
Explor Med. 2022;3:43–57 | https://doi.org/10.37349/emed.2022.00073 Page 43

Reactive oxygen species in cancer progression and its role 
in therapeutics
Ranjeet Singh    , Partha Pratim Manna*

Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 
221005, India

*Correspondence: Partha Pratim Manna, Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras 
Hindu University, Varanasi 221005, India. pp_manna@yahoo.com
Academic Editor: Esma R. Isenovic, University of Belgrade, Serbia
Received: November 23, 2021  Accepted: January 3, 2022  Published: February 22, 2022

Cite this article: Singh R, Manna PP. Reactive oxygen species in cancer progression and its role in therapeutics. Explor Med. 
2022;3:43–57. https://doi.org/10.37349/emed.2022.00073

Abstract
The redox status in pathogenesis is critically regulated by careful balance between the generation of reactive 
oxygen species (ROS) and their elimination. Increased ROS level above the cellular tolerability threshold 
results in apoptotic or necrotic cell death. ROS belongs to a group of highly reactive compounds that have 
evolved to play key roles in cellular signaling pathways. It’s widely assumed that a reasonable amount of 
ROS is essential for a variety of biological processes. Elevated levels of ROS are known to cause various 
pathologic conditions like neurological disorders, cardiovascular conditions, inflammation, autoimmunity, 
and cancer. ROS is well known to initiate and assist in progression of tumor by promoting proliferation 
and survival of cancer cells and thus facilitates pro-tumorigenic signaling in tumor microenvironment. As 
cancer cells become more resilient to the effects of ROS manipulating drugs, increased antioxidant capacity 
attenuates their susceptibility to cancer treatment. Excessive environmental stress, on the other hand, can 
cause cancer cells to die. This review summarizes various molecular mechanisms including the role of 
checkpoint inhibitors that can be harnessed to develop effective therapeutic strategies for targeting ROS 
related signaling in cancer.
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Introduction
The reactive oxygen species (ROS) are short-lived oxygen derivatives that are unstable and highly reactive 
and formed as a byproduct of cellular metabolic processes. Superoxide anion (O2), hydrogen peroxide 
(H2O2), and hydroxyl radical (HO•) are examples of radical and non-radical forms that are generated by 
partial reduction of oxygen. These molecules play a pivotal role in cell signaling and are essential for normal 
cellular functions both in normal cells as well as in cancer cells [1]. In a biological setting, ROS are produced 
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as a natural consequence of oxygen metabolism and play a key role in various signaling pathways and 
homeostasis. In order to promote normal cellular physiological function and survival, redox homeostasis 
regulation is maintained in the cell [2]. Any sort of elevated intracellular ROS concentration contributes to 
various pathological conditions (Figure 1). However, the cancer cells harbor high intracellular ROS level 
compared to normal cells due to high aerobic glycolysis that causes oxidative stress [3]. High level of ROS 
mostly accumulated due to imbalance in the ROS production and its elimination process. High ROS level alters 
various signaling pathways that affect cellular metabolism. However, in the cancer cells, the heightened level 
of ROS is countered by upregulated anti-oxidative defense mechanisms [4, 5]. Whereas, further rise in the 
ROS level is accompanied with down regulation of cellular antioxidant defense systems in tumor malignancy 
through various molecular targets including nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) and nuclear respiratory factor 2 (Nrf2) [6, 7]. High ROS level damages cellular DNA [8], proteins [9], 
and lipids [10], which promotes genomic instability and oncogenesis. High oxidative stress succumbs the 
cell to apoptosis, but robust antioxidant capacity of the cancer cells is increased in order to prevent the 
formation of high ROS and preserve the redox balance. High level of ROS scavenging enzymes calibrates the 
ROS production and allows activation of pro-tumorigenic signaling pathways without inducing cell death in 
tumor [4]. Comparatively, tumor cells instead of normal cells have altered redox milieu, and this property of 
cancer cells make them more sensitive to ROS alteration or redox manipulation [11]. The elimination of ROS 
by scavenging enzymes or increased ROS production may be effective options for cancer therapies [12]. In 
this review, we have discussed and focused on pro- and anti-tumorigenic signaling capabilities of ROS and 
ways to manipulate these factors for cancer treatment.

