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Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such 
as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to 
various pathologic and oncological indications. These characteristics of NCL make it an ideal target for 
the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA 
oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of 
inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards 
NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payload-
delivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting 
cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad 
spectrum of therapeutic agents.
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Introduction
Human nucleolin (NCL) is a 707-amino acid multifaceted nucleolar phosphoprotein with an approximate 
molecular weight of 76 kDa. It is highly expressed in exponentially growing eukaryotic cells in a proliferation-
dependent manner. Its presence in the dense fibrillar core and granular regions of the nucleolus is regarded 
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to be higher than any other protein [1, 2]. NCL harbors a tripartite structure comprised of an acidic NH2 
terminus involved in numerous protein-protein interactions, a central globular domain with four RNA-
binding domains involved in pre-RNA processing, a COOH terminus domain comprising arginine-glycine-
glycine repeats which interacts with ribosomal proteins, and four phosphorylation sites [3]. The primary 
function of NCL in the nucleus is the regulation of rRNA synthesis and ribosome biogenesis. It acts as a 
shuttling protein between the cytoplasm and the nucleus and promotes the import of ribosomal subunits to 
the nucleus [2].

NCL dysregulation has been observed in numerous pathological conditions such as autoimmune 
disorders, Alzheimer and Parkinson’s disease, and numerous cancer types [4-8]. It has been evident that 
NCL is capable of inducing the maturation of some cancer-related miRNAs [9], acting as an adhesion molecule 
modulating cell-matrix interaction in angiogenesis, regulating cell migration [10], functioning as an anti-
apoptotic element by acting as a BCL2-stabilizing factor [11-13], and acting as a macrophage receptor for 
early apoptotic cells [14].

NCL plays substantially imperative tasks in the modulation of cell proliferation, survival, and growth, 
cytokine production, and nuclear biogenesis [1, 15]. Furthermore, it holds various other multifaceted 
responsibilities in the cellular occurrences such as DNA recombination, as well as transcription, packing, 
and transportation of rRNA [1]. Such molecular tasks include roles in the biosynthesis of ribosomes, RNA 
binding, and DNA and RNA helicase activity [15]. NCL also interacts with manifold mRNAs, promoter regions 
of c-Myc [8, 16, 17], and microRNA biogenesis microprocessor machinery [9, 18]. The function of NCL is 
regulated by diverse molecular mechanisms at different stages, such as phosphorylation [1, 19-21], ADP-
ribosylation, methylation [15], and SUMOylation [22]. Alongside being famous as a nucleus-related protein, 
NCL is also capable of operating as a shuttle molecule as well as acting as a membrane-anchored receptor [23]. 
The physiological functions of NCL include chromatin remodeling and the maintenance of embryonic stem 
cells by blocking the expression of p53. NCL also supports both microtubule organization at centrosomes 
and malignant transformation. At the cell surface, NCL activates extracellular signal-regulated kinases upon 
interacting with C-X-C motif chemokine receptor 4 (CXCR4) [24].

Aptamers are approximately 20- to 60-nucleotide deoxyribonucleic acid, ribonucleic acid, or xeno 
nucleic acid constructs capable of binding craved molecules with robust a capability and specificity by 
folding into tertiary structures [25]. They are non-immunogenic and innocuous nucleotide equivalents of 
antibodies [26], which makes them irreplaceable candidates for various fields of applications from clinical 
diagnostic and therapeutic applications to the purification of desired molecules [25, 27, 28]. Because of 
their diverse superiorities, aptamers have various applications in different fields such as in biosensors, 
therapeutics, and diagnostics [25].

Systematic Evolution of Ligands by EXponential Enrichment (SELEX) is a standard method of the 
generation of new novel aptamers for any particular target of interest. In this approach, a pool of 1014 to 
1016 single-stranded random 40 to 100 long oligonucleotides are incubated with the target of interest. These 
oligonucleotides exhibit different binding affinities to the target of interest. Therefore, throughout the process, 
the oligonucleotides that have a low binding affinity to the target are excluded and, in the end, only a number 
of oligonucleotides remain which have a high level of binding affinity for the target of interest. Recently, 
various SELEX-based methods have been proposed and utilized for the development of aptamers for novel 
targets with considerable specificity and sensitivity. These techniques include capture-SELEX, capillary 
electrophoresis-SELEX (CE-SELEX), cell-SELEX, atomic force microscopy-SELEX (AFM-SELEX), artificially 
expanded genetic information system-SELEX (AEGIS-SELEX), and immunoprecipitation-coupled SELEX (IP-
SELEX) [29].

