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Vascular aging, the vascular cytoskeleton and aortic stiffness
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Abstract
Vascular aging, aortic stiffness and hypertension are mechanistically interrelated. The perspective presented 
here will focus mainly on the molecular mechanisms of age-associated increases in the stiffness of the vascular 
smooth muscle cell (VSMC). This review will highlight the mechanisms by which the VSMC contributes 
to disorders of vascular aging. Distinct functional sub-components of the vascular cell and the molecular 
mechanisms of the protein-protein interactions, signaling mechanisms and intracellular trafficking processes 
in the setting of the aging aorta will be detailed.
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Introduction
Definition and quantification of vascular aging
Vascular aging has been stated to be a key clinical factor in the determination of the health of the vascular 
system [1]. With age there is known to be a trend, dependent on the patient’s lifestyle, toward progressive 
remodeling and, especially, stiffening of the vasculature [2]. This is of note because vascular stiffening can 
be associated with, and is thought to be a cause of, hypertension, stroke, and vascular dementia [3]. The 
relative pace of vascular aging has been described by the concept of vascular age determination according 
to comparison with key clinical guidelines to indicate the relative slowing or acceleration of vascular 
function deterioration [1]. Specifically, high-resolution B-mode ultrasound has been used to measure 
carotid artery intima-media thickness (CIMT) [4] and vascular age has been defined by comparison to 
the age at which the composite CIMT measurements would represent the median value in the previously 
published Atherosclerosis Risk in Communities study [4-6]. Thus, clinically, vascular aging is quantifiable, 
but in order to design therapeutics to prevent or reverse vascular aging, the cellular and molecular basis 
must also be determined.
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Hypertension and aortic stiffness during aging are interrelated. It has been reported for the Framingham 
Heart Study Offspring cohort that increased in vivo aortic stiffness [measured by carotid femoral pulse wave 
velocity (CFPWV)] is a strong predictor of the progression of hypertension [7] and has been suggested to 
be “an inevitable accompaniment of isolated hypertension” [8]. In the large arteries such as the aorta and 
carotid, an increase in arterial stiffness is known to parallel general vascular aging and to be a major predictor 
of cerebral bleeds and end organ damage to the high-flow organs, the brain, heart, and kidneys, in general [9]. 
Furthermore, the stiffness of the aorta is a quantifiable biomechanical property of aortic tissue and readily 
amenable to the development of prototype potential therapeutic agents. Thus, we will focus here specifically 
on aortic stiffness during aging.

Components of vascular stiffening with age
Both cellular and acellular factors are known to be involved in aging-associated changes in stiffness of blood 
vessels. It is well established that aging leads to a stiffening, specifically, of the extracellular matrix (ECM) via 
collagen crosslinking and elastin degradation [10-13]. Much has been previously written on this subject and 
hence, will not be discussed in detail here.

More recently, it has been shown that the vascular smooth muscle cell (VSMC) [14-17] also 
undergoes aging-dependent changes that increase its stiffness and, as a result, the stiffness of the 
aortic wall. Within the VSMC, the activity of the contractile filaments as well as the molecular signaling 
pathways that regulate actin polymerization and focal adhesion (FA) signaling, are sources of increases 
in vascular stiffness with age [18]. It has only recently been recognized that regulation of the stiffness 
of the cytoskeleton of the VSMC can contribute up to 50% of total aortic stiffness even in young adult 
aortas in mouse models [16]. Similar quantitative biomechanical data are much needed from live human 
tissues. In addition to VSMC stiffness, increased VSMC adhesion to the ECM has been shown to contribute 
to increased aortic stiffness with aging [19]. Furthermore, both VSMC stiffness and VSMC adhesion, but 
not changes in ECM composition, have been shown to potentially contribute to increased aortic stiffness 
in hypertension, which further increases with hypertensive aging [20, 21].