Figure 1. ROS dysregulation contributes to various pathological conditions

Homeostasis of ROS and redox control
Continuous generation and detoxification of ROS is tightly controlled by redox homeostasis in the normal 
cells. The inequality between the manufacturing of oxidants and their removal by protective mechanisms or 
antioxidants is called the oxidative stress. This event eventually leads to accumulation of ROS in the cell that 
results in disturbance in redox steadiness, which could trigger harm to vital cell components such as proteins, 
lipids, and DNA, and potentially elevate the risk of somatic mutations and neoplastic transformation [8, 13]. 
These effects of ROS are also believed to play a part in the ageing process [14]. Numerous kinds of free 
radical ROS and non-free radical ROS present in the cells. The major source of ROS production appears 
to be located inside the mitochondrial electron transport chain where electrons can evade their path and 
react with oxygen [15]. The stimulation of growth factor receptors which activate reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase can also produce ROS and convert NADPH to superoxide. 
A strong antioxidant system that scavenges ROS keeps the cellular redox equilibrium in check. Majority of 
superoxides are transported to the mitochondrial matrix, where superoxide dismutase enzymes dismutate 
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it to H2O2 manganese superoxide dismutase (MnSOD) or superoxide dismutase 2 (SOD2). Some superoxides 
are transported to the cytosol, where they are dismutated to H2O2 by the cytosolic enzyme SOD1 [16]. 
Glutathione (GSH) is the most important nonenzymatic component of intracellular antioxidant defenses as 
it regulates NADPH intracellular levels to maintain redox equilibrium [nicotinamide adenine dinucleotide 
phosphate (NADP)/NADPH and reduced glutathione (GSSG)/oxidized glutathione (GSH) ratios] [17]. The 
discrepancy between NADPH synthesis and consumption determines the intracellular NADPH level. The 
pentose phosphate pathway (PPP) and mitochondrial metabolism are the main sources of intracellular 
NADPH. The major consumer of intracellular NADPH is H2O2 detoxification by glutathione peroxidases (GPX) 
and peroxiredoxin (PRX) and fatty-acid synthesis [18]. Thus, production and consumption of NADPH inside 
the cells should be coordinated to maintain NADPH homeostasis. This is especially crucial when solid tumor 
forms and the cancer cells are under energy stress during metastasis.

Role of ROS in cancer development
Oxidative stress has been associated to cancer development and progression by increasing the incidence of 
DNA mutations, resulting in DNA damage, genomic instability, and cell proliferation [19–21]. Cancer cells 
produce more spatially concentrated ROS than normal cells, which hyperactivates the cell signaling pathways 
required for cellular transformation and carcinogenesis (Figure 2). When opposed to normal cells, one of 
the most distinguishing characteristics of cancer cells is their constant pro-oxidative state, which can lead 
to intrinsic oxidative stress [22, 23]. Overproduction of ROS and low levels or deactivation of antioxidant 
machinery causes increased oxidative stress in cancer cells. The capacity of tumor cells to regulate the 
expression of endogenous antioxidant enzymes that keeps the steady level of ROS below the threshold would 
otherwise cause tumor cell death. As a result, cancer cells have devised strategies to protect themselves 
from intrinsic oxidative stress and have developed a sophisticated adaptation strategy that involves effective 
reorganization of antioxidant functions and allows the up-regulation of pro-survival molecules [24]. 
Aside from increasing the incidence of mutations, ROS may have a role in cancer onset by dampening the 
pro-tumorigenic signaling pathways. The disulfide bonds in certain proteins are oxidized by ROS which can 
affect their activity, especially in the tyrosine phosphatases superfamily [25]. The tumor suppressor gene 
phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inactivation by oxidation is perhaps 
the finest illustration related with cancer growth [26, 27]. The phosphatidylinositol 3-kinase/Ak strain 
transforming (PI3K/Akt) signaling pathway, which is likely the most often activated signaling pathway in 
cancer cells, is hyperactivated when PTEN is inhibited by ROS. Another example of ROS induced phosphatase 
inhibition is mitogen-activated protein kinase (MAPK) which increases extracellular signal-regulated 
kinase (ERK) activity. Activation of these pathways would increase intracellular ROS levels by inhibiting the 
transcription factor forkhead box transcription factor O (FOXO), which boost the production of antioxidants 
such as SOD2, catalase, and sestrin3 [28].