The structural diversity of ribonucleic acid aptamers is noticeably greater than deoxyribonucleic acid 
aptamers, however, their applicability is hindered by their degradability by distinctive elements including 
RNases or heat [30, 31]. Setting aside the similarities of aptamers with antibodies, they also possess 
numerous superiorities over antibodies including being smaller, immune-compatible, and less time-
consuming to produce, and having higher tissue-penetration, manufacturing affordability, and pronounced 
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thermal stability [25, 32]. Among all the mentioned advantages, aptamers also suffer from some hindrances 
limiting their broader application, of which their non-specificity, interaction with intracellular molecules, 
and elimination from the bloodstream as well as rapid degradation can be mentioned [32]. The extraordinary 
specificity and sensitivity level, being non-immunogenic, the easy and cost-effective production process, the 
high range of potential targets with high affinity from a variety of molecules, and the easy and simple process 
of applying chemical modifications to them for making them resistant to enzymatic reactions are all among 
worthwhile advantages of aptamers in comparison with other types of targeting tools [33]. Considering these 
pros, unfortunately, aptamers tend to have cons as well, such as their susceptibility to enzymatic reactions 
that endangers their ability for nanoparticle (NP) redirection, producing negative charges on the surface 
they have been positioned on, and their time-to-time off-target caveats. However, studies have proposed that 
many of these drawbacks can be solved by using chemical modifications approaches or using meticulous 
equipping tactics for putting these targeting moieties on the surface of NPs [33]. As every other targeting 
moiety, aptamers also have the off-target limitation which has been in the center of attention for addressing in 
a number of studies. For example, some researchers have suggested adding a SELEX negative selection step in 
the production of aptamers. In this step molecules similar to the real target of the aptamers are used and the 
aptamers reactive to the similar molecules with high affinity are excluded from the process of selection and 
they will not be considered as the final aptamer candidate [32]. Furthermore, other researchers have stated 
that chemical modification can also be exploited for elevating the targeting specificity of aptamers [34, 35]. 
Elskens et al. [34] have indicated that pre-SELEX and post-SELEX modifications including truncation, making 
bivalent and multivalent aptamers, modifying aptamers with various crosslink moieties (such as phenyl azide, 
5-iodo deoxyuridine, diazirine, aldehyde, and F-carboxyl), phosphodiester modifications (thioaptamers), 
nucleobase modifications [such as C5 modifications (SOMAmers) and expanded genetic alphabet], and sugar 
modifications such as 2’ fluoro arabino nucleic acid (2’F-ANA), and locked nucleic acids (LNA) can improve 
the targeting capacity of aptamers very efficiently. These methods have proven very efficient in addressing 
the off-target limitation of aptamers and they can help aptamers maintain their physiological properties.

Aptamers have been in the center of attention for the treatment of cancer and various other diseases. 
For instance, pegaptanib sodium (Macugen) has been approved by Food and Drug Administration (FDA) for 
treatment of  age-related macular degeneration (AMD) [36]. Furthermore, AS1411 and NOX-A12 are two 
other successful aptamers that are currently under clinical investigation [36]. Moreover, other aptamers such 
as AX102, xPSM-A10 (A10), HB5, HeA2_3, MP7, and aptPD-L1 are other examples of successful aptamers that 
are under preclinical investigations for their potential application in cancer treatment modalities [36].

AS1411 (formerly named AGRO100) is a manufactured 26-bp unmodified phosphodiester oligonucleotide 
that is capable of forming a highly stable nuclease-resistant four-stranded dimer that inhibits the growth of 
transformed cells and a wide spectrum of malignant cell lines [37, 38]. AS1411 is the first anticancer aptamer 
investigated in Phase I and II human clinical trials [37]. AS1411 was discovered by Bates and co-workers, 
and it was revealed that it is competent to target NCL with accentuated capability, which has led to different 
studies investigating its potential growth inhibitory impacts on a variety of cell lines [37, 39].

Chemotherapy and radiotherapy are regarded as the most prevalent cancer treatment approaches but 
they can lead to serious side effects in cancer patients [40]. In the past decades, targeted cancer therapy has 
gained attention because of its specific way of promoting cytotoxicity. One of the most renowned approaches 
for targeted cancer therapy is based on antibodies [such as antibody-drug conjugates, bispecific T-cell 
engagers (BiTEs®) or chimeric antigen receptor (CAR) T cell therapy] [41-46]. Even though antibody-based 
treatment modalities are highly specific with diminished side effects, they might still face obstacles in their 
clinical application because of their probable immunogenicity and manufacturing expenses [41-46]. On the 
other hand, aptamer-based targeted therapeutics and specific drug delivery platforms have recently shown 
that they can overcome the mentioned challenges. Therefore, aptamer technology evidently has various 
superiorities over protein-based antibody therapies as it will be described in this review. The main idea 
behind nanosystems is to safely deliver the cargo molecules to the target site of interest with the minimum 
amount of side effects and off-target events. Additionally, nanosystems can be efficiently utilized for the 
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delivery of various types of cargoes such as drugs, genes, and other therapeutic molecules of interest. It is 
very fascinating how fast the use of nanosystems for the delivery of various cargoes has changed the face 
of selective drug delivery in the past years. One other factor that has highlighted the importance of this 
modality is its ability and tunability for the controlled release of its cargo in the site and at the time of interest. 
Furthermore, cargo delivery nanosystems can also protect their cargo against unfavorable situations which 
might negatively affect various properties of that cargo.

In this review, we discuss different types of AS1411 aptamer-functionalized nanosystems for the delivery 
of chemotherapeutic agents, therapeutic nucleotides, and therapeutic proteins to different types of malignant 
cells overexpressing NCL. We also briefly discuss how these nanosystems can be exploited for enhancing 
photodynamic therapy (PDT) (Figure 1). Ultimately, we demonstrate that NCL is a great target for novel 
cancer therapy approaches using AS1411 aptamer-functionalized nanosystems since it is a common feature 
of various types of tumor cells.

