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Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a fundamental role in regulating 
endothelial function and vascular tone in the physiological conditions of a vascular system. However, 
oxidative stress has detrimental effects on human health, and numerous studies confirmed that high ROS/
RNS production contributes to the initiation and progression of cardiovascular diseases. The antioxidant 
defense has an essential role in the homeostatic functioning of the vascular endothelial system. Endogenous 
antioxidative defense includes various molecules and enzymes such as superoxide dismutase, catalase, 
glutathione reductase, and glutathione peroxidase. Together all these antioxidative enzymes are essential for 
defense against harmful ROS features. ROS are mainly generated from redox-active compounds involved in the 
mitochondrial respiratory chain. Thus, targeting antioxidative enzymes and mitochondria oxidative balance 
may be a promising approach for vascular diseases occurrence and treatment. This review summarized the 
most recent research on the regulation of antioxidative enzymes in vascular diseases.
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Introduction
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide, including a wide 
array of disorders—cardiac muscle diseases and diseases of the vascular system supplying the heart, brain, 
and other vital organs [1]. There is significant evidence that vascular oxidative stress (OxS) is the leading 
cause of CVD [2, 3]. OxS is a harmful consequence of the imbalance between production and removal of 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) in situations where biological systems 
in cells and tissues cannot detoxify these reactive products [4-7]. ROS and RNS are small reactive ions and 
molecules that are derived from oxygen metabolism [8-10]. Small amounts of ROS and RNS are constantly 
produced and involved in defense mechanisms against microorganisms [11]. High doses of ROS/RNS 
cause oxidative modifications of major cell macromolecules (lipids, proteins, carbohydrates, and DNA), 
which can be further used as markers of OxS [12, 13]. ROS plays an essential role in regulating endothelial 
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function and vascular tone [4] in promoting systemic inflammation, endothelial dysfunction, and vascular 
remodeling [2, 4]. Additionally, superoxide anion (O2

-) interacts with nitric oxide (NO), producing highly 
toxic peroxynitrite (ONOO-) and therefore decreasing NO availability for smooth muscle relaxation 
function [14, 15]. All these processes lead to vascular system diseases such as atherosclerosis and arterial 
hypertension [1]. Cellular homeostasis is essential for preventing OxS, and it is finely tuned through the 
expression and action of antioxidant enzymes and non-enzymatic mechanisms [16]. Cells contribute 
to antioxidant defense in the vascular wall through numerous antioxidant enzymes such as superoxide 
dismutases [manganese superoxide dismutase (MnSOD), copper-zinc SOD (CuZnSOD), extracellular 
superoxide dismutase (EcSOD)], catalase (CAT), glutathione (GSH) peroxidase (GPx), thioredoxin 
peroxidase, and heme oxygenases [2]. The principal intracellular antioxidant is GSH, which can scavenge 
ROS and RNS, and additionally, GSH can also indirectly perform antioxidant function acting as a cofactor for 
various enzymes [17]. Regarding non-enzymatic antioxidants, the most potent ones are vitamin A, vitamin 
C, bilirubin, α-tocopherol (vitamin E), and β-carotene, which are present in blood [2, 11].

Search strategy
Data used for this review are obtained by searching the electronic database [PUBMED/MEDLINE 
1988-October 2021]. The main data search terms were: reactive oxygen species, reactive nitrogen 
species, OxS, antioxidant enzymes, vascular diseases, antioxidant enzymes and vascular diseases, 
cardiovascular disease, metabolic syndrome, mitochondrial chain, nicotinamide adenine dinucleotide 
phosphate [NAD(P)H], and xanthine oxidases. Additionally, abstracts from national and international 
diabetes and cardiovascular-related meetings were searched.

