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Abstract
Melatonin is the primary hormone of the pineal gland that is secreted at night. It regulates many physiological 
functions, including the sleep-wake cycle, gonadal activity, free radical scavenging, immunomodulation, 
neuro-protection, and cancer progression. The precise functions of melatonin are mediated by guanosine 
triphosphate (GTP)-binding protein (G-protein) coupled melatonin receptor 1 (MT1) and MT2 receptors. 
However, nuclear receptors are also associated with melatonin activity. Circadian rhythm disruption, shift 
work, and light exposure at night hamper melatonin production. Impaired melatonin level promotes various 
pathophysiological changes, including cancer. In our modern society, breast cancer is a serious problem 
throughout the world. Several studies have been indicated the link between low levels of melatonin and breast 
cancer development. Melatonin has oncostatic properties in breast cancer cells. This indolamine advances 
apoptosis, which arrests the cell cycle and regulates metabolic activity. Moreover, melatonin increases the 
treatment efficacy of cancer and can be used as an adjuvant with chemotherapeutic agents.

Keywords
Melatonin, breast cancer, cell cycle, apoptosis, chemotherapy

Introduction
It is well-known that the hormone melatonin has oncostatic effects both in vivo and in vitro conditions in 
various types of cancers, including breast. Melatonin can disrupt estrogen-mediated cellular pathways, 
ensuing in a lattice drop of estrogenic stimulus to the breast cancer cells. Studies have shown that sleep 
and/or circadian disruption, specifically night shift work, chronic jet lag, trans-Mediterranean traveling are 
correlated with an increased risk of breast cancer development.

Melatonin is an indolamine (N-acetyl-5-methoxytryptamine), identified by Lerner et al. [1] from 
the mammalian pineal gland. The precursor of melatonin is serotonin, a potent neurotransmitter. The 
environmental light-dark cycle is the potent regulator of melatonin synthesis. The suprachiasmatic 
nucleus (SCN) of the hypothalamus receives photoperiodic information and regulates the synthesis and 
secretion of melatonin through a complex neural connection [2, 3]. Melatonin is the modulator of the 
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central circadian clock and peripheral clock of the different tissues, including the breast [4]. Many 
laboratories have focused on the functions of the clock genes and proteins that are involved in cellular 
activities, including cell survival, cell cycle regulation, proliferation, apoptosis, DNA damage repair, and 
tumor promotion or suppression [5, 6]. With the synchronized output of the central circadian clock 
in relation to the pineal gland and other peripheral oscillators, melatonin acts as a key role player in 
the regulation of intermediary metabolism and cancer prevention [7]. Several studies have revealed 
that circadian rhythm disruption, specifically night shift work is linked with an increased risk of breast 
cancer [8]. Impaired melatonin level promotes breast, ovarian, prostate, hepatocellular, and other 
cancers. Melatonin has oncostatic properties that are mediated by induction of apoptosis, arresting the 
cell cycle, regulation of metabolic activity, and the inhibition of hypoxia-inducible factor 1α (HIF-1α) 
activity [9]. Excessive exposure to estrogen is a key risk factor for breast cancer [10]. Melatonin primarily 
regulates steroidogenesis and shows anti-gonadal activity.

Numerous studies had revealed that the increased rate of night shift works suppresses melatonin 
production and increases the risk of estrogenic stimulation for breast cancer development. An inverse 
correlation has been observed between melatonin and the risk of development of breast cancer. Melatonin 
levels are low in women with breast cancer [11]. Additionally, maintenance of the light-dark cycle and oral 
supplementation of melatonin may have a beneficial effect on women who are facing the risk of breast 
cancer [12]. This review will touch the oncostatic effects of melatonin in breast cancer and its possibilities in 
cancer treatment.