Delivery systems
Chemotherapeutic delivery
Combinational micelle therapeutic agent delivery platforms equipped with the anti-NCL aptamer can be 
applied for the precise delivery of different chemotherapeutics including doxorubicin (DOX) to various 
malignant cells. The elaborate system described in this section somehow manages to tackle the poor drug-
loading capacity and micelle stability issues through the development of an AS1411-modified hybrid system 
consisting of Pluronic F127 and beta-cyclodextrin-linked poly(ethylene glycol)-b-polylactide (β-CD-PELA) 
block copolymers as co-carriers of the anticancer drug [47]. Pluronic F127, which is an amphiphilic polymer 
extensively used in nano-drug delivery systems, tends to self-assemble into micelles while it also possesses 
terminal hydroxyl groups which can be readily functionalized for bioconjugation purposes [48, 49]. Despite 
the ideal characteristics of Pluronic F127, it is still entwined with several downsides in terms of micelle 
formulation, such as poor physical stability and drug-loading capacity, which can be tackled while utilized 
alongside other copolymers (such as Pluronic P123 and β-CD-PELA) in the development of combinatorial 
systems [47, 50]. β-CD-PELA block copolymers are capable of forming self-assembled micelles with low 
critical micelle concentration and enhancing the drug-loading capacity due to the combined hydrophobicity 
of both polylactide (PLA) blocks and the inner cavity of β-CD [51]. Therefore, the proposed construct 
(composed of both Pluronic F127 and β-CD-PELA) can exhibit an improved profile of physical stability and 
agent-loading capacity alongside exhibiting enhanced cellular uptake (due to NCL-mediated endocytosis), 
prolonged circulation duration, elevated accumulation in tumor cells which consequently results in 
enhanced tumoricidal activity, and minimized cardiotoxicity [47]. These ideal characteristics demonstrate 

Figure 1. An overall representation of the topics discussed in this review
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that aptamer-conjugated combinational micelles with versatile functions might serve as potential delivery 
vehicles for anticancer purposes [47].

Another investigation has described the establishment of a cancer-specific delivery system for the 
selective cytoplasmic release of paclitaxel (PTX) in ovarian malignant cells based on a combinatorial micellar 
construct. This construct is made up of (A) a pH-responsive copolymer synthesized by a condensation 
polymerization reaction in the presence of tocopheryl polyethylene glycol 1000 succinate (TPGS)-diacrylate 
macromonomer and (B) an AS1411 aptamer-decorated TPGS polymer (AS1411-TPGS). As proposed by 
Zhang et al. [52], the incorporation of AS1411-TPGS copolymers on micelle surfaces improves cancer cell 
recognition through the presence of NCL on the plasma membrane of cancer cells while the encapsulation 
of PTX in the AS1411-mixed micelles results in the quick release of the drug in a weakly acidic environment 
with a pH of 5.5 [52]. PTX/AS1411-mixed micelles exhibit significantly increased internalization only into 
cancer cells and not healthy ones which is because of their AS1411-NCL interaction-mediated enhanced 
transmembrane ability leading to a significantly increased tumor accumulation of PTX which consequently 
results in elevated cytotoxicity, G2/M phase arrest, and tumor growth inhibition [52]. In general, this dual-
functional Apt-mixed micellar system might serve as a promising and potent targeted drug delivery system 
for anticancer purposes [52].

Furthermore, other researchers have proposed a novel pH-reactive micelle-based delivery system for the 
delivery of DOX for effective breast cancer therapy [53]. These DOX and AS1411 encapsulated pH-reactive 
delivery nanoparticles (PRNs), which exhibit spherical shapes and favorable colloidal characteristics, are 
composed of biocompatible polyethylene glycol (PEG)-poly(β-amino esters) (PAEs) NPs synthesized by 
Michael addition polymerization [53]. In an aqueous solution with a pH of 7.4, PEG-PAEs are automatically 
structured into micellar constructs in the hydrophobic core of which the hydrophobic agent is encapsulated. 
This leads to the formation of the drug-loaded NPs. Eventually, electrostatic interactions mediate the 
immobilization of the negatively charged AS1411 aptamer on the hydrophilic surface of the NPs leading to 
the formation of co-delivery NPs [53]. Further on, PRNs are concentrated in the tumor tissue by the enhanced 
permeability and retention (EPR) effect and then they are internalized into the tumor cells by AS1411-
mediated endocytosis alongside the contribution of the positive charges on the surface of the PRNs [53]. 
After entering the intracellular endosomes or lysosomes, pH-triggered drug release is mediated by the acidic 
environment of the compartments, which results in micelle disintegration and subsequent drug release, 
thus improving the localization and cytotoxicity of DOX [53]. This type of multifunctional nanomicelle-based 
delivery approach offers a highly specific targeting ability, which is only towards tumor cells and not normal 
cells, and it might be further applied for enhanced drug delivery in cancer treatment modalities [53].

Another contribution to the topic has been conducted by Mohammadzadeh et al. [54] as they developed 
a selective nano-theranostic system composed of AS1411-functionalized anionic linear globular dendrimer 
G2 (ALGDG2) for the specific delivery of Iohexol to breast cancer cells. ALGDG2 is generally considered as an 
ideal carrier for a broad spectrum of anticancer, antiviral, and imaging agents due to its low molecular weight, 
low toxicity, immunocompatibility, biodegradability (because of its sidelong citric acid groups), high purity 
and hydrophilicity, monodispersity, favorable permeability to cancer cells, and possession of various well-
known functional groups on the spherical particles’ surface [55-58]. Taken together, these nano constructs 
exhibited a considerable potential for reducing the number of cancer cells by maximizing the accumulation of 
iohexol in the tumors while they minimized the toxicity of Iohexol on normal cells [54]. A graphical scheme of 
this nano-theranostic has been represented in Figure 2. Also, a summary of different AS1411-functionalized 
nanosystems developed for the delivery of chemotherapeutic agents has been represented in Table 1.
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Figure 2. A graphic illustration of AS1411-functionalized ALGDG2 loaded with iohexol
Note. Reprinted with permission from “AS1411 aptamer-anionic linear globular dendrimer G2-iohexol selective nano-theranostics” 
by Mohammadzadeh P, Cohan RA, Ghoreishi SM, Bitarafan-Rajabi A, Ardestani MS. Sci Rep. 2017;7:11832 (https://doi.
org/10.1038/s41598-017-12150-8). CC BY.

