MnSOD–ROS

Sirt3–IDH2–GSH–ROS

33000267

35111045

17404154

31331111

30222136

23665396

30455381

2020-11

2021-12

2007-04

2019-07

2018-10

2013-10

2019-01
DCM ↑

↑

↑

RAGE–NOX–ROS

PKC–NF-κB–iNOS–ROS

NEU1–AMPKα↓–Sirt3↓–SOD2↓–ROS

27916650

27916650

35002528

2017-04

2017-04

2022-01
Heart failure ↑ Sirt3–CypD–mPTP–SOD↓–ROS 33508434 2021-03
Vascular endothelial ↓ Sirt2–Foxo3α–SOD–ROS 34028177 2021-07
AngII: angiotensin II; ARE: antioxidant response element; CELF1: cytimidine uracil guanine triplet repeat-binding protein 1; CypD: 
cyclophilin D; Foxo1: forkhead box protein O1; Foxo3α: forkhead box transcription factor 3α; G6P: glucose-6-phosphate; IDH2: 
isocitrate dehydrogenase 2; IRS-1: insulin receptor substrate 1; JMJD1A: Jumonji domain containing 1A; LKB1: liver kinase B1; 
MAPK: mitogen-activated protein kinases; MnSOD: manganese SOD; NEU1: neuraminidase 1; NF-κB: nuclear factor kappaB; 
Nrf2: nuclear factor E2-related factor 2; O-GlcNAC: O-linked N-acetylglucosamine; PAR1: protease-activated receptor 1; PEBP1: 
phosphatidylethanolamine binding protein 1; PINK1: phosphatase and tensin homolog-induced putative kinase 1; PKC: protein 
kinase C; PKM2: pyruvate kinase M2; PON2: paraoxonase-2; RAGE: receptor for advanced glycation end products; Ripk3: 
receptor-interacting serine/threonine-protein kinase 3; Sirt 1: sirtuin 1; PMID: PubMed ID; ↑: increase; ↓: decrease

Vascular endothelial and atherosclerosis
The process of atherosclerosis is accelerated by various factors, such as the generation of ROS, 
inflammatory signaling, and endothelium dysfunction [21]. However, atherosclerosis begins with 
endothelium dysfunction and plays an important role in vascular homeostasis [21] (Figure 2). The intima 
of the endothelium is formed of one layer of endothelial cells surrounded by adhesion molecules [83]. In 
physiological conditions, steady blood flow has little effect on vascular endothelium and increases the 
production of NO [21]. When the endothelium is injured, lipids deposit in the vascular wall. This causes 
a change in vascular blood flow and upregulates NOX, leading to oxidative stress [21]. The abnormal 
production of NO is caused by eNOS disorder [84]. Meanwhile, the reduction and low bioavailability of 
NO contributes to atherosclerosis because N-hexanoyl-D-erythro-sphingosine is activated [85]. Moreover, 
Sirt2 plays an important role in maintaining the function of endothelial cells. It can reduce ROS production 
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via Sirt2/Foxo3α/SOD pathway [86] (Table 1). Therefore, the improvement of endothelial cell function 
could have a protective effect on vascular function [87]. Sirt3 is also the member of sirtuin family which 
has a protective effect in cardiovascular diseases (Figure 3). It can mediate Foxo3α/MnSOD and IDH2/
GSH pathways to reduce ROS production [88–90]. HIF-1 is a heterodimeric protein which plays an 
important role in atherosclerosis by regulating ROS and NO production [91] (Figure 3). Moreover, novel 
researches demonstrated that PKM2 is related to release of ROS. The inhibition of PKM2 can activate the 
G6P/NADPH pathway to reduce ROS in cardiomyocytes exposed to oxygen/glucose [92, 93] (Figure 3). 
Apelin/APJ is a member of G protein-coupled receptors (GPCR) and is expressed on endothelial and smooth 
muscle cells [94]. Apelin-13 reduces lipid accumulation of foam cells through activating class III 
phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway [94–96] (Figure 3). Kruppel-like factor 2 (KLF2) 
and KLF4 have also been reported to act as protective factors in atherosclerosis [21, 97]. Deficiencies of 
KLF2 and KLF4 accelerate the atherosclerotic process by inducing eNOS [98]. NF-κB can also decrease 
ROS accumulation by downregulation of c-Jun N-terminal kinase (JNK) [99] (Figure 3). Research has 
shown that loss of insulin signaling (IRS-1) in vascular endothelium leads to endothelial dysfunction and 
atherosclerosis [100, 101] (Figure 3). The research found that overexpression of PON2 would reduce 
the production of ROS by decreasing endoplasmic reticulum stress [102] (Figure 3). Furthermore, the 
downregulation of receptor-interacting serine/Ripk3 can reduce the activation of inflammatory processes, 
which has a protective effect in atherosclerosis [103]. The factors HIF-1 and AMPK also participate in ROS 
production in the process of atherosclerosis [91, 104, 105].

