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Abstract
The processes of cancer and embryonic development have a partially overlapping effect. Several transcription 
factor families, which are highly conserved in the evolutionary history of biology, play a key role in the 
development of cancer and are often responsible for the pivotal developmental processes such as cell survival, 
expansion, senescence, and differentiation. As an evolutionary conserved and ubiquitously expression 
protein, CCCTC-binding factor (CTCF) has diverse regulatory functions, including gene regulation, imprinting, 
insulation, X chromosome inactivation, and the establishment of three-dimensional (3D) chromatin structure 
during human embryogenesis. In various cancers, CTCF is considered as a tumor suppressor gene and plays 
homeostatic roles in maintaining genome function and integrity. However, the mechanisms of CTCF in tumor 
development have not been fully elucidated. Here, this review will focus on the key roles of CTCF in cancer 
evolution and development (Cancer Evo-Dev) and embryogenesis.
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Introduction
CCCTC-binding factor (CTCF) is a multivalent 11-zinc finger (ZF) protein that binds tens of thousands 
of sites in the human genome [1]. Initially identified as transcriptional regulator of chicken MYC 
proto-oncogene (c-myc gene) in 1990 [2, 3], CTCF was later found to mediate gene imprinting at the 
H19 imprinted maternally expressed transcript/insulin-like growth factor 2 (H19/Igf2) locus [4]. 
Follow-up studies indicated that CTCF interferes with the interaction between enhancers and promoters 
because of its binding sites frequent presence in various chromosomal structural boundaries, such as 
the topologically associated domains (TADs) [5, 6]. Increasing evidence indicated that CTCF protein 
is highly conserved from Drosophila to humans [7]. CTCF is one of the key regulatory proteins in 
vertebrates, and its knockout leads high in utero embryonic lethality [8]. CTCF can participate in a 
variety of biological processes and have different functions, including insulator function [9], regulation 
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of gene transcription [10], gene imprinting (Figure 1) [11], X chromosome inactivation [12, 13], 
affecting messenger RNA (mRNA) alternative splicing as well as nucleosome rearrangement and DNA 
replication [14, 15]. Recently, high-throughput chromosome conformation capture (Hi-C) indicated that 
CTCF has dynamic roles as regulator of imprinted loci and governing higher-order chromatin architecture 
other than enhancer blocking activity [5, 16]. The latest evidences revealed that CTCF is directly involved 
in the transcriptional modulation of various key factors of cellular cycle control, apoptosis, senescence, 
and differentiation [17, 18]. Indeed, ectopic expression of CTCF in several human tumoral cell lines 
inhabits cell division and clonogenicity [18]. Somatic mutations at CTCF-binding sites, which can abrogate 
the CTCF-mediated spatial folding of chromosomes [19], have been profoundly found in various human 
cancers [20]. Interestingly, CTCF also has a key role in the establishment of three-dimensional (3D) chromatin 
structure during human embryogenesis [21]. The basic framework of the hypothesis of cancer evolution 
and development (Cancer Evo-Dev) is shown in Figure 2. The complex interactions between host genetic 
susceptibility and environmental exposure [such as hepatitis B virus (HBV) infections] induced immune 
system disorder. The dysfunctional immune system activates and maintains chronic inflammation with the 
permanent existence of HBV in host. Under the inflammatory microenvironment, the imbalance of mutagenic 
factors and mutant repair factors, cooperating with HBV integration and epigenetic modulations, promotes 
HBV-related somatic mutations and HBV mutations. A majority of hepatocytes with genomic mutations and 
HBV variants are eliminated in the survival competition in inflammatory microenvironments. Only a small 
part of cells survive by alternating survival signaling pathways and exhibit “stemness” characteristics. 
The survivals gradually evolved to be cancer stem cells, which drives the development and evolution of 
cancer [22]. According to the Cancer Evo-Dev hypothesis, CTCF is considered as an essential regulator 
during cancer cells “backward evolution” and “retro-differentiation”.