Figure 2. Cancer cells maintain their tumorigenic ROS levels by balancing ROS production and scavenging. This enables them 
to stay inside the tumorigenic range. CAT: catalase
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ROS: a dynamic cancer metastasis driver
Metastasis entails the unfurling of cancer cells from primary tumor site to the adjacent tissues and to 
the faraway organs, and is the main cause of illness and death [29, 30]. Studies discover that metastasis 
is not an autonomous program but is highly complex and multistep event, which occurs due to high 
mutational burden in cancerous cells and crosstalk between malignant cells and their non-malignant 
counterparts [31]. It follows due to the up-regulation of various transcriptional factors such as NF-κB, ETS 
proto-oncogene 1 (ETS-1, transcription factor), TWIST, activator protein 1 (AP-1), Snail and zinc finger 
E-box binding (ZEB); the metalloproteases via Matrix metallopeptidase 9 (MMP-9) and MMP-2; various 
chemokines and/or cytokines like transforming growth factor beta (TGF-β) [32, 33]. ROS performs a 
critical role in cancer cells migration and invasion. ROS are largely formed during mitochondrial electron 
transport in aerobic respiration and have several deleterious effects [34]. Epithelial to mesenchymal 
transition (EMT) is the major reason for metastasis, where epithelial cells lose their cell-cell adhesion 
property, polarity, subsequently leads to cell mobility [35]. Numerous findings have established that 
the ROS is the major player of EMT. TGF-β can also cause tumor milieu to produce ROS, which causes 
oxidative stress [36]. TGF-β1 synchronizes with urokinase-type plasminogen activator (uPA) and MMP-9 
proteins to accelerate the cell movement and invasion to the adjacent or distant region of the body 
through ROS-dependent processes [37]. Another study uncovered that ROS increases the tumor cells 
migration by causing hypoxia, mediated by MMPs and cathepsin expression [38, 39]. TGF-β1 induced 
EMT in MDA-MB-231C and MCG-10A cell lines requires NADPH oxidase 4 (NOX4) dependent ROS 
generation [40]. p53 is involved in cell migration and uses the cytokine TGF-β1 [41]. Pelicano et al. [42] 
found that mitochondrial failure causes high levels of ROS, which affects the expression of C-X-C motif 
chemokine ligand 14 (CXCL14) via AP-1 signaling, resulting in cell mobility via increasing intracellular Ca2+ 
levels. ROS can stimulate Nrf2, which activates Klf9 (Kruppel like factor 9), which then activates ERK1/2, 
resulting in increased intracellular ROS generation in cancer cells. Thus, by utilising antioxidants that 
target Klf9, premalignant cancer cells proliferation can be suppressed [43, 44]. Cancer metastasis is also 
aided by mitochondrial Ca2+ and the transporter mitochondrial calcium uniporter regulator 1 (MCUR1) 
which is transcriptionally active in hepatocellular carcinoma (HCC), promoting EMT via ROS/Notch1/Nrf2 
pathways. As a result, the MCUR1 protein may be a good target for HCC therapy [45]. NOX2 creates ROS 
which drives metastasis by downregulating the functional features of natural killer (NK) cells. According to 
Aydin et al. [46], blocking of NOX2 could re-establish interferon gamma (IFN-γ) dependent NK cell-mediated 
killing of myeloma cells. Vimentin, another protein that speeds up EMT and metastasis, also plays a role 
in triggering of cancer and its progression. Hypoxia-inducible factor 1-alpha (HIF-1α) induced oxidative 
stress that regulates vimentin gene transcription aided cancer cell invasion and migration by facilitating 
invadopodia formation [47]. Vimentin suppression by RNA interference reduces cancer cell metastasis 
and tumor volume [48]. ROS can also trigger changes in epigenetics in the promoter area of E-cadherin and 
other tumor suppressor genes leading to tumor development and metastasis. Increased Snail expression 
causes hyper-methylation in the promoter gene. Snail uses histone deacetylase 1 (HDAC1) and DNA 
methyltransferase 1 (DNMT1) to cause DNA methylation [49].