Table 1. A summary of AS1411-functionalized chemotherapeutic drug delivery nanosystems for targeted cancer therapy

Delivery 
system

Components Drug(s) Animal models or/and 
cells lines

Investigated 
cancer type

In vivo/
in vitro

Reference

NP PLGA-Lecithin-PEG PTX MCF-7, GI-1 Breast 
cancer and 
gliosarcoma

In vitro [59]

NP MF-NR-PLGA PTX MCF-7 Breast cancer In vitro [60]
NP PEG-PCL Docetaxel BALB/c mice & BALB/c nude 

mice/C6, bEnd.3
Glioma In vivo/in 

vitro
[61]

NP PLGA-PEG-COOH PTX C6 glioma xenograft mice, 
intracranial C6 glioma rats

Glioma In vivo [62]

NP pPEGMA-PCL-
pPEGMA

DOX MCF-7, PANC-1 Epithelial 
cancer

In vitro [63]

NP HSA PTX MCF-7 Breast cancer In vitro [64]
NP PLGA-PEG Vinorelbine MDA-MB-231 Breast cancer In vitro [65]
NP Cytochrome C capped 

mesoporous silica NPs
DOX Athymic BALB/c nude mice/

HepG2
Hepatocellular 
carcinoma

In vivo/in 
vitro

[66]

Nanosphere Colloidal gold 
nanospheres

- Fox1nu nude mice/MCF-7 & 
MDA-MB-231

Breast cancer In vivo/in 
vitro

[67]

Nanostar Gold nanostar - Nude mice, Sprague-Dawley 
(SD) rats/HT-1080, MDA-
MB-231

Fibrosarcoma, 
breast cancer

In vivo/in 
vitro

[68]
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Therapeutic oligonucleotide delivery
miRNA delivery
AS1411-aptamer-mediated targeted delivery can also be used for the delivery of an antimiR for the inhibition 
of miRNA-221 which has been known to be involved in the cancer development of papillary thyroid carcinoma 
in which it is highly expressed [72, 73]. A NCL-targeting theragnostics probe (hereafter referred to as MFAS 
miR-221 MB) based on AS1411-armed MF NPs equipped with miRNA-221 molecular beacon (miR-221 MB), 
which is complementary to miRNA-221, for simultaneous targeting of various tumor cells, intracellular 
imaging of miRNA-221 biogenesis, and disruption of miRNA-221-mediated carcinogenesis might be 
considered a successful and potent antitumor therapeutic and diagnostic platform with considerable cancer-
type flexibility which is achievable through the changing of the targeted miRNA [74]. The MFAS miR-221 MB 
is internalized into the cytoplasm upon binding to NCL on the surface of cancer cells. After internalization, 
the reductive environment of the cytoplasm mediates the cleavage of the disulfide linkage between MF and 
miR-221 MB, which results in the consequent unloading of the miR-221 MB within the tumor cells [74]. In 
the presence of miRNA-221 in the cytoplasm of tumor cells, which is directly responsible for the oncogenic 
down-regulation of various tumor suppressor genes, miR-221 MB will hybridize with it which results in a loss 
of functions of miRNA-221, thus disrupting the miRNA-221-dependent carcinogenesis through the overall 
reduction of the expression of oncogenes [74]. Additionally, the researchers of this study have also indicated 
that MFAS miR-221 MB can also be utilized to image intracellularly expressed miRNA-221 [74]. In detail, they 
demonstrated that the miR-221 MB separation from the MFAS miR-221 MB complex in the cytoplasm of C6 
glioma cells evidently images miRNA-221 biogenesis [74].

DNAzyme delivery
The onset of cancer causes cancer cells to overexpress a variety of proteins known as inhibitors of apoptosis 
(IAPs), which enable them to increase their life-span while minimizing the chance of apoptosis occurrence. 
Survivin (Sur), as an example of IAPs, which is highly overexpressed in the nucleus, cytoplasm, and cellular 
organelles such as the mitochondria of various cancer types including retinoblastoma (RB), is responsible for 
mediating various oncogenic signaling pathways, inhibition of apoptosis, rapid cell growth, and eventually 
as the name indicates the survival of tumor cells [75-78]. RB is a rare form of childhood cancer caused by 
mutations in the RB gene or both allele inactivation, which impacts the cell cycle and apoptosis regulators of 
immature retinal cells [79]. Because of the roles of Sur in tumor recurrence, diminished patient survival, and 
chemotherapy and radiotherapy resistance alongside its overexpression in RB tumor cells and its secretion 
and presence in the serums of the patients, it is regarded as one of the most suitable targets for the treatment 
of RB [80-83].