Synthesis of melatonin
The pineal gland is the primary site of melatonin synthesis. It begins with the conversion of tryptophan 
to 5-hydroxy-tryptophan, which is then converted to serotonin, followed by melatonin after 
methylation (Figure 1) [13]. Melatonin production is increased by induction of the rate-limiting enzyme 
arylalkylamine N-acetyl transferase (AANAT) [14]. The expression of this enzyme is regulated by the exposure 
of light to the retina. Photoperiod regulates the synthesis and secretion of melatonin. Light exposure in the 
daytime represses melatonin production, while darkness acts as an inducer. The peak of melatonin production 
occurs at about 2 a.m. in humans [15]. Alternatively, light-at-night (LAN) inhibits melatonin synthesis [16]. 
Multiple studies indicated that pinealectomy or circadian disruption can stimulate spontaneous growth 
and development of tumors, and metastasis of the existing tumors [17, 18]. In addition, melatonin is also 
synthesized in extra-pineal organs, including the retina, gastrointestinal tract, skin, lymphocytes, and 
bone marrow [19].

Figure 1. Steps of synthesis of melatonin in pineal gland. ALDC: aromatic L-amino acid decarboxylase; ASMT: acetylserotonin 
O-methyl transferase; H4BP: tetra hydrobiopterin; SAM: S-adenosyl methionine; TH: tryptophan hydroxylase
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Mechanisms of actions
Melatonin is a lipophilic compound. Its action is mediated primarily through binding to the cell surface 
melatonin receptors (MT1, MT2). These are membrane-bound GTP-binding protein (G-protein) coupled 
receptors (GPCRs). They modulate the activity of the variety of G-proteins, including Giα2, Giα3, Gαq, and 
Gα11 [20, 21]. Moreover, melatonin acts directly to the DNA binding nuclear receptors (NRs) [retinoid-related 
orphan receptor (ROR)-α/isoforms of nuclear receptors of retinoic acid receptor superfamily (RZR)]. In 
humans and other mammals, the MT1 receptor is encoded by the MTNR1A gene and the MTNR1B gene is 
responsible for the MT2 receptor [22, 23]. The MT1 receptor inhibits the production of cyclic adenosine 
monophosphate (cAMP) via pertussis toxin-sensitive inhibitory Giα proteins [20, 24]. Activated MT1 receptor 
helps in the inhibition of forskolin-stimulated cAMP formation, followed by suppression of protein kinase 
A (PKA) activity and phosphorylation of the cAMP-responsive element-binding protein (CREB) [25, 26]. 
Melatonin-mediated activation of the MT1 receptor has also been involved in the modulation of ion channels 
in cells [26].

In addition, the MT2 receptor has also been associated with G-proteins to decrease forskolin-activated 
cAMP production. It modulates cyclic guanosine monophosphate (cGMP) formation and amplifies PKC 
activity [27, 28]. The MT1- and MT2-mediated melatonin signaling is enhanced by the formation of 
homo- or hetero-dimmers for the modification of receptor functions and activity [29, 30]. Furthermore, 
G-protein-coupled receptor 50 (GPR50), a melatonin-related receptor is incapable to bind with melatonin 
but can dimerize with MT1 and MT2 receptors that only repress the affinity of MT1 [31]. The activation of 
the MT1 receptor shows much of melatonin’s oncostatic actions, resulting in the net reduction of estrogenic 
stimulation in estrogen receptor-α (ER-α)-positive MCF-7 human breast cancer cells [32].

Studies with MCF-7 human breast cancer cells revealed that melatonin activates the Giα2-, Giα3-, Gαq-, 
and Gα11-coupled MT1 receptors [33]. MT1 receptor overexpression can enhance the anti-proliferative 
effect of melatonin on breast cancer cells in both in vivo and in vitro conditions. Application of non-selective 
MT1 and MT2 receptor antagonists showed reverse effects [30, 34]. Experimental evidence from breast 
tumor biopsy specimens had revealed that there was a correlation between the MT1 receptor activity and 
ER-α expression [35]. Besides these, both MT1 positive and triple-negative breast cancers (TNBC) exhibited 
a lower proliferative rate with smaller tumor size, while MT1 negative TNBC was notably linked with a higher 
risk of progression of breast cancer [36]. To date, all studies have indicated the MT1 expression with an 
improved prognosis compared to those with MT1 negative breast tumors [25, 37].