ROS as an angiogenesis regulatory mediator
During the early stages of cancer progression, new blood vessels were restructured from the pre-existing 
blood vessels through a process called angiogenesis which helps tumor cell proliferation and survival by 
supplying the nutrients and oxygen [50, 51]. Cancer proliferation triggers through ROS, facilitates the 
process of angiogenesis which results in increased metabolic rate, resulting in the generation of high ROS 
levels [51, 52]. High levels of ROS in the tumor microenvironment due to oxidative stress stimulates 
the cancer cells, which begins to secrete the angiogenic modulators [53]. ROS production spearheaded 
via endogenous and exogenous pathways, which stimulates various growth factors, including vascular 
endothelial growth factor (VEGF) and HIF-1α transcription factors resulting in stimulating tumor 
cell metastasis and cancer progression [54, 55]. The signaling surge through ROS facilitation has 
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been well documented to maintain the secretion of VEGF, initiation of PI3K/Akt/mammalian target 
of rapamycin (mTOR) pathways and hypoxia dependent or independent mechanisms (by stabilizing 
the HIF-1α which enhances the production of VEGF). The hypoxia independent pathway also prime 
angiogenesis through oxidation of lipid ligands which induces activation of NF-кB via toll-like receptors 
(TLRs) (Figure 3) [56]. The Janus kinase 2 and c-Jun N-terminal kinase pathways regulate HIF-1 regulation 
via adenosine monophosphate-activated protein kinase (AMPK) in response to H2O2. AMPK can be thought 
of as a key contributing factor of HIF-1 functions in response to H2O2, and it may also play a role in the 
complex HIF-1 regulatory mechanisms (Figure 4) [57]. In addition to that, the rat sarcoma virus (Ras) 
signaling pathway has also been connected in up-regulation of VEGF secretion [58]. Mutant p53 is found to 
be linked in regulation of angiogenic response during the tumor progression via ROS mediated activation 
of VEGF-A and HIF-1 in human colorectal carcinoma cell line HCT116 [59]. ROS mediated angiogenesis 
has been studied by many investigators to identify the signaling cascade mechanisms, modulating the 
cancer progression. A research was conducted using MDAMB-231 breast adenocarcinoma cells and 
deferoxamine (DFO) reported to induce HIF-1α via ERK1/2 phosphorylation pathways which also aid in 
tumor cell migration and metastasis [60]. Angiogenesis activation occurs via ROS mediated by hypoxia 
dependent and independent pathways. Hypoxia dependent pathways increase the VEGF expression via 
PI3K regulatory subunit/Akt serine/threonine kinases/mTOR, PTEN, and MAPK. Signaling cascades via 
HIF-1α and ribosomal protein S6 kinase β1 (p70S6K1) releases various growth factors, cytokines, and 
upregulated MMPs, leading to the occurrence of angiogenesis.