Figure 3. The mechanisms of ROS in cardiovascular diseases. NAC: N-acetylcysteine; OPLAH: oxoprolinase; Vc: vitamin C; 
↑: increase; ↓: decrease

Hypertension
There is robust evidence that ROS production is increased in patients with hypertension [14]. 
Mechanisms contributing to hypertension are complex; oxidative stress is one of the most important 
factors [106]. Uncoupled eNOS can promote an increase in cardiomyocyte hypertrophy in response 
to chronic hypertension [107, 108]. Cardiomyocyte hypertrophy increases the expression of 
XO [27] (Figure 2). CD8+ T cells contribute to salt-sensitive hypertension by increasing ROS production 
and sodium retention [109]. Additionally, a reduction in Sirt3 leads to endothelial dysfunction by creating 
mitochondrial oxidative stress in hypertension [14] (Figure 3). The depletion of Sirt3 contributes to 
vascular inflammation and hypertrophy, leading to progression of hypertension [110]. The activation via 
Sirt1/LKB1 and CELF1/PEBP1 pathways can both reduce ROS production [111, 112]. AMPK is a key factor 
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in reducing the production of ROS via different pathways such as AMPK/PAR1, AMPK/phosphatase and 
tensin homolog-induced putative kinase 1 (PINK1)/parkin and AMPK/O-GlcNAC [113–116] (Table 1). ROS 
can also be reduced through activation of JMJD1A and Foxo1 [117, 118] (Table 1). Furthermore, NOX4-mediated 
mtROS signaling is important in the response to chronic pressure overload [27]. NOX4 protects the 
heart from hypertrophic dysfunction by activation of HIF1a/vascular endothelial growth factor (VEGF) 
signaling pathway in cardiomyocytes [119]. In hypertension models, the activation of Nrf2 demonstrated 
an antihypertensive effect [120] (Figure 3). The activation of the Nrf2 pathway induces the production of 
antioxidant enzymes [120] (Table 1). Nrf2 can be modulated by the mammalian STE20-like protein kinases 
1/2 (Mst1/2) to sustain the balance of cellular redox reactions [38, 121]. Thus, presence of mitochondrial 
antioxidants may improve vascular function [14]. Finally, the Trx system is able to reduce ROS and act as 
an anti-hypertrophic factor [27] (Figure 3).

DCM
Hyperglycemia causes an alteration of mitochondrial morphology, including mitochondrial fragmentation 
and swelling, leading to an increase in ROS production [60, 122, 123]. Increased production of ROS can 
also contribute to changes in mitochondrial morphology [23]. However, antioxidants may reduce 
the production of ROS, offering a potential therapeutic strategy for the treatment of DCM [124]. 
Altered mitochondrial function may inhibit insulin signaling which leads to activation of PKC [125]. 
PKC is from a family of kinases related to an increase in ROS production [101]. PKC activates NOX 
in diabetes and induces oxidative stress [59] (Figure 3). PKC can also activate NF-κB to increase 
ROS release [59] (Table 1). Furthermore, PKC can be up-regulated by p66shc, and then inhibit eNOS 
activity, creating a vicious cycle [101] (Figure 2). AMPK is also reported to reduce the production of 
mtROS [126] (Figure 3). Activated phosphorylated AMPK (pAMPK) can inhibit pyroptosis in DCM [127]. 
However, research indicates that inhibiting the expression of AMPK/p38 MAPK signaling reduces 
ROS production [128]. This production of ROS is different due to the distinct pathway that AMPK 
activates. For example, activation of NEU1 inhibits the AMPKα/Sirt3-SOD2 pathway and leads to ROS 
production [129] (Table 1). Moreover, advanced glycation end products (AGE) binding to the RAGE 
cause activation of NADPH oxidase enzymes that lead to ROS generation [59] (Table 1, Figure 3). In 
DCM, the increased expression of NOX2 contributes to ROS production [23]. ROS formation through NOX 
is associated with pathways involving sodium/glucose cotransporter 1 (SGLT1), PKCβ, and calcium/
calmodulin dependent kinase II (CaMKII) [130]. Further, the decreased activation of NOX2 can reduce 
myocardial oxidative stress and remodeling which improves cardiac function [131]. In addition to ROS, 
high glucose-induced generation of NOS causes DNA damage [23, 60]. Excess glucose also induces arginase 
activity and upregulates eNOS activity [23, 60]. The expression of NOS is increased in diabetic hearts 
and leads to enhanced lipid peroxidation and peroxynitrite generation [23]. Lastly, iNOS is up-regulated 
in DCM, with increased levels of 4-hydroxynonenal (4-HNE) [59]. Supplementation with BH4 may be 
possible to reduce oxidative stress in DCM [59] (Figure 3). Coenzyme-Q10 (CQ10) mitochondria-targeted 
antioxidants also reduce H2O2 in hyperglycemia [59] (Figure 3).