An aptamer-mediated NCL-targeting approach for the delivery of survivin DNAzyme (Sur_Dz) can act 
as a way of specific gene-targeting therapy to suppress the progression of RB cancer. A chimeric conjugate 
composed of the AS1411 aptamer (NCL-APT) and Sur_Dz with poly T linker at the 5’ end of the aptamer 

Table 1. A summary of AS1411-functionalized chemotherapeutic drug delivery nanosystems for targeted cancer therapy (continued)

Delivery 
system

Components Drug(s) Animal models or/and 
cells lines

Investigated 
cancer type

In vivo/
in vitro

Reference

Drug-DNA 
adduct

- DOX NOD.Cg-PrkdcSCID IL2 mice/
Huh7

Hepatocellular 
carcinoma

In vivo/in 
vitro

[69]

Nanotube SWCNT DOX BALB/c nude mice/PC3 Prostate 
cancer

In vivo/in 
vitro

[70]

Micelles Pluronic F127, β-CD-
PELA

DOX BALB/c nude mice/MCF-7 Breast cancer In vivo/in 
vitro

[47]

Micelles TPGS-b-PBAE PTX BALB/c nude mice/SKOV3 Ovarian cancer In vivo/in 
vitro

[52]

Capsule Cell membrane 
capsules

DOX 
hydrochloride

BALB/c nude mice/QGY-
7703

Liver cancer In vivo/in 
vitro

[71]

Micelles PEG-PAE DOX MCF-7 Breast cancer In vitro [53]
MF: magnetic fluorescence; NR: Nile red; PCL: polycaprolactone; pPEGMA: poly(polyethylene glycol methacrylate); SWCNT: 
single walled carbon nanotubes; PBAE: blockpoly-(β-amino ester)
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followed by complementary bases to Sur_Dz has been developed by Subramanian et al [84]. This construct 
could be an efficient delivery platform without compromising the functional activity of the Dz in cleaving 
Sur mRNA [84]. This novel chimeric aptamer-DNAzyme conjugate (NCL-APT-Sur_Dz) demonstrates itself as 
promising and powerful therapeutics for targeted combating cancer cells through the down-regulation of Sur 
expression and functionality and consequently allowing for the occurrence of apoptosis in the absence of its 
inhibitor [84].

Since both Sur and NCL are overexpressed in a variety of cancers, the chimerization of NCL-APT with 
Sur_Dz for the development of a targeted therapeutic platform can be functional on a wide spectrum of cancer 
types. Furthermore, Sur_Dz has only been chosen due to its dose-dependent manner catalytic reactivity 
towards Sur mRNA which has been proven in pancreatic carcinoma and its overexpression profile in RB 
tumor cells [84, 85]. Moreover, the flexibility of this delivery system allows for the delivery of different Dzs 
which can specifically perform anticancer catalytic reactions towards specific targets of interest in various 
other cancer types.

siRNA delivery
Non-small cell lung cancer (NSCLC) is one of the cancer types that causes a high mortality rate in lung cancer 
patients due to its early metastasis events which are composed of several consecutive stages including 
epithelial-mesenchymal transition (EMT), cancer cell migration, invasion, intravasation into the systemic 
circulation, eventual adhesion to endothelial cells, and extravasation and colonization of distant organs 
as well as induction of angiogenesis [86-88]. The activation of key metastatic signaling cascades and the 
promotion of malignant transformation in NSCLC have been known to be associated with the overexpression 
of snail family zinc finger 2 (SLUG) which is a zinc-finger-containing transcriptional factor that mediates the 
activation of EMT, migration, and invasion of lung cancer cells and neuropilin 1 (NRP1) which mediates the 
upregulation of the matrix metalloproteinases-2 (MMP-2) expression and activity resulting in an increase in 
tumor cell invasion, angiogenesis, and distant organ colonization [89-95]. Considering the known functions 
of SLUG and NRP1 in invasion and metastasic capabilities of NSCLC, they are deemed as suitable targets for 
the blocking of key oncogenic signaling pathways [89-95].

NCL aptamer-siRNA (AS1411-siRNA) chimeras specific for SLUG (aptNCL-SLUGsiR) and NRP1 (aptNCL-
NRP1siR) can be used for specific tumor invasion and angiogenesis suppression in only metastatic tumor 
cells without blocking the signaling pathways of cells that are under physiologic conditions [96]. AptNCL-
SLUGsiR- and aptNCL-NRP1siR-mediated suppression of SLUG and NRP1, respectively, can decrease cell 
growth, motility, invasiveness, and angiogenesis of only NCL-expressing cancer cells which demonstrates 
that synergistic suppression of lung cancer can be achieved using a combination of both aptamer-siRNA 
chimeras [96]. In general, this strategy offers a cancer-specific targeting approach with concurrent gene-
specific silencing capabilities [96].

Additionally, melanoma is a common type of skin cancer that is developed from the pigment-producing 
cells melanocytes and is difficult to treat due to the high rate of its early-stage metastasis, poor prognosis, 
and resistance to conventional radiotherapy [97, 98]. In a majority of melanomas (almost 60%), melanocyte 
biology and disease pathology are significantly influenced by the expression of the mutant forms of the BRAF 
gene, such as BRAFV599E, and the activation of the RAS/RAS/MAPK pathway which happens to be essential 
for melanoma cell viability and transformation [99]. The important oncogenic role of the mutant BRAF gene 
expression makes it a suitable target for the treatment of melanomas through siRNA-mediated gene silencing 
approaches. Since liposomes are non-viral carriers employed for the development of successful drug delivery 
systems, some of which have already been approved by the US FDA for medical use, they can be employed for 
the efficient delivery of gene-modifying agents into cells [100, 101]. PEGylated cationic liposomes conjugated 
to AS1411 aptamer (AS1411-PEG-liposome, designated as ASLP) and equipped with anti-BRAF siRNA (siBraf) 
can might be utilized as a tumor-targeting gene-silencing delivery system (ASLP/siBraf) against melanomas 
since they can exhibit significant silencing activity against the BRAF gene and inhibit melanoma growth [102].