Figure 3. HIF-1α promotes angiogenesis by allowing ROS to speed up the process. EGR: early growth response; K-Ras: Kirsten 
rat sarcoma virus; VEGFR: vascular endothelial growth factor receptor

Han and his colleagues [61] uncovered that the increased concentrations of epidermal growth 
factor (EGF) could triggers the H2O2 production which stimulates p70S6K1 through PI3K/Akt pathways 
that lead to the triggering of VEGF and HIF-1α signaling. Similarly, Liu et al. [62] stated that EGF also 
triggers elevated levels of H2O2 in ovarian tumor cells which in turn initiate Akt/p70S6K1 pathways, thus 
resulting in enhanced VEGF expression. The researchers also found evidences that overexpression of 
catalase and rapamycin together reduced angiogenesis. H2O2 has also been shown to activate the PI3K/
Akt/mTOR signaling cascade and Ras by inactivating phosphatase and PTEN via reversible oxidation 
in phosphatases of the cysteine thiol group [63]. It has also been discovered that when the tumor 
microenvironment is inflammatory, the macrophages produce more ROS, and these macrophages have 
M2 phenotypic markers [64]. ROS in angiogenesis could be a potential target with antioxidants which also 
involves the associated signaling pathways and have clinical significance in treatment of cancer patients by 
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downregulating neo-vascularization. Many other tactics are also important to restore redox differences to 
improve the diseases outcome. Due to the failure of interventional trials with small antioxidants, more study 
is needed to investigate disease-specific ROS having therapeutic importance for the future development of 
prophylactic measure.

Figure 4. Effects of ROS (H2O2) on glycolysis up-regulation mediated by HIF-1. HIF-1 can be activated by a variety of ROS. GLUT 
1/3: glucose transporter 1/3; HK: hexokinase; LDH: lactate dehydrogenase; PDH: pyruvate dehydrogenase; PDK1: pyruvate 
dehydrogenase kinase 1; PFK: phosphofructokinase; PGK: phosphoglycerate kinase

ROS and HIF-1α signaling have long been known of playing a role in cancer pathogenesis. The role of 
ROS mediated signaling via HIF-1α in cellular proliferation and angiogenesis is crucial. A growing amount of 
evidence implies that a number of intermediates are involved in HIF-1α regulation, mediated by ROS.