Figure 1. Gene imprinting. The methylation of the paternal allele DMR affects the binding of CTCF, and the enhancer downstream 
of H19 can interact with the Igf2 over a long distance to promote its expression. On the contrary, the maternal allele DMR is 
not methylated, which means CTCF can bind to it and then block the interaction between the downstream enhancers of H19 
and the promoters of Igf2. As a result, the expression of Igf2 is turned off, but H19 can still be expressed under the action of 
downstream enhancers

Figure 2. Basic framework of Cancer Evo-Dev
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CTCF is essential to establish 3D chromatin structure during human 
embryogenesis
There is a growing consensus that a hierarchical chromatin structure is established within the nucleus 
in the interphase of the cell cycle [23, 24]. The spatial folding of chromosomes and their organization, 
which is largely mediated by CTCF, have profound effects on gene expression [25, 26]. Genetically inducible 
CTCF deletion in several specific cell types, including oocytes, lymphocytes, and cardiomyocytes, leads 
to organ-specific failure [27, 28]. Knocking out the CTCF of the oocyte seriously disrupts the entry of 
the fertilized oocyte into the blastocyst stage [28]. Furthermore, homozygous deletion of CTCF at the 
whole embryo level results in embryo death [8], which is characterized by aberrant enhancer-promoter 
interactions and transcriptional dysregulation [29]. However, albeit numerous studies have explored the 
function of CTCF binding, the in vivo roles of CTCF during embryonic development are largely unknown.

Recent studies revealed that TAD structures are totally lost in human 2-cell embryos, are at a low level 
in 8-cell embryos, and then gradually established during embryonic development [21]. As an essential 
hierarchical structural feature of chromatin organization, A/B compartmentalization is absent in human 
2-cell embryos and reformed during embryogenesis [21, 30, 31]. Unlike in mature mouse sperm, TAD 
structures are absent in human sperm. Previous studies have shown that depletion of CTCF can lead to the 
disruption of TADs, suggesting that the lack of CTCF may contribute to the loss of TAD structures in human 
sperm [21, 32]. Immature TAD boundaries gained at the 2-cell embryos tend to locate around housekeeping 
genes, which may promote the expression levels of housekeeping genes. In addition, both CTCF expression 
and TAD establishment in human embryos require human zygotic genome activation (ZGA). Further studies 
suggested that CTCF expression is required, but is not the only factor needed, for TAD establishment during 
human ZGA [21].

The regulatory role of CTCF in tumors
CTCF can induce both cell cycle progression or arrest to accomplish its function [17], which is dependent 
by cell-specific CTCF-binding DNA sequences (CTSs), protein partners and chromatin long-range 
interactions [33]. CTCF can repress cell growth and colony formation suggesting a suppressor role 
of CTCF [34, 35].

CTCF/CTCF like maintains genome stability
It is reported that CTCF depletion activates DNA damage response and increases the risk of 
chromosomal instability [36]. DNA damage signaling, Mre11 (MRE11 homolog, double strand break 
repair nuclease)-Rad50 (RAD50 double strand break repair protein)-Nbs1 (nijmegen breakage 
syndrome 1) complex and CTCF DNA-binding domain promote CTCF enrichment at DNA damage sites [36]. 
As the core DNA-binding protein of homologous recombination (HR), RAD51 is overexpressed in a variety 
of tumors [37]. CTCF participates in HR repair of DNA double strand breaks by interacting with RAD51 
and promoting the formation of RAD51 repair foci [38]. CTCFL (CTCF like), otherwise known as Brother 
of the Regulator of Imprinted Sites (BORIS), is a male system-specific protein with the same 11-zinc 
finger structure as CTCF [38]. In non-small cell lung cancer (NSCLC), BORIS suppresses DNA damage and 
promotes cisplatin resistance by enhancing the mismatch repair system of cancer cells [39].