Additionally, another study has reported the development of redox-reactive gelatin/silica-based nanogels 
functionalized with AS1411 for targeted siRNA delivery (Apt-GS/siRNA) which were transiently conjugated 
to smart nanogels via a disulfide linker [103]. Since tumor cells approximately contain ten-fold higher 
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glutathione (GSH) concentration than normal cells, Apt-GS/siRNA nanogels exhibit significantly selective 
cytosolic release of functional siRNA mediated by disulfide cleavage in the presence of GSH (Figure 3) [103-
105]. Taken together, this redox-reactive gelatin-based smart nanogel system exhibits considerable potential 
for the effective delivery and GSH-triggered release of siRNAs which can be considered for RNAi-mediated 
tumor elimination [103].

In addition to the mentioned studies, an AS1411 aptamer-functionalized nanoliposome-based delivery 
system has been developed for the co-delivery of PTX and polo-like kinase 1-targeted siRNA (PLK1-targeted 
siRNA) to breast cancer cells [106]. PLK1 is a highly conserved serine/threonine protein kinase with important 
regulatory mitotic effects whose high expression levels have been significantly associated with abnormal 
tumor cell proliferation, metastasis, angiogenesis, and tumor prognosis in various cancers such as breast 
cancer [107, 108]. Therefore, PLK1 can be considered as a promising primary target candidate for cancer 
treatment modality, such as PLK1-targeting RNAi-based gene therapy [106, 109-111]. The simultaneous co-
delivery of PTX and siRNA proposed by Yu et al. [106] results in a synergistic incremental pattern of apoptotic 
cells and diminished angiogenesis. Such effects are considered advantages over the effects mediated by the 
separate delivery of PTX and siRNA which might demonstrate the potential of this delivery system for clinical 
investigation [106].

Splice-switching oligonucleotides
Splice-switching oligonucleotides (SSOs) are short synthetic single-stranded oligonucleotides capable 
of binding to a splice site or splicing enhancer of a pre-mRNA, thus preventing the endogenous splicing 
machinery from binding to those splice sites which can eventually result in the disruption of the normal 
splicing repertoire and the generation and subsequent translation of alternative versions of a mature 
mRNA [112-115]. SSOs are considered as potent and powerful tools for the generation of phenotypic changes 
in cells because of several major advantages (such as their nuclease resistance characteristics due to the 
possession of a phosphorothioate backbone) of this antisense-based technology over other mRNA knockdown 
approaches such as siRNA [112, 115-117]. One of the other therapeutic advantages of SSOs is that only a 
small percentage of pre-mRNAs need to be properly spliced so that a phenotype correction associated with 
multiple genetic mutations can come into effect. For example, apoptosis induction can happen after SSO-
mediated switching of only a small percentage of Bcl-xL to Bcl-xS [118-120].

Figure 3. Redox-reactive gelatin/silica-based nanogels functionalized with AS1411 for the selective delivery of disulfide-
conjugated siRNA. APTMS: 3-aminopropyl-trimethoxysilane; SPDP: N-succinimidyl 3-(2-pyridyldithio) propionate; EDC: 
ethyl(dimethylaminopropyl) carbodiimide; NHS: N-hydroxysuccinimide; Apt: aptamer; GST: glutathione S-transferase
Note. Reprinted with permission from “Redox-sensitive gelatin/silica-aptamer nanogels for targeted siRNA delivery” by Zhao X, Xi 
Y, Zhang Y, Wu Q, Meng R, Zheng B, et al. Nanoscale Res Lett. 2019;14:273 (https://doi.org/10.1186/s11671-019-3101-0). CC BY.
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Since the ability of AS1411 for internalization into multiple cancer cells and migration to their nucleus 
has been evident, the therapeutic applicability of SSOs can be further exercised by their targeted delivery to 
the nuclei of specific cells of interest [112, 116, 117, 121, 122]. This goal can be achieved through the ability 
of SSOs to be easily appended to aptamers because of their 2’-O-methyl-phosphorothioate [112, 116, 117, 
121, 122]. Here we report the engineering of NCL aptamer-based chimeras carrying cargoes of SSOs for the 
selective delivery of these therapeutic oligonucleotides to the nuclei of tumor cells that express NCL [123].

Modulation of nuclear events through the enhancements in splice correction of pre-mRNA can be 
achieved using aptamer-splice-switching oligonucleotide chimeras [123]. It has been indicated that splicing 
alternations effectively occur in much lower doses of aptamer-SSO chimeras than the SSO alone (a fact that 
further demonstrates the efficacy and safety of this antisense-based therapeutic approach) [123]. Kotula et 
al. [123] have engineered their aptamer-SSO chimeras in a way that they possess a double-step selectivity 
that further expands their safety index with the aptamer domain being able to specifically bind to an 
overexpressed receptor on the surface of multiple cancer cell types of interest and the therapeutic splice 
switch which is only capable of impinging on the essential pathways of cancer cells (but not healthy ones). 
Since such aptamer chimeras are capable of delivering cargos to the nucleus and nucleolus of target cells while 
avoiding endosomal compartments, they can be further utilized for various other nucleolar event changes 
(such as sequestering genes into heterochromatin, ribosome biogenesis, or even the selective delivery of 
pro-apoptotic SSOs to tumor cells of interest for therapeutic tumoricidal applications) [123]. In a nutshell, 
aptamer-SSO chimeras are capable of internalizing target cells through more than one internalization 
pathway, which can be dynamin-independent, and they might offer an affordable therapeutic approach while 
minimizing unwanted adverse events [123].