Checkpoint inhibitors, ROS generating medicines, and regulatory linkages 
in ROS for cancer therapy
Programmed cell death protein 1 (PD-1) is a surface receptor, expressed on highly differentiated effector 
T cells which act as a negative regulator, and become exhausted and anergic due to chronic antigenic 
exposure [65]. In cancers, programmed death ligand 1 (PD-L1) is expressed by the tumor cells which 
impair antitumor effector functions of PD-1+ T cells [66]. Checkpoint blockade is a novel therapeutic option 
to reinvigorate effector functions of exhausted T lymphocytes by obstructing PD-1–PD-L1 interactions 
[jointly designated as PD-(L)1] [67]. Anti-PD-1 therapy remain ineffective in a large number of cancer 
patients likely due to initial lukewarm response or disappearance of durable responses [68–70]. In 
early-stage exhaustion, PD-1+ T cells demonstrated less reliance on oxidative phosphorylation (OXPHOS) 
and glycolysis. Long-term chronically exhausted PD-1 high T lymphocytes, however, showed a dependence 
on glycolysis due to dysfunctional mitochondria [71]. Tumor development and metastasis is a gain of 
immune escape mechanisms which occurs through induction and recruitment of immunosuppressive cells. 
This includes regulatory T (Treg) cells, myeloid-derived suppressor cells, tumor-associated macrophages, 
and increased expression of various immunosuppressive molecules, such as PD-1 and PD-L1. CD8+ T cells 
only differentiate into heterogeneous cytolytic T lymphocytes (CTLs), including tumoricidal effectors 
and long-term memory cells. Mitochondrial activation is reported to be critically important for T cell 
proliferation and memory response in vitro [72] and in vivo [73]. T cell receptor engagement induces Ca2+ 
release, which in turn augments mitochondrial functional roles including the tricarboxylic acid (TCA) 
cycle and ROS generation [74]. ROS generated in mitochondrial complexes and the superoxide converted 
from ROS activates CD4+ and CD8+ T cells via nuclear factor of activated T cells (NFAT) activation and 
interleukin-2 (IL-2) production [75]. PD-1 deficiency and PD-1 blockade in tumor model study indicated 
that mitochondrial functions, including ROS generations, are upregulated in vivo following obliteration of 
PD-1 signaling [66]. Besides that, PD-1 blockade also activates AMPK and mTOR, which in turn upregulates 
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the expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1α (PGC-1α), 
resulting in increased mitochondrial activity together with ablation of PD-1, which suppresses tumor 
growth [66]. ROS are primary effectors of cytotoxicity induced by treatment with anti-cancer drugs. 
Immunosurveillance role of ROS relies on classic receptors such as TLRs, but also onsensing the metabolic 
environment. In malignancies, the subtle balance of internal redox environment between free radicals 
produced or quenched by cellular antioxidants and enzyme systems is grossly dysregulated. In this aberrant 
situation, it favors oxidative stress that significantly alters the tumor microenvironment and suppresses 
the effector T cell functions and induction of T cell death. In this condition, ROS exerts significant influence 
on the expression of PD-1 and its ligand PD-L1, but the mechanism of crosstalk between ROS and PD-(L)1 
is not always clear. Increased metabolic activity in mitochondria could lead to high level of ROS, specifically 
in drug resistant cases including cisplatin resistant tumor cells as well as in patients who do not respond 
to cisplatin [76, 77]. Elevated ROS level in tumor cells has also been implicated in EMT which played 
critical role in PD-L1 expression in neoplastic cells [78–80]. In addition to cisplatin, 5-fluro uracil (5-FU), 
carboplatin and paclitaxel contributes to acquired PD-L1 expression in solid tumors including small cell 
lung cancer [81, 82]. Therapeutic interventions like photodynamic and sonodynamic methods allow the 
activated sensitizers to interact with biological substrates or molecular oxygen and generate ROS which 
induces cell death by apoptosis and necrosis (Figure 5) [83–85]. Combination regimen of anti-PD-L1 and 
photodynamic or sonodynamic therapy could be an attractive option for treating highly refractory and 
advanced pancreatic cancers with controlled ROS generation and maximum therapeutic benefits. Recently, 
we have shown that small biomolecular drug conjugate between 5-FU and bilirubin produced very high ROS 
generation in highly metastatic Dalton’s lymphoma (DL) cells as well as in doxorubicin resistant variant 
of DL cells [86]. Besides PD-1, T cell immunoglobulin and mucin-domain-containing protein-3 (Tim-3) 
regulate macrophage derived ROS and ROS mediated liver inflammation in mouse model of nonalcoholic 
steatohepatitis [87]. Enhanced Tim-3 expression in subpopulation of hepatic macrophages of mice 
with methionine and choline deficient diet indicated evidences, supporting the important role of Tim-3 
in alleviating liver injury by regulating ROS production and proinflammatory cytokine secretion from 
macrophages [87]. This result suggests that Tim-3 plays a protective role against liver injury by regulating 
macrophage activation. Conditional deletion of Tim-3 in dendritic cells led to increased accumulation of ROS 
resulting in Nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activation. 
Following inhibition of inflammasome activation, or abrogation of downstream effector cytokines like 
IL-1β and IL-18, the protective anti-tumor immunity was minimized [88].