Since the endothelium is only a monolayer of cells, at first glance it may seem unlikely that its 
structure would cause major changes in the overall stiffness of the wall; however, the endothelium releases 
vasodilators (nitric oxide (NO) [22-24], prostacyclin [25], endothelium-derived hyperpolarizing factors 
(EDHFs, 11, 12-epoxyeicosatrienoic acid [26, 27]) and vasoconstrictors (endothelin [28] and thromboxane 
A2 [29]) that regulate the activity of the contractile filaments in underlying VSMCs, generally by affecting 
the intracellular calcium concentrations [30]. In healthy young and adult individuals, a balance between 
vasodilators and vasoconstrictors allows the vessel to undergo changes in its diameter that modulate the 
incoming pulsatile blood flow, however, this function is largely lost with advancing age, resulting in stiffening 
of the vascular wall and hypertension [31, 32]. Age-induced loss of endothelial function, particularly loss 
of endothelium-dependent vasodilation occurs mainly because of reduced nitric oxide bioavailability 
triggered by an increased stiffness of the endothelial cell cortex [33, 34] and increased oxidative stress 
in the vasculature [35]. Increased stiffness of the endothelial cell cortex decreases the release of NO from 
the endothelium [36] and increased oxidative stress causes an increase in reactive oxygen species (ROS) 
molecules, such as superoxide radicals, that scavenge nitric oxide [37].

The outer adventitial layer of aorta confers structural integrity and contains a cellular repertoire of 
fibroblasts, macrophages, dendritic cells, mast cells and vascular progenitor cells etc. [38] that may also 
dynamically alter the total aortic stiffness. Though the collagen fibers produced by adventitial fibroblasts are 
clearly involved in regulating the stiffness [39], the contribution of cytoskeletal structures of adventitial cells 
to aortic stiffness is unknown.

In vitro handling of experimental tissues
There exists a large literature on changes in aortic stiffness due to aging of the matrix layers of the 
aorta [40-42] and thus will not be covered in detail here. Much less is known about aging of the VSMCs 
since, experimentally, the majority of studies on matrix utilize tissues from slaughterhouses that are 
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studied hours, if not days, after transport to the research lab. Under these conditions, the VSMCs are 
likely malfunctioning, or are simply dead. It may be reasonable to assume that the matrix is preserved 
in the native state. However, it would also be worthwhile to determine whether post-translational 
modifications, fibroblast function, etc., are preserved in the matrix with long-term storage after removal 
from the animal. Additionally, cultured, but growth-arrested, VSMCs are also often used for study of the 
native aortic VSMCs but, clearly, even though they are growth-arrested, the cells will differ in morphology, 
and relative abundance of isoforms of contractile proteins and contractile ability, compared to the native 
cells in the aorta of a living human. Thus, we will focus here on the reported properties and aging of 
freshly isolated or in situ VSMCs where possible.

Subcellular structures responsible for regulated contractility and stiffness 
of the vascular cell
In both the human as well as mouse models of aging, increased aortic stiffness is associated with a damaging 
increase in the pulsatility of the blood sent from the heart to the high flow organs, especially the brain, kidney, 
and the heart [40, 43-45]. Hence, the subcellular sites of generation of these sources of increased stiffness are 
important to identify since they may be sites where modulation may be therapeutically useful.

The contractile filaments
The attachment of the smooth muscle myosin heads to the actin filaments in the contractile filaments leads 
to the generation of contractile force, vascular tone, and, also for the duration of the attachment, it increases 
the stiffness of the cell [46, 47]. Drugs that regulate smooth muscle myosin activity will regulate both stiffness 
and steady state blood pressure; however, the contractile filaments may not be a good choice for the design 
of therapeutic targets to decrease aortic stiffness since vascular tone and contractility will be decreased in 
parallel with stiffness. Though there are no reports of altered myosin activity with aging, elevated levels of 
alpha smooth muscle actin have been shown to contribute to increased VSMC stiffness with ageing [14]. 
Additionally, age-dependent increases in actin cytoskeletal stiffness have been shown to be positively 
associated with pro-fibrotic transforming growth factor (TGF)-β expression and this is reinforced through 
mechanosensitive integrin receptors on the cell surface [48].

The nonmuscle actin cytoskeleton
VSMCs, unlike striated muscle cells, lack tendons, but transmit contractile force through the non-muscle 
cytoskeleton to FAs that span the plasmalemma and communicate force and stiffness to the ECM (Figure 1). 
This allows the matrix between cells to act as a sort of intramuscular tendon and to communicate contractile 
forces within the blood vessel or organ. VSMCs contain 3 isoforms of actin: alpha smooth muscle actin, beta 
nonmuscle actin and gamma nonmuscle actin [46, 49]. Alpha actin is located in the contractile filaments 
where it interacts with smooth muscle myosin cross-bridges during contractile activation. Beta actin is 
localized around the dense bodies, intracellular sites where contractile filaments terminate and gamma 
actin is present in the cell cortex [50, 51]. Force generated by the contractile filaments is transmitted from 
the dense bodies to a diffuse subplasmalemmal nonmuscle cortex containing nonmuscle gamma actin and 
the FAs. Both the beta actin cytoskeleton and cortical gamma actin cytoskeleton as well as the contractile 
filaments contribute to total smooth muscle stiffness.