Melatonin can cross the cell membrane due to its lipophilic nature. At the cytosolic site, it binds with 
the nuclear and mitochondrial proteins to drive a variety of non-receptor-mediated effects in breast cancer 
cells. Several studies had revealed that melatonin binds to the calmodulin (CaM) receptor, which decreased 
the sensitivity of adenylate cyclase (AC) [38]. Inactivated AC lowers cAMP levels within cells that can 
downregulate the activation of PKA, CREB, and p300 co-regulator; the collective effects are attenuation of 
phosphorylation and trans-activation of different transcription factors and NRs, including ER-α [11].

It had also been reported that melatonin acts as a potent free radical scavenger. The activity 
is mediated by MT3, a quinine-reductases. The subsequent result is diminution of reactive oxygen 
species (ROS)-mediated oxidative damage in various tissues, including the breast [39]. In in vitro study, 
administration of melatonin in ZR-75-1 and MCF-7 breast cancer cells triggered the expression of 
glutathione and glutathione-S-transferase that decrease tumor cell metabolism and proliferation [25]. 
Melatonin shows receptor-mediated immunomodulatory effects in the immune system [40] and reduces 
telomerase activity [41].

Anti-proliferative effects of melatonin on breast cancer cells 
Animal studies and clinical data had revealed that melatonin decreases the occurrence of in vitro 
tumor cell-induced cancers [11]. It also significantly inhibits the growth of some human breast 
tumors [25, 42]. Melatonin exerts both anti-proliferative and apoptotic effects in breast cancer cells in 
multiple ways (Figure 2) [25, 43]. The anti-proliferative functions of melatonin are mediated by the activation 
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of the MT1 receptor in MCF-7 cells-induced transfection model [34, 44]. Melatonin receptor suppresses 
ER-α-mediated transcriptional activity in ER-α-positive breast tumor cells. The arrest of cell cycle and the cell 
proliferation are mediated by the inhibitory actions on Ca2+ signaling and CaM expression [25], stimulation of 
p53 expression [45], and p21-gene transcription (Figure 2) [46]. It was reported that blocking of MT1/MT2 
receptors in MCF-7 cells showed impaired p53-mediated repairing of DNA damage [47]. This indolamine 
arrests the cell cycle of breast tumor cells in the gap phase 1 (G1) phase [41], prevents estrogen synthesis 
by inhibiting aromatase activity [34, 48]. Melatonin also suppresses the uptake of linoleic acid (LA) in the 
tumor cells [49].

Figure 2. The multiple actions of melatonin in the prevention of breast cancer. ↑: increase; ↓: decrease; (+): stimulation; (–): 
inhibition; Akt: protein kinase B; Bax: B-cell lymphoma-2 associated X protein; Bcl: B-cell lymphoma; Β-Cat: beta catenin; CDK: 
cyclin dependent kinase; Cyc I: cyclin I; Cyc D1: cyclin D1; GLUT: glucose transporter; GSK3: glycogen synthase kinase 3; 
HER2: human epidermal growth factor receptor 2; IGF-1R: insulin like growth factor 1 receptor; JNK: Jun N-terminal kinase; P: 
protein; PAK: p21 activating kinase; PI3K: phosphoinositide 3-kinase; Ras: rat sarcoma virus; Src: sarcoma; TGF: transforming 
growth factor

Modulation of estrogen-ER-α-signaling pathway
Under the natural photoperiod, melatonin is expected to be a regulator of reproduction in seasonally 
breeding animals [50]. It modulates the hypothalamic-pituitary-gonadal axis (HPGA) [51], resulting in the 
decrease of ovarian estrogen synthesis [25]. However, humans are not seasonal breeders and melatonin 
exercises some modulatory actions on steroidogenesis in human luteal cells [52, 53].