Therapeutic protein delivery
Lactoferrin is an innocuous natural multifaceted glycoprotein, primarily identified in bovine and human 
milk, with various characteristics such as immunomodulatory and anticancer properties which has been 
regarded safe for consumption [124-127]. Nowadays, the native form of cow milk-derived lactoferrin has 
gained worldwide attention for therapeutic applications [124, 125, 127]. In one study, experiments have been 
conducted to validate the tumoricidal efficacy of the bovine lactoferrin that is saturated with iron (bovLfnFe) 
in combination with multimodal imaging efficacy of Fe3O4 NPs which are hereafter referred to as 
bovLfn-Fe3O4 [128]. Chitosan-modified calcium phosphate nano-constructs functionalized with epithelial cell 
adhesion molecule (EpCAM)- and NCL-specific aptamers were used by Roy et al. [128] for the encapsulation 
of bovLfn-Fe3O4 to achieve tumor-specific uptake of the constructs. This mentioned nanoformulation (bovLfn-
Fe3O4 nano-constructs) achieved considerably encouraging tumor rejection in triple-positive (EpCAM, CD133, 
CD44) colon cancer xenograft mouse models inducing higher survival rates in comparison with non-targeted 
nano-constructs which demonstrates the importance of nano-constructs functionalization with the anti-NCL 
and anti-EpCAM aptamers [128]. The tumor suppression mechanism of bovLfn-Fe3O4 nano-constructs occurs 
as the extracellular death domain receptors of TRAIL and Fas mediate the phosphorylation and subsequent 
activation of p53 and the Notch pathway inhibition [128]. The activation of p53 induces the activation of 
Bad and mitochondrial depolarization resulting in the release of SMAC/DIABLO and cytochrome C [128]. 
Eventually, apoptosis induction is mediated by the inhibition of the Akt pathway and the release of cytokines 
such as interleukin 27 (IL-27) and keratinocyte chemoattractant (KC) from monocytes/macrophages and 
dendritic cells [128]. Furthermore, the inhibition of pro-angiogenic markers (such as Amphiregulin, FGF, GM-
CSF, and TIMP-4) mediate the process of angiogenesis suppression [128]. In a nutshell, bovLfn-Fe3O4 nano-
constructs combine the anticancer potential of bovLfn with the efficacious multimodal imaging capabilities 
of Fe3O4 as they can completely inhibit tumor growth without exhibiting signs of adverse events alongside 
showing immunomodulatory benefits through increasing red blood cells, hemoglobin, and zinc levels [128].

PDT
Ai et al. [129] have investigated the synthesis and application of AS1411-customized fluorescent Au NPs. 
The unique association between AS1411 and NCL on malignant cells allows the resultant nano-constructs to 
specifically bind to such cells, therefore, they can be used for both targeted cancer cell imaging and PDT [129]. 
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In brief, the irradiation of the nano-constructs can result in the efficient production of cytotoxic reactive 
oxygen species leading to fatal cellular damages [129]. Moreover, not only the nano-constructs inherently 
possess particular cytotoxicity towards malignant cells, but they also accentuate the cellular uptake of the 
fluorescent groups which in turn leads to the maximized efficiency of both the targeted cancer cell imaging 
and PDT [129]. This strategy with its simplicity and affordability can also be utilized as a qualitative method 
for the recognition of the presence or absence of malignant cells besides having the potential to be used as a 
semi-quantitative method to measure their population based the fluorescence of the cell imaging [129].

Another study has proposed a similar method with minor differences. In this novel strategy, as a drug 
carrier to target malignant cells for PDT, several molecules of porphyrin derivative are physically conjugated 
to AS1411 to form the apt-TMP complex [130]. Porphyrin derivatives are broadly applied in cancer PDT. 
However, it has been shown that they cause side effects towards some normal cells [131]. So, systems capable 
of targeted delivery of porphyrin derivatives could be useful since they can lead to their accumulation in the 
target sites and prevent adverse events at the neighboring tissues [130].

More specificity to eliminate malignant cells via photodamage could also be achieved through controlling 
the light irradiation for the activation of the photosensitizer [132]. Additionally, after the NCL-mediated 
internalization of the aptamer-photosensitizer complex and its entry to the nucleus of the NCL-overexpressing 
malignant cells, the photosensitizer could be released from the complex without breaking the covalent bond to 
target the telomeric DNA or DNA duplex of oncogene promoters which results in the induction of telomerase 
inhibition or blockade of oncogene transcription [130].

Moreover, Shen et al. [133] have shown the potential of using a combination of tumor-targeting and ATP-
binding aptamers by incorporating them into hybrid micellar NPs to design ATP-activatable photosensitizers 
for imaging and cancer PDT. They used amine-functionalized hybrid micellar NPs, termed NH2-HyNP, 
and customized it with AS1411, a BHQ2-labeled ATP-binding aptamer (termed BHQ2-ATP-apt), and the 
complementary oligonucleotide c-TA for ATP-apt to make their delivery platform (Apt-HyNP/BHQ2) [133].