FA dynamics
FAs connect the vascular smooth muscle cytoskeleton to the ECM, but unlike the connection of striated 
muscle cells to tendons, vascular FAs are dynamic, multiprotein structures regulated by biomechanical forces 
as well as biochemical signaling [64, 65]. Furthermore, when mutations occur in the ECM protein, fibrillin-1, 
which normally links the vascular FAs and the extracellular vascular matrix, this can result in thoracic aortic 
aneurysms and dissections [66].

As indicated in Figure 1, the plasmalemma is spanned by integrin complexes connecting, extracellularly, 
with matrix molecules [53] and, intracellularly, with cytoskeletal complexes [54]. An important cluster 
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(Figure 1) of FA molecules, including talin, directly contact the integrins [67] and, also link to FAK [68]. 
FAK, in turn links to Paxillin, and both FAK and Paxillin are phosphorylated by Src in a tension-dependent 
manner [56]. The posttranslational modification of these molecules and the interactions of these proteins 
has been observed to be quite dynamic in young mouse aortas as well as the smooth muscle of airways in 
young mice [56, 69-71]. Vasoconstrictors and other agonists can increase protein-protein interactions, and 
VSMC adhesion to ECM accompanied by cytoskeletal remodeling and hence, increase stiffness [17, 18, 72]. 
However, it has been observed in mouse models that the dynamic nature of these signaling mechanisms, 
which provides a sort of shock absorber for the cytoskeleton, is diminished by age [18] and that this 
contributes to the increased stiffness of aged aortas. Again, these concepts are, thus far, based on animal 
studies and similar studies using in human blood vessels are greatly needed.

Figure 1. Schematic representation of components of the VSMC by which it regulates contractility and stiffness. The smooth 
muscle cell plasma membrane is spanned by FA complexes containing, among many other proteins, talin, vinculin, FA kinase 
(FAK), and integrins [52]. Cytoskeletal proteins of the FA complexes connect to the membrane-spanning integrins, composed of 
alpha and beta integrin heterodimers. On the cytoplasmic side, the FAs connect to the actin cytoskeletal filaments. Thus, the integrin 
complex connects the interior of the cell to the ECM allowing cell-matrix communication and signaling [53, 54]. Contractile force is 
generated by the actomyosin cross bridge cycle. During the cross-bridge cycle, force is generated by movement of myosin head 
domains while they are attached to the actin filaments. Acto-myosin cross bridge cycling is a tightly regulated process, involving 
both the thin and thick filaments. Thin filament regulation, in part, involves the blocking of myosin attachment sites on F-actin by 
caldesmon [55]. Caldesmon, in turn, is regulated by a complex, Src dependent signaling cascade. Src dependent phosphorylation 
of paxillin at Y118 allows the binding of rapidly accelerated fibrosarcoma (Raf) and extracellular signal-regulated kinase (ERK) 
to mitogen-activated protein kinase kinase (MEK) bound paxillin [56]. The formation of this complex leads to the activation of 
MEK by Raf and ERK transphosphorylation by active MEK. Subsequently, activated ERK translocates to, and phosphorylates, 
caldesmon [57]. Once phosphorylated, caldesmon undergoes a conformation change in its structure and no longer blocks the 
myosin attachment sites on F-actin. This sequence of events, then promotes acto-myosin interaction. However, attachment of 
the myosin head to F-actin is also regulated by phosphorylation of the myosin regulatory light chain (MLC), leading to additional 
signaling cascades described as thick filament regulation [58]. For example, increased intracellular calcium levels during agonist-
induced opening of calcium channels in the plasmalemma leads to the formation of calcium-calmodulin complexes which then 
activates myosin light chain kinase (MLCK) [59-61]. Active MLCK then phosphorylates the myosin light chains which activates 
myosin ATPase activity [62]. Increased myosin ATPase activity leads to a conformational change in the head of myosin and 
promotes the attachment of myosin to actin in the strong binding conformation. Force generated during acto-myosin interaction 
is transmitted to dense bodies and through the nonmuscle actin cytoskeleton, to FA complexes, including the transmembrane 
integrins and, subsequently, to the ECM and the vessel wall [46, 63]. Simultaneous contraction of the VSMCs in the vessel wall 
leads to vascular constriction, which, when increased in extent or duration also leads to increased pathologies of hypertension 
and vascular stiffness [46]