The early report indicated that melatonin downregulated the synthesis of sex steroids, particularly 
estrogen. Thus, melatonin has a negative impact on estrogen-signaling [54]. Melatonin suppressed 
estrogen-mediated proliferation of human breast cancer cells in in vitro system. Hill et al. [25, 34] suggested 
that melatonin regulates the estrogenic actions on breast and mammary tissue in three ways: (i) diminution 
of synthesis of sex steroids, including estrogens and reduction of their circulating levels; (ii) binding with 
ER-α as a selective ER modulator (SERM) to inhibit estrogen binding, nuclear translocation, DNA-binding, 
and transcriptional activation; (iii) decreasing the activity of the enzymes such as aromatase, sulfatase, 
and aldo-keto reductases (AKRs) involved in the synthesis of estrogens from cholesterol. Administration of 
melatonin might be a key inhibitor of breast cancer. The cell line study indicated that 1 nmol/L solution of 
melatonin can repress the proliferation of ER-α-positive human breast cancer as well as suppression of the 
ER-α mRNA expression [25].

Melatonin is a powerful repressor of estrogen-induced ER-α-dependent transcriptional activities. It 
inhibits several estrogen-induced mitogenic expressions and anti-apoptotic gene transcription including 
Bcl-2. Alternatively, melatonin influences the expression of growth-inhibitory and pro-apoptotic genes like 
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TGF-α and Bax [55]. Melatonin-Gαi2 protein suppresses cAMP production, followed by a diminution of PKA 
levels, leading to impaired phosphorylation of serine-236 of the ER-α. This PKA-sensitive site of ER-α plays a 
crucial role in the inhibition of ER-α-dependent transcriptional activities [20, 25]. Melatonin can couple with 
CaM and suppresses ER-α-mediated functions by modulating the PKA-driven Ca2+/CaM pathway.

A chromatography-mediated immunoprecipitation study indicated that melatonin blocked 17-β 
estradiol-mediated recruitment of CaM and p300 to the Cyc D1 promoter [25]. The absence of estrogenic 
activity shows the significant declining effects due to less recruitment of p300 to the Cyc D1 promoter. 
Reverse action had been observed within 1.5 h after administration of estrogen. The daily rhythm of estrogen 
peak arises in the early morning which is essential for the estrogenic activity [25]. Generally, plasma melatonin 
peak reaches 2 a.m. followed by the decreasing effect. Thus, estrogen levels begin to rise when the melatonin 
peak is in a downward step [56].

It was reported that dim light exposure at night (dLEN) hampers the melatonin functions and circadian 
signal. Circadian dysfunction induced the phosphorylation of the ER-α at Ser-118 and Ser-167 through the 
action of extracellular receptor kinase (ERK)-1 and ERK-2, cellular-Src (c-Src) kinase, and protein kinase 
B (Akt) [25, 49]. During dLEN, exogenous supplementation of melatonin significantly suppresses the 
phosphorylation of ER-α. This evidence strongly supports the role of melatonin on the regulation of gene 
expression in human breast cancer cells via the actions of the MT1-ER-α receptor-specific mechanism. 
However, contradictory findings in relation to night shift work and the incidence of cancer are also available. 
The meta-analysis study revealed that the development of cancer is not influenced by fixed time work or 
rotational night shift work. In this concern, the negative result had also been obtained from Asian people. 
The risk of cancer was low in Asians compared to Americans and Europeans due to their distinct food habits, 
lifestyles, and gene pools [57].

Expression of other NRs in human breast cancer cells by melatonin
The decrease of ER-α expression also regulates the transcriptional activity of other steroid hormones/
NR super-family receptors. It is evident that melatonin can repress the ligand-induced expression of the 
glucocorticoid receptor (GR) and ROR-α in breast cancer cells [25, 58]. Alternatively, melatonin can enhance 
the expression of other NRs, including retinoic acid X receptor alpha (RXRα) and the retinoic acid receptor 
alpha (RARα) [25, 59].

Dauchy et al. [60] reported that melatonin administration during dLEN-mediated circadian disruption 
induced the expression and phosphorylation of many kinases (Akt, ERK1/2, FAK, PKA, Src, etc.) that 
regulate the phosphorylation of NRs and other transcriptional factors (Ap-1, Elk-1, NF-κB, STAT3, 
etc). This event clearly expresses the importance of melatonin in the regulation of gene expression 
in human breast cancer cells. Furthermore, administration of melatonin along with all-trans-retinoic 
acid (RXRα and RARα) in MCF-7 cells induced the rate of apoptosis, which is mediated by increased 
expression of pro-apoptotic protein Bax and downregulation of TGF-β1 and Bcl-2 (anti-apoptotic 
protein) expression [61]. In addition, the combination of 9-cis retinoic acid and melatonin can inhibit the 
progression of N-nitroso-N-methyl urea (NMU)-induced breast tumors in rats [25, 54]. In the presence of 
vitamin D, melatonin can promote vitamin D receptor (VDR) transcriptional activity and drive the MCF-7 
breast tumor cells towards apoptosis [62, 63].