Antioxidant enzymes
In physiological conditions, enzymatic and non-enzymatic antioxidant systems maintain an equilibrium 
between the production and neutralization of ROS and RNS [11]. Antioxidant enzymes lower ROS and RNS 
levels or counteract downstream cellular effects of excessive oxidation. In addition, antioxidant enzymes 
detoxify ROS/RNS into less reactive species serving as an intermediate defense against ROS/RNS [18]. The 
primary antioxidant enzymes are SOD, CAT, GPx, and GSH reductase (GR) [12, 18]. Highly reactive radical O2

- 
is converted by SOD to the less reactive radical hydrogen peroxide (H2O2), which can further be dissolved by 
CAT or GPx [18]. 

Superoxide-dismutases
Superoxide-dismutase is a group of metalloenzymes that have a major antioxidant role in human health. In 
humans, there are three types of SODs: cytosolic CuZn (SOD1), mitochondrial Mn (SOD2), and extracellular 
CuZn (SOD3, EcSOD) [18, 19]. Phylogenetic analysis of SOD genes in vertebrates showed homology between 
SOD1 and SOD3 genes. However, the similarity with the SOD2 gene was shown to be minimal [20]. Moreover, 
SODs are presented as the first and the most major line of antioxidant defense against ROS, particularly 
O2

- [19, 20]. The reaction implies binding O2
- to an oxidized form of the enzyme (Fe3+, Cu2+, and Mn3+ 

respectively), which results in acquiring a proton and releasing molecular oxygen. Furthermore, second 
O2

- and proton bind to the reduced form of the enzyme (Fe2+, Cu+, and Mn2+), which results in liberating 
H2O2 and returning of enzyme to its oxidized form [19, 21]. All three forms of SODs contain specific metals, 
which are essential for their function. SOD1 and SOD3 contain Cu and Zn ions in their catalytic center, while 
SOD2 contains Mn ions in their catalytic center [18]. SOD1 is a highly abundant enzyme that is ubiquitously 
expressed in eukaryotes, and it has been found in the cytoplasm, nuclear compartments, lysosomes, and 
mitochondrial compartments of mammalian cells [20]. Studies with SOD1 male and female knockout animals 
suggested that SOD1 is located in the mitochondrial intermembrane space, which is fundamental for motor 
axon maintenance. In contrast, mutations of the SOD1 gene that result in various single amino acids have been 
linked to familial amyotrophic lateral sclerosis [20, 22]. SOD2 is a tetramer enzyme located in mitochondria 
within the mitochondrial matrix, the main leading free radical production site from the electron transport 
chain [23]. Thus, SOD2 is a primary antioxidant enzyme in mitochondria essential for protecting respiring 
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cells from oxidative damage [24]. Studies have shown that SOD2 knockout male mice die 2-3 weeks after 
birth due to cardiomyopathy and neurodegenerative diseases [20, 25]. Although there is substantial evidence 
supporting the idea of biochemical defects in the mitochondria in Parkinson’s and Alzheimer’s disease, there 
is little evidence to suggest the direct involvement of SOD2 in the clinical progression of the diseases [23]. 
Concerning SOD3, it contains a signal peptide that leads this enzyme to extracellular spaces, and it is probably 
located along the whole depth of the vascular wall [20, 26]. SOD3 is highly restricted to the specific cell types 
and tissue where it can exceed the activity of SOD1 and SOD2 [20, 26].

CAT
CAT exists as a tetramer enzyme that consists of four polypeptide chains with four ferriprotoporphyrin 
prosthetic groups per molecule [11]. CATs react with H2O2, breaking it down into molecular oxygen and 
water. Since one molecule of CAT hydrolyses over a million molecules of H2O2 per second, it is considered 
a highly effective enzyme [11, 27]. CATs are found in a wide range of aerobic and anaerobic organisms and 
are divided into three groups based on their structure and function [27, 28]. The first and the second groups 
are heme-containing enzymes called typical CAT and CAT peroxidases, whereby the third group contains Mn 
ions in their catalytic center and are called Mn CAT [28]. Numerous studies detected CAT gene mutations in 
patients with diabetes mellitus, hypertension, and vitiligo [29].