Cytoskeletal elements also serve the function of regulating the formation of signaling complexes that, 
in turn, also regulate stiffness and contractility of the muscle cell. The Src dependent phosphorylation of 
Paxillin at Y118 is critical in regulating the scaffolding property of Paxillin, bringing together Raf, MEK and 
ERK [56] and leading to the phosphorylation of caldesmon [73] an actin binding protein that acts in a manner 
analogous to that of troponin in striated muscle and directly regulates the activation of the contractile 
filaments. ERK, when phosphorylated by MEK, translocates to the actin filaments of smooth muscle cells 
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where it phosphorylates the inhibitory protein, caldesmon, causing a conformational change that disinhibits 
the contractile filaments [57]. This signaling pathway is often referred to as “thin filament regulation” in 
contrast to the parallel pathway of “thick filament regulation” by which a Ca dependent activation of MLCK 
leads to phosphorylation of the 20 kDa myosin light chains and activation of myosin motor activity. Both 
thin filament and thick filament regulation are needed for maximal contractile activation of the VSMC [46]. 
Importantly, both cross-bridge attachment in the contractile filaments (thick filament regulation) and the 
assembly of the ECM-integrin-cytoskeletal subplasmalemmal protein complexes (FA dynamics) have been 
shown to regulate the stiffness of the VSMC [16, 74-76], particularly in the proximal aorta.

Cadherins
Unlike integrins which mediate cell-matrix attachment, cadherins mediates cell-cell attachment. Cadherins 
are calcium binding transmembrane proteins that connect internally to the actin cytoskeleton through 
adherin junctions composed mainly of catenins [77]. N-cadherin is the predominant cadherin that is 
expressed in VSMCs whose density and clustering was shown to increase with agonist treatment [78]. 
Both integrins and cadherins have been shown to engage in crosstalk mediating the mechanosignaling and 
determining the localization of cellular forces; however, most of these studies were performed on cell types 
other than VSMCs [79]. Future studies are required to understand how Integrins and cadherins crosstalk in 
regulating the contractile force transmission between cell-cell and cell-ECM junctions and how this would 
regulate cell stiffness.

Other cytoskeletal elements
Other structural components of the contractile smooth muscle, such as intermediate filaments, to the best 
of our knowledge, have not been studied in the context of vascular stiffness and aging and, microtubules are 
scarce in contractile VSMCs and seem to have little acute function [80, 81].

Epigenetic changes
Epigenetic alterations with aging have emerged as one of the crucial events that cause cardiovascular 
pathologies which include, among many, the stiffening of the aorta. Epigenetic changes modulate the 
expression of genes. These include DNA methylation, histone acetylation and chromatin remodeling. Long 
non-coding RNAs and short non-coding RNAs [microRNAs (miRs)] also act as epigenetic effectors [82]. 
In smooth muscle cells, methylation status of genes is regulated by DNA methyl transferases (DNMT3A, 
DNMT3B, DNMT1) and Ten-eleven translocation (TET) proteins. TET2 was shown to be a master epigenetic 
regulator of smooth muscle cell phenotypic modulation [83]. However, the role of TETs in cardiovascular 
aging remains elusive. A previous report from our lab showed DNA hypomethylation of miR-203 increased 
stiffness of the aorta with aging. This epigenetic change increased the expression of miR-203, which down 
regulates Src, a key tyrosine kinase required for FA signaling. Loss of FA signaling resulted in increased 
aortic stiffness [17]. Reduced expression of miR-92a with age also was shown to associate with increased 
aortic stiffness [84]. A few other studies also reported age dependent increase in aortic stiffening caused by 
epigenetic alterations. However, an increase in ECM stiffness [85] was shown as the underlying molecular 
mechanism responsible for the observed effect. Further studies are required to understand how epigenetic 
alterations affect the VSMC cytoskeleton with aging and their impact on aortic stiffness.