Melatonin induces cytotoxicity in breast cancer cells
The pharmacologic concentration of melatonin shows cytotoxic effects in breast cancer cells. The 
experimental reports revealed that physiologic concentrations of melatonin suppressed the in vitro 
proliferation of breast cancer cells by disrupting the cell cycle through the p21 or p53 pathway and 
induction of apoptosis [25]. Gurunathan et al. [64] reported that co-administration of melatonin and 
retinoic acid significantly increases the cytotoxicity and apoptosis in MCF-7 cells. The in vivo studies favor 
the melatonin-induced apoptotic rate in rat mammary tumors by increasing caspase-3 activity and DNA 
fragmentation [16, 54]. Treatment of 1 nmol/L melatonin showed a sharp reduction in mouse double 
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minute 2 (MDM2) that promotes ubiquitin ligase-mediated breakdown of p53 [25]. Down-regulation of 
MDM2 enhanced acetylation of p53 and increases the expression of p21 levels, leading to inhibition of the 
cell cycle progression and induction of p53-mediated apoptosis [65].

Numerous in vitro and in vivo studies on breast cancer reported that melatonin is less sensitive to 
the apoptotic effects when administered as a single agent. Applications of melatonin as an adjuvant with 
chemotherapeutic drugs potentially magnify the apoptotic effects [49, 66]. The pharmacologic concentration 
of melatonin activates both intrinsic and extrinsic apoptotic pathways in cancer cells, specifically by 
increasing the p53/MDM2 ratio and down-regulating the Sirt1, which is a potent metabolic regulator [25, 67].

Effects of melatonin on metabolism in tumor cells
Tumor cells exhibit robust uptake of circulating glucose that converted to lactate through the classical 
glycolytic pathway (Warburg effect). This effect meets the energy demand in the cancer cells to accommodate 
fast-growing tumor biomass [68–70]. HIF-1α, Akt, and cellular-master regulator of cell cycle entry and 
proliferative metabolism (c-MYC) are the important signal transducing and transcriptional networks, which 
operate the Warburg effect to reprogram the metabolism in cancer cells for continuous proliferation [71, 72]. 
A high rate of glycolysis increases cell proliferation and survival properties in tumor biomass. Besides these, 
uptake of LA is the most critical step for breast tumor growth and cancer cell proliferation [73]. The study 
of the xenograft model had revealed that LA is metabolized to 13-hydroxyoctadecadienoic acid (13-HODE), 
which favors the metabolic alteration in breast cancer cells. Melatonin shows pleiotropic effects. Night-time 
melatonin maintains the proliferation and repairing of normal cells but diminishes the rate of tumor growth.

The LAN and circadian disruption promote the condition of a melatonin-deficient state. Moreover, 
LAN increases circulating IGF-1 levels and stimulates continuous expression of proliferating cell nuclear 
antigen (PCNA) in nude rats. LAN also induces Akt-dependent activation of phosphoinositide-dependent 
protein kinase 1 (PDK1), which facilitates the expression of the IGF-1R. Collectively, these effects accelerate 
tumor growth in tumor-bearing nude rats through the activation of IGF-1R/PDK1 signaling [74]. Therefore, 
chronic disruption of circadian equilibrium increases metabolic and proliferative activities. Moreover, 
melatonin regulates the circadian oscillations of tumor signaling factors such as Akt, cAMP, HIF-1α, LA 
metabolism, and the Warburg effect. dLEN crucially interrupted the circadian oscillations, leading to 
metabolic fluctuations and deregulation of allosteric feedback activity followed by impaired metabolism in 
human breast cancer cells [25, 34].