CTCF, epigenetic regulation and cancer
Gene methylation detection showed that DNA methylation at the CpG sites in the CTCF coding gene 
caused the CTCF binding sites to be blocked [40]. The function of CTCF in regulating gene imprinting 
suggested that the binding of CTCF to the target gene is methylation sensitive [4]. The aberrant DNA 
methylation of key regulate regions can hinder CTCF binding, which may lead to epigenetic silencing of 
tumor suppressor loci or lead to activation of oncogenes [41]. Large tumor suppressor (LATS) kinase 
can be activated by a variety of stress responses, such as glucose deficiency, and then phosphorylates 
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downstream pathways to promote cell survival, while abnormal LATS activation promotes tumorigenesis. 
LATS kinase directly phosphorylates CTCF at the ZF junction, inhibiting its DNA binding activity [42]. 
Recent studies indicated that DNA methylation-regulated alternative cleavage and polyadenylation 
(APA) requires CTCF and the cohesin complex [43]. Epigenetic inactivation of Ras association domain 
family 1 isoform A (RASSF1A) and E-cadherin (CDH1) in breast cancer is associated with alternations 
in CTCF recognition sites [44]. Aberrant DNA methylation can inhibit CTCF-mediated silencing of 
BCL6 transcription repressor (BCL6) gene, thus increasing the expression of proto-oncogene BCL6 in 
lymphoma [45]. In addition, alternations in CTCF gene in endometrial cancer can promote tumorigenesis 
by promoting cell survival and changing cell polarity [46].

CTCF hemizygous deletions are frequently found in various human tumors [47]. Loss of a single CTCF 
allele (Ctcf+/-) significantly increases the risk of cancer and enhances malignant progression [40]. CTCF 
hemizygosity dysregulates cancer-related pathways, such as Ras, Ras-mitogen-activated protein kinase 
(Ras-MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways [48]. Ctcf+/- mice 
remain a disorder methylation status, and even lead to a modest overall increase levels of genome-wide DNA 
methylation in lung [40]. Chromosome 16q22.1 is a common deletion region in various epithelial cancers, 
and CTCF is located on this region. In prostate cancer cells, knockdown of CTCF results in hypermethylation 
of the CTCF/cohesin-binding sites (CBSs). Prostate and breast cancers with insufficient CTCF copy number 
show increased DNA hypermethylation events in vivo [49]. In addition, high frequency mutations of CBSs 
also lead to disorders of specific sites hypermethylation and promote the occurrence and development 
of cancer [43].

CTCF can modulate key tumor-related genes
CTCF has been shown to modulate the expression of various cancer-associated genes. c-myc plays 
vital roles in tumorigenesis, embryogenesis, and somatic cells reprogramming [50-52]. CTCF exerts 
divergent roles on c-myc regulation by binding various sequences at c-myc promoter [1]. In myeloid cells, 
overexpression of CTCF decreases c-myc levels and growth rate, which promotes myeloid differentiation 
and induces cell cycle arrest in numerous tumoral cells [34, 53]. In most malignant tumors, telomerase 
is activated to prevent telomere shortening, which confers high proliferative capacity to tumoral 
cells [54, 55]. As one of the telomerase components, human telomerase reverse transcriptase (hTERT) 
is only expressed in telomerase-positive cells, and depletion of CTCF induced hTERT transcription in 
TERT-negative cells [56, 57]. However, CTCF is not able to exert a transcriptional repressive function 
because of DNA-methylation or BORIS-binding in TERT-positive cells [58]. Moreover, in cancer cells, 
methylation of CTSs at hTERT exon inhibits CTCF-binding, which prevents hTERT repression [59]. 
Retinoblastoma (RB) is considered a tumor suppressor gene and CTCF maintains RB gene promoters 
at an active epigenetic status [60, 61]. The inactivated of RB gene family leads to the loss of cell cycle 
control and cancer. Other evidences showed that CTCF is also involved in an epigenetic balance at the 
cyclin-dependent kinase inhibitor 2A locus (CDKN2A) and tumor protein p53 (TP53) gene promoters [58, 62]. 
In sum, by binding various CTSs, CTCF can modulate c-myc, hTERT, RB, and other tumor-related genes, which 
emphasize the cell-type dependency of its tumor suppressor role.