Figure 5. Regulatory links between oxidative stress and check point inhibitors in tumor microenvironment. TCR: T-cell receptor; 
Th1: T helper type 1; EGFR: epidermal growth factor receptor

https://doi.org/10.37349/emed.2022.00073


Explor Med. 2022;3:43–57 | https://doi.org/10.37349/emed.2022.00073 Page 50

Combination therapy in ROS regulation
The contrasting feature of normal cells to that of cancer cells is the rate of ROS production and redox 
regulation. Combinational therapy solves two glitches: (i) decrease the toxicity of chemotherapeutics 
to the normal cells, and (ii) augment the efficacy of anti-tumor regimen. The metabolic modulation is a 
good choice for combining with ROS-generators or ROS-scavenging inhibitors in combination therapy. 
Targeting the enzymes involved in ROS regulation between cancer cell and normal cell is an effective 
strategy for designing the combination therapy. For example, by regulating the redox reactions, specifically 
through the production of reducing counterparts like nicotinamide adenine dinucleotide hydrogen 
(NADH) and NADPH, ROS mediated killing of the cancer cells occur. The metabolic pathways involved in 
redox modulation are mostly related to glutamine metabolism that plays a key role in redox regulation 
and antioxidant response. Glutamine is the precursor for glutamate and is needed for GSH production 
and therefore antioxidant responses. The metabolism of glutamine has been essential for the survival of 
cancer leading to the belief that few cancer cells are glutamine obsessed [89]. Inhibition of glutaminase 1 
(GLS1), the enzyme that converts glutamine to glutamate for entry into the TCA cycle inhibits oncogenic 
transformation [90, 91]. The anticancer impact of the medicine L-asparaginase was previously assumed to 
be due to its role in restricting asparagine levels; however, current research has revealed that the drug’s 
anticancer effect is due to its effect on glutamine levels [90]. Finally, in vitro and in vivo studies have 
revealed that the alternative glutamine route, regulated by the aspartate transaminase glutamic-oxaloacetic 
transaminase 1 (GOT1), is necessary for KRAS-driven pancreatic ductal adenocarcinoma (PDAC) 
growth [92]. GOT1 is a crucial enzyme in the aspartate-malate shuttle, generating pyruvate and boosting 
the NADPH/NADP+ ratios which keep GSH levels low and redox homeostasis under check. Inhibiting the 
GOT1 results in reduction of the ratios of reduced GSH to oxidised GSH, that increases the ROS levels and 
suppression of PDAC growth. Because glutamine metabolism is involved in NADPH production and GSH 
formation, glutamine pathway inhibitors could be useful anti-cancer partners. Other approach is to counter 
ROS through drug repurposing since the synthesis of new anticancer medications is often associated with 
higher costs, a longer development cycle, and a high probability of failure [93]. One of the promising 
strategies is to address existing cancer treatment obstacles using ROS-based repurposing medicines.

Future perspectives
Production and scavenging of ROS and its regulation in cellular environment is a tricky issue to 
understand the manipulation and extraction for beneficial aspects. Delicate methodology needs to be 
adopted to define meticulous balance between ROS formation and elimination, which may have great 
benefit to cancer therapy. Normal cells functioning requires a delicate equilibrium in ROS redox process 
in order to maintain physiological homeostasis. Ineffective neutralization of overmuch ROS could result 
in serious pathophysiology including cancer. Aberrant elevation in ROS leads to neoplastic growth and 
progression of metastatic tumor, spearheaded by signaling events including PI3/Akt/mTOR, MAPK, PTEN, 
MMPs and VEGF/VEGFR etc. Substantial hike in ROS levels is likely to intervene in cancer progression 
via augmentation in apoptosis, resulting in cell death, induced by traditional therapeutic interventions 
including chemotherapy. Chemotherapy induces apoptosis via ROS by targeting diverse cellular targets 
including a wide range of cell signaling pathways. ROS also play roles in drug resistance via activation of 
NF-κB, which triggers pro-inflammatory cytokine secretion. Thus, bipartite roles of ROS can be targeted as 
a therapeutic option for tumor growth suppression by impeding inflammation, curtailing angiogenesis, and 
inhibition of metastasis. Meticulous balance between ROS generation and their elimination potentially has 
great benefit for cancer therapy. Beneficial or detrimental effect of ROS also depends on functional attributes 
of immune responses. Neoplasia develops an elevated ROS level, caused by enhanced metabolism, which 
in turn results in immunosuppressive state of the tumor. Compared to normal cells, higher intracellular 
ROS in tumor cells shifts the redox balance rendering vulnerability in tumor cells to external sources of 
ROS. Intracellular ROS is also linked to immunogenic cell death and M2 to M1 polarization in macrophages 
is believed to be critical for immunomodulation in tumor inhibition. Thus, effective ROS modulation 
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may enable distinction of region of interest in intracellular and extracellular microenvironment which 
could enable better control over the process for achieving better outcomes. The role of nanomaterials as 
ROS modulating device intrinsically or as a carrier is another approach with considerable promise with 
respect to better pharmacokinetics, pharmacodynamics and biodistribution. Nanomedicine may provide 
an effective platform to calibrate and manage these critical issues of drug delivery mechanisms. Future 
research on ROS may be focused on but not necessarily restricted to the following frontiers for therapeutic 
success (i) critical and decisive role of ROS in disease state; (ii) calibrated balance in ROS production and 
elimination; (iii) ROS level and immunological state; and (iv) precision medicine for extracellular and 
intracellular ROS level. Thus, an effective tumoricidal approach needs a comprehensive analysis of redox 
analysis with relation to malignancies for the larger benefit of the patients.