Effects of light exposure at night on melatonin secretion and breast cancer
Epidemiological studies indicate a higher risk for certain types of cancer in night shift workers. The 
International Agency for Research on Cancer recommended night shift work probably carcinogenic 
(group 2A) to humans [57, 75]. LAN has an influencing effect on breast cancer. The incidence of breast 
cancer shows 73% higher in LAN exposed individuals compared to the unexposed group [76]. This 
finding is supported by the relationship between urinary melatonin excretion and the occurrence of 
breast cancer. An earlier study had indicated the low levels of urinary melatonin in human breast cancer 
patients [77]. Devore et al. [78] had indicated the relationship between urinary melatonin and the risk 
of breast cancer in postmenopausal women. They had included 1,354 postmenopausal women (nurses) 
and measured 6-sulfatoxymelatonin (excretory product of melatonin) from the first-morning spot urine. 
They reported that excretion of urinary melatonin had been associated with a lower risk of breast cancer 
in postmenopausal women. Elevated serum estradiol and low levels of urinary 6-sulfatoxymelatonin had 
been observed in postmenopausal women working at night that might be the pre-indicator of risk of breast 
cancer. However, this effect was not modified by the expression of the MT1 receptor in tumor cells [79  –81].

The decreasing function of the pineal gland may amplify the risk of breast cancer by increasing exposure 
to circulating estrogens. Calcification of pinealocytes increases the incidence of breast cancer. Women who 
are taking chlorpromazine showed elevated levels of melatonin and lower rates of breast cancer [82]. Human 
ovarian cells express melatonin receptors that have a direct effect on ovarian estrogen synthesis and restrict 
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hormone-sensitive breast cancer formation [17]. Richard Stevens [83] made a prognostic hypothesis that 
exposure to LAN in women had higher rates of breast cancer.

Industrialization, electrification, exposure to LAN and night shift work in the USA and other Western 
countries have decreased the pineal melatonin production and increased the risk of breast cancer [25, 49]. 
Melatonin production in the pineal gland is an extremely trustable output signal of the circadian clock. This 
signal is depressed by the duration, intensity, and wavelength of LAN [49, 84]. Rotating night-shift work 
advances the light exposure-induced circadian disruption and increases the risk of breast cancer [85]. Blask 
et al. [49] reported that isolated breast cancer cells increased cAMP levels, the expression of mitogen-activated 
protein kinase (MAPK), uptake of LA and its conversion to 13-HODE when the cells were perfused with blood 
taken from women exposed to dim light (0.2 lux) at night. Reverse results appeared with the perfusion of 
blood taken from women at dark night. The inhibitory effect of melatonin is receptor-mediated, and the 
blocking of receptors shows antagonistic effects [74]. Mao et al. [86] reported that the phosphorylation of 
the GSK3β enzyme is a crucial factor for breast cancer cell metabolism, proliferation, and survival in the 
tumor xenograft model. LAN depresses nocturnal pineal functions, followed by inhibition of GSK3β activation 
through phosphorylation of serine-473 and serine-9 [30].

Impaired melatonin levels at night activate PI3K/Akt pathway, epidermal growth factor receptor 
(EGFR)/HER2 pathway, RAS/MAPK/ERK pathway, the PAK-1, PI3K/Akt/pyruvate dehydrogenase kinase-1 
(PDK-1), and ribosomal S6-kinase (RSK). Collectively, these enzymatic pathways can promote cancer cell 
proliferation, survival, metastasis, and drug resistance [25, 87]. Other signaling pathways, including cAMP, 
PKA, PK-Cα and δ, c-Src, FAK, CREB, STAT3, and NF-κB were activated in dLEN-induced low melatonin 
state [88]. Supplementation of melatonin in isolated tumor exhibits inhibition of these signaling pathways 
to suppress tumor cell proliferation and drug resistance properties [49].