Due to the quenching effect of BHQ2, Apt-HyNP/BHQ2 is fluorescence and PDT “off” in the beginning [133]. 
After entering the malignant tissues, AS1411 interacts with the cell surface NCL which leads to efficient 
endocytosis and selective accumulation of Apt-HyNP/BHQ2 in the lysosomes of the cells [133]. The high 
concentration of intracellular ATP can specifically bind to the BHQ2-ATP-apt, therefore, cause them to be 
released from Apt-HyNP/BHQ2 which leads to turning “on” both fluorescence and PDT with significant 
recovery of both fluorescence emissions and 1O2 production capacity [133]. Therefore, the irradiation of 
tumor cells could trigger significant 1O2 generation which in turn would lead to rapid lysosome rupture and 
ultimate tumor cell death (Figure 4). As a result, this approach might serve as a tumor-targeting and ATP-
activatable photosensitizer with enhanced tumor selectivity for accurate cancer PDT without noticeable side 
effects [133].

Furthermore, various studies have combined other approaches such as targeted-delivery of drugs 
and photosensitizers. In this regard, Xu et al. [134] have proposed an elaborate strategy by developing 
a nano-sized protein-based multimodal theranostic system harboring ideal immunocompatibility and 
biodegradability to integrate chemotherapy and PDT. In this system, DOX and the phototherapeutic agent 
indocyanine green (ICG) are utilized as hydrophobic drugs to self-assemble with bovine serum albumin (BSA) 
molecules to form nano-sized particles [134]. The mentioned particles are subsequently surface-decorated 
with the AS1411 aptamer and a peptide named KALA which possesses a considerable cell penetration 
ability [134]. The cellular uptake of the resultant NPs is significantly improved because of their surface-
decoration with AS1411 and KALA leading to a more efficient tumor-targeted multimodal therapy [134]. 
After the internalization of the resultant NPs, which happens upon the interaction between AS1411 and the 
cell surface NCL and is also facilitated by KALA, the release of the loaded DOX and ICG occurs [134]. On one 
hand, DOX plays its chemotherapeutic role and leads to cell death [134]. On the other hand, under laser 
irradiation, the singlet oxygen generation capability of ICG enables it to produce intracellular singlet oxygen 
molecules which in turn facilitate the cellular apoptotic pathway (Figure 5) [134]. In conclusion, this strategy 
has shown that effective integration of PDT and chemotherapy can lead to an optimized therapeutic efficacy 
with minimized side effects [134].
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Figure 5. Schematic Illustration of (A) the preparation procedure and (B) the theranostic process of DOX&ICG@BSA-KALA/Apt 
NPs. PTT: photothermal therapy
Note. Adapted with permission from “Multifunctional albumin-based delivery system generated by programmed assembly for 
tumor-targeted multimodal therapy and imaging” by Xu L, Wang SB, Xu C, Han D, Ren XH, Zhang XZ, et al. ACS Appl Mater 
Interfaces. 2019;11:38385-94 (https://doi.org/10.1021/acsami.9b11263). Copyright (2019) American Chemical Society.

Figure 4. The design of tumor-targeting and ATP-activatable photosensitizer, Apt-HyNP/BHQ2, for fluorescence imaging and 
cancer PDT. (a) The schematic representation of the procedure for the synthesis of Apt-HyNP/BHQ2; (b) An illustration of the 
mechanism of action of Apt-HyNP/BHQ2 prior to and after NCL-mediated endocytosis. R6G: rhodamine 6G
Note. Adapted with permission from “ATP-activatable photosensitizer enables dual fluorescence imaging and targeted 
photodynamic therapy of tumor” by Shen Y, Tian Q, Sun Y, Xu JJ, Ye D, Chen HY. Anal Chem. 2017;89:13610-7 (https://doi.
org/10.1021/acs.analchem.7b04197). Copyright (2017) American Chemical Society.
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Conclusion
In this article, we reviewed the studies using the AS1411 aptamer for functionalizing and redirecting NPs 
loaded with chemotherapeutic agents or therapeutic nucleotides towards various types of NCL-overexpressing 
cancer cells. We also discussed how these aptamer-functionalized nanosystems can selectively deliver their 
payload only to tumor cells, therefore, reducing the off-target delivery-associated toxicities of conventional 
cancer therapy treatment modalities. Furthermore, several studies have shown that chemical modifications 
performed on AS1411 can result in augmented functionality, increased tumor cell targeting affinity, enhanced 
S-phase cell cycle arrest capability, and improved DNA replication and cancer cell growth prohibition ability of 
the aptamer [135, 136]. These outcomes propose that the position and number of modification substituents 
in AS1411 are important factors for enhancing the diagnostic and therapeutic function of the aptamer [135, 
136]. Aptamer-mediated NCL-targeting has also been used in other fields such as imaging probes for tracking 
tumor cells [137, 138] as well as in quick chip assay for the capturing of circulating tumor cells [139]. Overall, 
it is safe to say that, as emerging targeting agents, aptamers are quickly being recognized as fighting tools 
against different types of cancers, which alongside having commercial potential, might pave the troubled 
way of cancer treatment and diagnosis. Delivering different types of cargoes with the AS1411 aptamer and 
targeting them to NCL-overexpressing cells have already demonstrated to be a promising strategy and it 
might mature into a more innovative hope-delivery system for cancer patients in the near future.
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