Conclusions
Malignant transformation of cancer exhibits high intrinsic generation of ROS level which controls the 
tumorigenic phenotype and propels the tumor progression. The redox mechanism in cancer cells by 
upregulating the antiapoptotic and antioxidant moieties enhances the survival and develops resistance to 
the anticancer agents. Currently, very little information is known regarding sensing of intracellular oxidative 
stress which elicits ROS-induced signaling to regulate the survival and antioxidant enzymes repertoire 
gene expression. The reliance of tumor cells on their antioxidant enzymes makes them exposed to agents 
that target the antioxidant systems. There is a convincing possibility for treatments intended to markedly 
enhance the intracellular ROS to execute the cancer cells by diminishing their antioxidant capabilities. 
This may be attained by harnessing compounds that deter the antioxidant system by inhibiting these 
signaling pathways which play roles in upregulating the antioxidants in cancer. Consequential surge in ROS 
may provoke cancer cell death through random damaging capabilities of ROS by inducing the apoptosis 
via specific death signaling pathways. The benefit of such approach is that the normal body cells are not 
considerably affected since they harbor basal levels of ROS and are less reliant on antioxidants. Although 
it is conceivable that a basal level toxicity in neoplastic cells is not achieved and that the supplementary 
surge in ROS causes additional mutations or drives tumor metastasis. Therefore, inhibitors combination 
against these antioxidant systems with such prooxidant properties is required to elevate the intracellular 
ROS concentrations within tumor cells and it may be crucial to devastate the antioxidant systems beyond 
the threshold of toxicity level. It becomes more apparent, that comprehensive knowledge of ROS mediated 
signaling in transformed cells is vital to develop novel strategies for ROS modulation based therapeutic 
intervention in order to kill the cancer cells selectively and overwhelm the challenge of drug resistance. 
Utilization of antibodies or checkpoint inhibitors opens up new frontiers for treatment of nearly 50% of 
unresponsive or less responsive cancer patients. Occurrence of bigger tumor mutational burden further 
necessitates a broad-spectrum protocol for therapy because of great degree of refractivity to PD-1 therapy. 
Thus, in order to overcome the lack of response, a combination of various types of treatment including 
inhibitors against Tim-3, lymphocyte-activation gene 3 (LAG-3) etc. in association with chemotherapy and 
or radiotherapy may produce desired response. A necessary striking synergistic effect may not be achieved. 
However, the most important key for successful treatment would be the presence of optimally activated 
T cells in tumor microenvironment with controlled ROS activity which may represent fruitful ground for 
long-term molecular anticancer strategies.
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