CTCF/Cohesin complex is associated with cancer development
Chromosome architecture has different levels: euchromatin (A) and heterochromatin (B) compartments are 
corresponding to megabase-scale, TADs are corresponding to sub-megabase scale and smaller loop structures 
correspond to tens of kilobases level [63]. As a sister chromatid cohesin molecule, cohesin was also found to 
modulate higher-order chromosome architecture by cooperating with CTCF. CTCF interacts with the cohesin 
through two different domains at the N-terminal. Amino acid 222-231 binds to the cohesin’s conserved 
essential surface, which is a composite interface formed by stromal antigen (SA) and RAD21 cohesin complex 
component (RAD21) subunits. This motif is known as YxF motif in CTCF. Amino acid 23-27 binds to the 
cohesin protein PDS5A subunit. This motif is known as YxR motif in CTCF [64, 65]. Interestingly, CTCF assists 
cohesin to bind specific sites on chromosomes while its binding is independent of the presence of cohesin 
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on chromatin [66]. Recent evidence indicated that cohesin catalyzes the folding of the genome into loops 
that are anchored by CTCF and CTCF enables chromatin loop formation by protecting cohesin against loop 
release [65]. CTCF/cohesin-mediated chromatin loops play an essential role in the maintenance of genome 
integrity [67]. Previous studies showed that mutations at CBSs and somatic mutations in the cohesin subunits 
were frequently detected in various cancers, while aberrant overexpression of the cohesin complex was 
also frequently found in several human malignancies [20, 68, 69]. Mutations in cohesin subunits and CBSs 
may promote genomic instability by perturbing proper long-range chromatin interactions. In cancer cells 
with chromosomal instability, CTCF/cohesin-mediated chromatin organization and DNA replication play an 
essential role in gene stable amplification [70]. As a member of cohesin family gene, stromal antigen 2 (STAG2) 
is one of the most commonly mutated genes in cancer. In Ewing’s sarcoma, STAG2 disfunction is related to 
aggressive behavior. STAG2 loss of function orchestrates oncogenic transcription factors by changing 
CTCF-anchored loop extrusion [71]. RAD21 is an essential subunit of the cohesin complex. Interestingly, 
depletion of RAD21 in epithelial cancer cells induces epithelial to mesenchymal transition (EMT) while 
overexpression of RAD21 in mesenchymal cancer cells induces mesenchymal to epithelial transition (MET)-
specific expression patterns, suggesting that dynamic cohesin-mediated chromatin structures are responsible 
for the initiation and regulation of essential EMT-related cell fate changes in cancer [72].

The function of BORIS/CTCF system in tumorigenesis
CTCF is constitutively and widely expressed in normal tissues while BORIS protein exists normally only in 
the testis [73]. BORIS belongs to the cancer/testis gene family, which is only expressed in malignant tumors 
except male germ cells. The abnormal expression levels of BORIS RNA and protein, which are affected by 
DNA-methylations, related with the size of tumors and the degree of malignancy, otherwise the knockdown 
of BORIS induced apoptosis in tumorous cells [74]. CTCF and BORIS do not compete even they have the same 
recognition sites in normal somatic cells. However, expression of BORIS in BORIS-negative cells not only 
interferes with the normal functions such as growth inhibition of CTCF, but also leads to cell dysfunction, 
which leads to tumorigenesis due to the competitive binding of BORIS/CTCF gene family [75]. Recent studies 
indicated that ectopic expression of BORIS activates cancer testes antigens (CTA) and components of cancer 
relevant signaling pathways [76]. The test of sterile BORIS-/-CTCF+/- (compound mutant, CM) male mouses 
confirmed that combined depletion of BORIS/CTCF will lead to defection of meiotic recombination, 
increasing of apoptosis, and malformed spermatozoa [77]. Interestingly, BORIS/CTCF heterodimeric sites 
are enriched in both cancer and germ when the promotors and enhancers of cells are activated [78]. The low 
expression of spermatogenesis genes and aberrant expression of sterile genes in CM mouses indicated that 
joint action of BORIS/CTCF is essential for spermatogenesis program by restraining pre-meiotic genes and 
activating post-meiotic genes [77].