Heart failure
Heart failure is a condition where the heart exhibits abnormal cardiac structure and function leading to 
pump failure [22, 27]. The mechanisms contributing to heart failure are complex, including mitochondrial 
dysfunction, redox imbalance, ion disorder, and inflammation [24]. The expressions of XO and MAO 
are elevated in heart failure, leading to increased ROS production [27, 36] (Figure 2). One of the major 
mechanisms in heart failure is an increase of mtROS due to mitochondrial stress [24] (Figure 3). 
Furthermore, ROS release contributes to the progression of heart failure and leads to cardiac dysfunction 
and ventricular remodeling [132]. In heart failure, diastolic calcium leak contributes to cytoplasmic 
calcium overload and diastolic dysfunction and arrhythmia [27]. In turn, ROS inhibits calcium reuptake 
and impacts diastolic function [133]. Additionally, ROS activates the apoptosis signal-regulating kinase-1 
(ASK-1)/JNK-dependent pathway which causes apoptosis in in vivo models of heart failure [134]. Sirt3 
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has been shown to be downregulated in the failing heart [24] (Figure 2). Sirt3 offers heart protection 
by maintaining mitochondria function [135]. The activity of Sirt3 is mediated by NAD+ availability [136]. 
Decreased NAD+ levels suppress NAD+ dependent protein deacetylation, resulting in mitochondrial protein 
hyperacetylation and impaired function [24, 136]. Sirt3 can also regulate ROS production by CypD/mPTP/
SOD pathway [137] (Table 1).

Several studies demonstrated that antioxidant NAC can improve GSH levels, reduce ROS production, 
and improve cardiac function [36, 59] (Figure 3). A number of clinical trials have demonstrated that the 
enhanced expression of 5-oxoprolinase (OPLAH) could improve GSH/oxidized glutathione (GSSG) ratio 
and benefit heart failure [36] (Figure 3). Vc may also be used as an antioxidant to improve endothelial 
function in heart failure [22] (Figure 3).

Cardiac arrhythmias
Atrial fibrillation (AF) is one of the common arrhythmias related to ATP deficiency and changes in Na+, 
K+, and Ca2+ channels [138] (Figure 3). Recently ROS was reported to play an important role in AF [139]. 
NOX2-derived ROS generation has been implicated in experimental and clinical AF [27]. The production 
of mtROS contributes to cardiac fibrosis which is a characteristic of AF [139]. Furthermore, AF causes the 
opening of mPTP leading to a disruption of Ca2+ homeostasis and mtDNA damage [140]. The nitroso-redox 
balance may sensitize cardiac ryanodine receptor (RyR2) to induce ventricular arrhythmias. This reaction 
leads to an imbalance of Ca2+ and increased formation of ROS [141]. Modulating ion channels is one 
target for arrhythmia treatment and many anti-arrhythmic medications target these channels [106, 142]. 
Radiofrequency ablation is used to block abnormal conduction bundles and the origin of tachyarrhythmias. 
All of these sustain ion homeostasis in cardiomyocytes.

Aortic aneurysms
Marfan’s syndrome (MFS) is a systemic disease with a high incidence of aortic aneurysm and aortic 
dissection. These conditions have a high mortality in MFS. ROS produce endothelial dysfunction, 
switch smooth muscle cell phenotype, and cause extracellular matrix remodeling, leading to the 
progression of MFS [143]. NOX is one of the sources of ROS production. However, NOX has a different 
function in the process of aortic aneurysm [144]. The lack of NOX1 has a protective effect in aortic 
aneurysm [145] (Figure 3). However, a deficiency of NOX2 can contribute to the development of aortic 
aneurysm due to activation of inflammatory processes. A low expression of NOX4 offers potential 
protection in aortic aneurysm by ameliorating elastic fiber [146] (Figure 3). ROS also participate in cell 
death which contributes to aortic aneurysm [147]. Treatment of antioxidant stress may provide a potential 
option for preventing aortic aneurysm.

Conclusions
ROS are highly reactive molecules produced by a system of oxidases which have a great impact in the 
progression of cardiovascular diseases. The production of ROS disrupts the function of mitochondria 
and intracellular Ca2+ homeostasis, leading to damage to the cardiovascular system. Several mice 
models demonstrate that modulation of different pathways can rescue the impaired cardiomyocytes, 
retard myocardial remodeling, and maintain ion homeostasis. Therapies that target the activation of 
antioxidant systems, such as an exogenous antioxidant supplement, may be an effective treatment 
option in cardiovascular diseases. Further research is needed to explore the effect of controlling ROS in 
cardiovascular diseases.
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Nrf2: nuclear factor E2-related factor 2
PKC: protein kinase C
PKM2: pyruvate kinase M2
Ripk3: receptor-interacting protein 3
ROS: reactive oxygen species
Sirt1: sirtuin 1
SOD: superoxide dismutase
STAT3: signal transducer and activator of transcription 3
XO: xanthine oxidase
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