Changes in VSMC function with aging and implications for potential 
therapeutic target development
In the young adult mouse model, interactions between components of the cytoskeleton are dynamic, transient 
and reversible and do not lead to lasting changes in stiffness (Figure 2). But, as described above, our group 
has found that in aged animals, some cytoskeletal components become attached in a sustained manner, 
increasing the stiffness of the tissue. As a possible first step in a therapeutic approach, synthesized peptide 
decoy inhibitors of cytoskeletal stiffness have been produced [18] to try to reverse aging-induced increases 
in vascular stiffness. The peptides have been made as mimics of part of the protein sequence of cytoskeletal 
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proteins, such as talin or vinculin, but lacking a binding site to their downstream effector. In this way they 
compete with endogenous molecules and prevent those molecules from bridging parts of the cytoskeleton. 
This results in a significant decrease in aortic stiffness, at least as tested ex vivo.

Figure 2. Cytoskeletal dynamics in the aorta with ageing and functional consequences. In young aortas dynamic cytoskeletal 
remodeling maintains low levels of stiffness and normal blood pressure which allow normal blood flow to the high flow organs such 
as heart, kidney, and brain. With advancing age, a decrease in cytoskeletal dynamics increases the stiffness of the aortic wall. This 
causes an increased pulsatility of the blood flow leading to damage of the end organs. Therapeutic interventions are required to 
prevent age-related adverse cardiovascular effects associated with vascular stiffness. Peptides that reduce stiffness by blocking 
cytoskeletal interactions or other novel approaches are of interest as future potential therapeutics

It is important to point out that these decoy peptides were designed to be targeted to the aorta but, 
in theory, it should also be possible to design a variant of these peptides to target molecular interactions 
in the peripheral vasculature or the resistance vessels and to decrease blood pressure rather than aortic 
stiffness. The vasoactive peptide approach is effective in decreasing vascular contractility and hence could 
be useful to tackle hypertension, but a means of successfully targeting the peptides to specific resistance 
vessel beds would need to be developed. Nicholson et al. [18] demonstrated that the peptides can be loaded 
onto microbubbles for tissue delivery, and subsequently burst by ultrasound to load the peptides into 
VSMCs. However, considerable work is needed to determine if ultrasound targeting of these peptide-loaded 
microbubbles can be used effectively in vivo, particularly in the human.

Conclusions and future approaches
Value of cytoskeletal targets for future drug development
Thus far few, if any, cytoskeletal targets have been identified for the development of potential therapeutics to 
treat or prevent hypertension or aortic stiffness. However, the studies cited above provide a limited proof of 
concept that such targets may be useful as prototype therapeutic approaches for the treatment of, not only 
hypertension, but also aortic stiffness associated with aging.

Future approaches
Recently, basic science investigators interested in molecular mechanisms of arterial stiffness have asked the 
question of whether sex-specific differences exist. Indeed, many differences between the sexes have been 
reported [86, 87], at least in animal models, and this line of investigation should be expanded. However, as 
mentioned above, because of species-specific differences, any broad conclusions between human and animal 
models on sex-related differences need to be made with great caution.
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As most of the published aortic stiffness research work has used cells and tissues obtained from non-
human origin, it may not directly lead to therapeutic interventions to treat increased aortic stiffness in 
humans. Cells and tissues derived from human subjects may provide better insights into understanding the 
age dependent increase in aortic stiffness but are difficult to obtain. Patient-derived induced pluripotent stem 
cells (iPSCs) may provide a way to study vascular diseases as these cells can carry pathological features similar 
to those in the human tissues [88]. Multiple different induction media and protocols have been used to derive 
VSMCs from patient iPSCs [89]. This has been a useful approach to model for certain vascular pathologies 
such as Hutchison Gilford Progeria Syndrome (HGPS) [90, 91], atherosclerosis [92], aortic aneurysm [93], 
supravalvular aortic stenosis [94], and hypertension [95]. Though there are challenges associated with 
generation of lineage-specific and mature VSMCs from iPSCs that match the in vivo counterparts [88, 89], 
iPSC-VSMCs could help understand the molecular mechanisms associated with aortic stiffening and to screen 
drugs for potential therapeutic interventions.
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