CTCF and Cancer Evo-Dev
Cancer development is characterized by an evolutionary process of “mutation-selection-adaptation”, some 
highly conserved genes are highly expressed in the embryo, not expressed or low expressed in normal 
adult tissues, but highly expressed in cancer tissues, leading to reverse cell differentiation, malignant 
proliferation and enhanced migration capacity [22]. Recent evidences revealed that in normal prostate 
tissue, CTCF expression was negative to low, while in prostate cancers, CTCF expression was seen in 
7,726 of 12,555 (61.5%) tumors and was considered low in 44.6% and high in 17% of cancers [79]. CTCF 
expression is a feature of poor prognostic in prostate cancer, but CTCF is a dissatisfactory candidate 
biomarker because of its low predictive power [79]. Similarly, CTCF is frequently up-regulated in partial 
primary hepatocellular carcinoma (HCC) compared with non-neoplastic liver. Overexpression of CTCF is 
associated with shorter disease-free survival in patients and the absence of CTCF can lead to decreased 
motility and invasiveness of HCC cells [80]. In addition, chromosomal ring anchors bound by CTCF and 
cohesin are prone to continuous DNA breakage, and regions of translocation break points in various 
cancers are enriched in these anchors [67]. Continuous DNA break and repair provide opportunities for 
genetic mutations, and in the context of numerous mutations, cancer is constantly selecting and adapting. 
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Furthermore, multiple cancer types accumulate CBS mutations and CBSs are major mutational hotspots 
in the noncoding cancer genome, which emphasize the significant role of CTCF in cancer evolution and 
development. In summary, CTCF hemizygotic mutations and CBSs mutations disrupt genomic stability and, 
in combination with epigenetic modifications such as methylation, promote the mutation and adaptive 
selection of cancer cells, thereby promoting the evolution and development of cancer.

Conclusion
CTCF, a highly conserved and multifunctional protein, contributes to formation of multi-dimensions genome 
and control of central signals to transcriptional networks [5]. CTCF plays an essential role in embryonic 
development and cancer development, but its molecular mechanism has not been fully elucidated. CTCF exerts 
a tumor suppressor role by regulating several key factors related to growth and development and regulating 
the higher-order structure of chromosomes, but its high expression in various cancer cells may promote 
the malignant proliferation and migration, and often predicts a poor prognosis [33, 79]. Although roles of 
CTCF in carcinogenesis have been intensively explored, more researches are needed to better understand the 
significant functions and mechanisms of CTCF in embryonic development and cancer development.

With the continuous development of modern bioinformatics and biotechnology, the combined use of 
a variety of high-throughput analysis techniques such as chromatin immunoprecipitation-chip (ChIP-chip), 
ChIP-qPCR, and so on can constantly find out the corresponding binding sites and regulatory models of CTCF 
with DNA, protein and RNA, which can further clarify the action mechanism of CTCF. The developed highly 
specific epigenome editing technology based on clustered regularly interspersed short palindromic repeats 
(CRISPR)/CRISPR-associated 9 (Cas9) as a broad prospect because it can modify the genome of specific 
regulatory elements [81]. For example, targeted editing of the DNA methylation status of CTCF binding sites 
can alter the expression of CTCF, thereby altering the expression of target genes by affecting the structure of 
advanced chromatin [82]. Therefore, the highly specific epigenome editing technology based on CRISPR/Cas9 
may become an attractive epigenome-based cancer therapy in the next few years to regulate the occurrence 
and development of tumors.
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