Peripheral tissues, including the breast, also bear circadian clocks that are synchronized with the SCN. 
The normal circadian rhythm regulates the expression of clock genes (PER, Cry, BMAL1, Clock). Impaired 
expression of clock genes influences cancer development [89]. The products of clock genes are involved in the 
expression of p21, Cyc D, c-Myc, and Wee1 for the regulation of the cell cycle [90–92]. The period 2 (PER2) has 
been reported to be a tumor suppressor gene whose expression reduces the formation of a variety of tumors 
like breast, prostate, and lymphoma [89, 93]. Loss of PER2 may induce breast cancer. Decreasing PER2 gene 
expression by methylation or degradation of PER2 by casein-kinase-1ε promotes the development of breast 
cancer. Circadian dysfunction alters DNA methylation and expression of clock genes, including PER2 [89, 94]. 
Audia and Campbell [94] reported that melatonin may regulate epigenetic-induced gene expression and 
resist the progression of the tumor. Several reports indicated that clock genes are involved in the regulation 
of the cell cycle, DNA repair, cellular metabolism, oxidative stress, apoptotic response, inflammatory activity, 
and epithelial-mesenchymal transition. Circadian dysfunction and impaired melatonin alter the expression of 
clock genes, leading to the progression of cancer [46, 95, 96].

Role of melatonin in therapeutic strategies of breast cancer
Resistance to chemotherapy and endocrine therapy is the most important obstacle for the successful 
treatment of breast cancer [97, 98]. Experimental evidence showed the link between activation of different 
types of pro-oncogenic tyrosine kinases and the development of resistance power against chemotherapeutic 
drugs as well as anti-estrogenic agents in breast cancer cells [99, 100]. About 60–75% of breast cancer 
cells express progesterone receptor (PR) and ER-α that are used as a marker for the endocrine therapies, 
including ER-α modulators, such as tamoxifen [101, 102]. However, 40% of patients with ER-α-positive 
breast tumors show inherent resistance to tamoxifen [103]. Anthracycline, such as doxorubicin, is 
commonly used as a chemotherapeutic drug for patients whose breast tumors are in metastatic stage or 
endocrine-resistant [104]. There are various types of mechanisms that make the cancerous cell to resist 
drugs or chemotherapies. The activation of numerous signaling pathways, including EGFR/HER2/MAPK/
ERK and PI3K/Akt enhances drug resistance capacity [105, 106]. It was reported that the expression 
of various transcription factors and kinases are elevated in human breast cancer cell lines and in 
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experimental breast tumor biopsy samples. These observations indicate the inherent capacity of resistance 
to anti-endocrine and chemotherapeutic agents [107]. The drug resistance properties are linked with the 
up-regulation of adenosine triphosphate (ATP)-binding cassette (ABC) transporter such as ABCB1, ABCC1, 
and ABCG2 as well as drug-metabolizing enzymes; the results are decreased levels of active drug within the 
cancer cells [108]. It had found that exposure to dLEN enhances the expression of the ABC transporter-like 
ABCG2 that is termed as the breast cancer resistance protein. Breast cancer resistance protein involves 
the efflux of 4-hydroxy-tamoxifen (4OH-Tam), and endoxifen [25]. Several in vitro studies proved that 
melatonin may increase the efficacy of tamoxifen and doxorubicin [54, 64]. Melatonin alters the activity of 
ER-α through inhibition of kinase signaling pathways and increases the tamoxifen-mediated antagonistic 
effects on ER-α. It also reduces the efflux of tamoxifen from breast tumor cells [54]. The tumor xenografts 
were extremely sensitive to the synergistic actions of melatonin and doxorubicin. Supplementation of 
melatonin suppresses the growth of the doxorubicin-resistance cancer cells [25, 109].

Application of melatonin in the clinical trials for breast cancer treatment
Melatonin has potential anti-cancer properties. But the results of clinical trials in human breast cancer 
therapy are insufficient, and it is not included in the treatment regimen [110]. However, some reports are 
available in the field of the clinical trial of melatonin. The studies indicated that the cancer patients taking 
20 mg of melatonin gave better clinical outcomes. The beneficial effects were remission of tumor volume 
and decreased rate of mortality [111–113]. It was observed that sleep problem is a great challenge in breast 
cancer survivors, even after the completion of anti-cancer therapy. Li et al. [114] reported that the first 
cycle of breast cancer chemotherapy disrupted the sleep-wake cycle, sleep quality, cognitive functions, and 
melatonin secretion. These are appeared as the side effects of breast cancer treatment. Application of 20 mg 
melatonin as an adjuvant prior to first cycle chemotherapy of breast cancer in a randomized, double-blinded, 
placebo-controlled trial with 36 participants showed improvement of cognitive performance, immediate 
and delayed episodic memory, sleep quality, and depressive symptoms [115]. Previously, a randomized, 
double-blind, and placebo-controlled trial of melatonin had also been conducted on the patients undergoing 
breast cancer surgery. The application of 6 mg oral melatonin for 3 months significantly reduced the risk of 
depressive symptoms [116].