GPx and GSH reductase
GPxs are enzymes that catalyze the reduction of H2O2 to water or hydroperoxides to corresponding 
alcohols using reduced GSH [30]. This reaction involves the formation of a disulfide bridge between two 
GSH molecules, creating a GSH disulfide, an oxidized version of GSH (H2O2 + 2GSH → oxidized glutathione 
(GS-SG) + 2H2O) [30, 31]. When the GSH molecule receives one electron from ROS, it becomes reactive, 
especially towards thiols, whereas the most abundant thiols in the cells are usually other GSH molecules, so 
dimer formation is favored [31]. Furthermore, recycling oxidized GSH back to its reduced form is catalyzed 
by enzyme GR, whereby this reaction requests the involvement of flavin adenine dinucleotide (FAD) and 
reduces NAD(P)H [31].

In mammalian tissues, there are four major GPx isozymes with selenocysteine in their active sites and 
two isozymes that are closely related to GPx3 [30, 32]. Their expression is tissue-dependent, whereas GPx1 is 
found in red cells, liver, lung, and kidney, GPx2 is found in gastrointestinal tracts, GPx3 is present in different 
organs such as kidney, lung, epididymis, vas deferens, placenta, seminal vesicle, heart and muscle and GPx4 
which is widely distributed in various tissues [30]. GPx5 is found in the epididymis and lacks the inactive 
selenocysteine, while GPx6 is located in the olfactory epithelium [30]. Their subcellular locations are present 
in cytosol, nucleus, mitochondria and bound to membranes [30, 31]. Moreover, GR activity is also present in 
cytosol, nucleus, and mitochondria, and GR is found in the endoplasmic reticulum and the lysosomes [31].

OxS and vascular diseases
ROS have physiological and pathological implications in cardiovascular tissues [33]. Low amounts of ROS 
generation are essential for cell functioning/signaling and, this process is called redox signaling [34, 35]. 
Also, subcellular ROS is significant for tissue adjustment to injury [36]. Various molecules participate in redox 
signaling, including hydroxyl radical (OH.), H2O2, transcription factors, NO, O2

-, and all manifest protective 
actions in vascular physiology function [4, 33]. As far as cellular signaling, ROS alter cell signal pathway, 
gene expression, cellular proliferation, and protection versus infections [4]. In respect of vascular physiology, 
ROS may influence endothelium, cell differentiation and migration, vascular tone, and NO suppression [4]. 
However, in pathological states, ROS can induce oxidative disbalance of all cell components, along with 
proteins, lipids and nucleic acids [4, 37]. Thus, OxS is remarkably involved in heart failure and myocardial 
infarction development (Figure 1) [33].

Chronically increased levels of ROS may participate in endothelial and mitochondrial dysfunction, 
atherosclerosis, hypertension development, and cardiomyocytes hypertrophy [33]. Enzymatically, O2

- is 
mainly generated through the medium of NAD(P)H and xanthine oxidase (XO) [1]. NAD(P)H and XO oxidase 
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are the primary molecules in the ROS pathology of vascular diseases [4]. Activated XO may attach to vascular 
cells and causes NO reduction and ONOO- escalation [38]. Further, increased XO activity may be essential 
for metabolic syndrome development since it generates O2

- and reduces SOD activity, leading to endothelial 
dysfunction [39]. NAD(P)H oxidase is a pro-oxidant enzyme complex that generates H2O2 and O2

- through 
NAD(P)H genes, which create the transmembrane proteins responsible for electron transport [40, 41]. Various 
NAD(P)H isoforms are expressed in human vascular smooth muscle cells (VSMCs) and endothelium, such as 
NOX1, NOX2, NOX4, and NOX5 [42]. This enzyme induces OxS which is associated with various pathologies, 
such as hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, etc. [40, 43-45].

Figure 1. The impact of disbalance between ROS/RNS and antioxidant enzymes in OxS development in vascular diseases. It was 
created with Biorender.com

Targeting distinct agents which are responsible for OxS in vascular tissues seems to be a promising 
therapeutic approach [42]. According to a newly updated cohort study, the application of XO inhibitor is 
positively correlated with the decreased risk of vascular diseases in male and female human patients [46]. 
Further, using an in silico approach, some authors present new NAD(P)H inhibitors for hypertension 
treatment [47]. Hence, the management of NAD(P)H and XO oxidases and their inhibitors expressed 
in the VSMCs might be a potential target for vascular diseases medication that would inhibit the only 
pathological activity of NAD(P)H [40, 42, 48]. The endothelium is essential for vascular homeostasis and 
blood fluidity, and vascular tone balance [49]. In the endothelial cells, NO has a vital role in the proportion 
of vascular homeostasis. Since excessive ROS causes NO bioactivity reduction, endothelial dysfunction 
directly affects vascular blood vessels [49, 50]. Decreased NO generation occurs due to reaction with O2

-, 
produced from NAD(P)H and XO oxidase, and consequently, ONOO- originates, leading to apoptosis of 
endothelial cells [49, 51, 52].

However, some authors point out some positive aspects of small ROS amount in endothelial cell 
generation and metabolism [53]. Endothelial cells can generate ATP in anaerobic conditions and store 
oxygen, and this paradox brings decreased ROS levels and rapid ATP generation [53]. Nonenzymatically, 
O2

- is generated when oxygen reacts with redox-active compounds [1], especially from the mitochondrial 
respiratory chain (dominant source of intracellular ROS) [33]. Mitochondria are especially abundant 
in cardiac tissue [49]. Thus, increased ROS generation in the course of mitochondrial dysfunction is an 
essential factor for the occurrence and development of atherosclerosis, high blood pressure, heart failure, 
and ischemia-reperfusion injury [54]. For instance, one study with a male murine model of myocardial 
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infarction induced by coronary ligation, OH., and lipide peroxide values in the mitochondria was 
elevated [55]. Besides, ROS generated in mitochondria is related to vascular complications in diabetes, 
especially cardiomyopathy [54, 56]. According to new data, in male Wistar rats with induced diabetes, a 
significant increase of ROS and decrease of CAT activity has been recorded in the heart muscle [57]. In the 
same study, mitochondrial complexes I, II, III, and IV were reduced, and SOD2 and GSH/glutathione disulfide 
(GSSG) ratio values decreased in heart mitochondria in diabetic rats [57]. Regarding mitochondrial ROS 
participation in vascular disease pathogenesis, targeting mitochondria and their oxidative balance may be 
a promising approach for vascular complications medication.

Role of antioxidant enzymes in vascular diseases
A protective system for free radical excess removal is generated during the evaluation, whereas all antioxidants 
represent an antioxidant defensive system [58]. Antioxidants are divided into two groups: enzymes, the 
primary line of antioxidative defense (SOD, CAT, GPx, GR, GSH) and non-enzymes, the secondary line of 
antioxidative defense (vitamins E and C, albumin, thiols, β-carotenes, etc.) [59-62].

One of the most important antioxidant enzymes is SOD, which catalyzes O2
- into oxygen and H2O2 [63, 64]. 

SOD2 stands up against mitochondrial ROS and can minimalize vascular calcification among VSMC [65, 66]. 
In male and female patients with idiopathic pulmonary arterial hypertension, the expressions of all three 
SOD isoforms were reduced compared to the healthy patients [67]. Nevertheless, gene rs7655372 locus 
polymorphism of SOD3 in male and female patients is a risk factor for ischemic stroke [68]. The association 
between SODs activities and vascular diseases is imperative for developing a new diagnostic biomarker and 
therapy strategy.

Regulation of CAT implicates OxS-associated pathways and diverse transcription factors, for instance, 
nuclear factor Y (NF-Y), peroxisome proliferator-activated receptor δ (PPAR δ), specificity protein 1 (Sp1), 
etc. [69-72]. CAT protective role versus ROS is established, and according to some authors, reduction of CAT 
activity enhances abdominal aortic dilatation appearance [73]. Further, cardiac CAT activation by adipokine 
apelin during hypertrophic remodeling manifests protective features versus ROS in male C57BL6/J mice 
and cultures of cardiac myocytes [74]. Similarly, in experimental male rats, CAT reactivation by curcumin in 
the heart and aorta displays protective properties against lipopolysaccharide [75]. In addition, results from 
Dai et al. [76] study showed that CAT upregulation in mitochondria protects male and female mice from 
vascular aging.