Estradiol levels, IGF-1 concentration, insulin-like growth factor-binding protein 3 (IGFBP-3) expression, 
and the IGF-1/IGFBP-3 ratio are regarded as the biomarkers of breast cancer. Schernhammer et al. [117] 
had evaluated whether melatonin has an effect on biomarkers or not. They performed a randomized, 
double-blind, and placebo-controlled study on 95 postmenopausal women who had a prior history of breast 
cancer report in different sage (0-III). These patients had completed the anti-cancer treatment (including 
hormonal therapy). A course of 3 mg of melatonin per day for 4 months had been given orally to the 48 
patients and a placebo had been provided to the rest of the members (47 patients). The outcome of the 
study had revealed that melatonin did not influence circulating estradiol, IGF-1, IGFBP-3 levels, and IGF-1/
insulin-like growth factor-binding protein (IGBP) ratio after the short-term course of melatonin treatment. 
Chen et al. [118] had conducted the same study as performed by Schernhammer et al. [117] to establish the 
role of melatonin on the improvement of sleep quality. Finally, they reported that melatonin-experienced 
patients showed significant improvement in sleep quality and related parameters. A good result had been 
observed in Pittsburgh sleep quality index (PSQI) score compared to placebo-controlled patients.

A clinical study had been conducted on 167 patients with TNBC. The outcome of the study had indicated 
that 48% of the TNBC patients showed MT1-negative while only 11% TNBC exhibited MT1-positive. The 
MT1-positive TNBC patients were in the early stage of breast cancer with a smaller volume of tumor size. The 
MT1-negative TNBC patients were at high risk of cancer progression. The progression-free survival (PFS) 
rate was also low. The overall survival ratio compared to PFS was significantly decreased in MT1-negative 
TNBC [38]. Simultaneous use of somatostatin, melatonin, retinoid, vitamin D3, and cyclophosphamide 
(prolactin inhibitor) has been made on 20 women who have breast cancer. The rate of response of the 
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treatment is about 75% (55% complete response and 20% partial response) while 71% of metastatic patients 
exhibit overall survival capacity [119].

Conclusion
Melatonin acts as a potent anti-cancer agent. The actions of melatonin in breast cancer are driven by regulating 
the different molecular pathways related to growth inhibition and pro-apoptotic effects. Exposure to LAN, 
shift/might work, chronic jet lag, and sleep disorder hamper melatonin synthesis and lower the night-time 
melatonin peak. Epidemiological studies regarding breast cancer indicated that women working at night 
or swing shifts were vulnerable to the development of breast cancer. The prospective studies indicated the 
association between a low level of urinary melatonin and the incidence of breast cancer. Melatonin exerts 
anti-estrogenic and anti-inflammatory, immune-modulating, and anti-mitogenic actions. Supplemental 
melatonin shows oncostatic effects in breast cancer. MT1 receptors are the key factor for cytostatic and 
pro-apoptotic activity. Several possibilities regarding melatonin’s actions as an anti-cancer agent in breast 
treatment are showing positive impacts and have a prospective future as a therapeutic agent in breast cancer 
treatment. Melatonin increases the efficacy of chemotherapeutic drugs in the treatment of breast cancer. On 
the other hand, supplementation of melatonin at nontoxic pharmacological doses in breast cancer patients 
gives financial benefit due to its low cost and wide accessibility. Finally, it can be said that further research and 
prospective clinical trials will open a new avenue for the use of melatonin in the treatment of breast cancer.
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