Another intracellular antioxidant enzyme, GPx1, transforms H2O2 to H2O and lipid peroxides to alcohols 
and plays a significant role in ROS prevention [77]. In apolipoprotein E and GPx1 deficiency (ApoE-/-GPx1-/-) 
female mice, atherosclerosis and plaque lesions were more expressed than those without GPx1-/- [78]. The 
same authors declared that GPx1-/- causes ROS elevation in the aorta of the animals [78]. In another animal 
study with male ApoE-/- mice overexpressing GPx4, atherosclerosis progression and lipid peroxidation were 
suppressed in aorta endothelial cells [79]. According to new data, GPx1 protein expression was significantly 
reduced in male mice aortic tissue with induced diabetes [80]. GR also manifests a protective feature against 
OxS, and its overexpression in heart tissue of a Klotho-hypomorphic (antiaging gene) deficient male mice 
resulted in heart failure and apoptotic prevention [81]. GSH has a significant part in the antioxidant defense 
system and cell homeostasis and metabolism. Nevertheless, GSH deficiency has an essential part of aging and 
cardiovascular pathology [82].

Antioxidants on vascular diseases
Although data from studies with experimental animal models advocate the protective role of antioxidants 
versus vascular disorders [83-86], data from clinical trials are not conclusive [56, 87]. For example, vitamin 
A has been rated as a beneficial supplement that may reduce OxS in diabetic individuals with ischemic 
heart disease [88]. Melatonin supplementation may reduce myocardial ischemic-reperfusion injury in male 
and female patients undergoing coronary artery bypass [89]. Further, vitamins E, A, and C decrease blood 
pressure in male patients with hypertension [90]. Consistent with these statements, a new meta-analysis 
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that included 11 cross-sectional studies and 7 case-control studies with both gender individuals concluded 
that vitamin C positively influences blood pressure and endothelial function [91]. Still, long-term trials 
with an extensive number of participants are necessary for clarification of vitamin C benefit role in 
cardiac complications [92, 93]. A large randomization study indicated that vitamin E supplementation at 
high doses might even elevate the risk for coronary artery disease development [94]. Indeed, treatment 
with vitamin E for an extended time did not affect vascular events in male and female individuals with 
diabetes or other cardiovascular comorbidities [95]. Micronutrient selenium, which is considered a potent 
antioxidant, failed to reduce chronic chagasic cardiomyopathy in 66 male and female patients, according 
to a randomized, placebo-controlled, double-blinded clinical trial [96]. Ye et al. [97] analyzed data from 15 
trials and 188,209 participants and revealed that vitamins C and E, together with β carotene, had no positive 
impact on cardiovascular complications. It cannot be denied that reducing OxS via antioxidants is important; 
however, up to now, the results of clinical studies have been predominantly pessimistic [98]. We assume 
that there are several reasons for this attitude. Most of the clinical trials regarding vascular comorbidities 
have been examined a single antioxidant, so antioxidant combinations and their molecular basis might be 
discussed in future investigations [3]. Secondly, OxS should be identified through enzymes activity rather 
than produced molecules [98].

Conclusion
The impact of OxS is detrimental to human health, and numerous studies confirmed that high ROS 
production contributes to the initiation and progression of CVD [5, 99, 100]. Thus, the antioxidant 
defense has an essential role in the homeostatic functioning of the vascular endothelial system, whereby 
antioxidant enzymes represent the primary line of antioxidant protection [4, 59]. Numerous studies 
have proven the association between reduced expression and activity of antioxidant enzymes and CVD 
development [68, 73, 80]. Hence, additional research on how ROS is utilized in the cardiovascular system 
and consequently impacts the regulation of antioxidant enzymes is needed to develop new diagnostic 
biomarkers and therapeutic strategies.
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