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Abstract
Colorectal cancer (CRC) remains a significant global health challenge due to its high incidence and 
mortality, underscoring the need for early detection and precise diagnosis to improve survival outcomes. 
Recent advances in artificial intelligence (AI), particularly deep learning and machine learning (ML), have 
revolutionized medical imaging and reshaped CRC screening, diagnosis, and prognosis. AI algorithms 
demonstrate strong performance in analyzing computed tomography, magnetic resonance imaging, and 
endoscopic images, achieving superior sensitivity, specificity, and efficiency in detecting and characterizing 
colorectal lesions. These developments enhance lesion identification, risk stratification, and treatment 
planning, advancing the broader goal of precision medicine. Importantly, AI has the potential to reduce 
health disparities by extending access to high-quality diagnostic capabilities in low-resource regions where 
shortages of expert radiologists delay detection. Despite these advantages, implementation in clinical 
practice remains limited by several challenges, including data bias, lack of population diversity in training 
datasets, limited generalizability, operator dependency, and integration difficulties within existing 
workflows. Moreover, ethical and economic considerations—such as algorithm transparency, data privacy, 
and cost-effectiveness—continue to shape adoption. This review synthesizes current evidence on AI 
applications in CRC imaging, emphasizing methodological progress, clinical performance, and translational 
challenges. It also evaluates the readiness of AI systems for real-world use, highlighting ongoing needs for 
validation, regulatory oversight, and interdisciplinary collaboration. Ultimately, AI holds transformative 
potential to enhance CRC detection and management, improve diagnostic accuracy, and promote equitable 
access to advanced screening worldwide, provided that technological, ethical, and implementation barriers 
are effectively addressed.
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Graphical abstract. Colorectal cancer worldwide: burden, policy, and AI-enabled progress.
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Introduction
Cancer is the second leading cause of death in the United States after heart disease, responsible for one in 
five deaths nationwide. In 2025, approximately 2,041,910 new cancer cases and 618,120 cancer-related 
deaths are projected, corresponding to an incidence rate of 445.8 per 100,000 and a mortality rate of 145.4 
per 100,000 individuals [1, 2]. These figures underscore the ongoing need for effective prevention, early 
detection, and treatment strategies. Colorectal cancer (CRC), in particular, imposes a significant burden, 
with U.S. healthcare costs reaching $24.3 billion in 2022—second only to breast cancer [3, 4]. More broadly, 
cancer-related expenditures in the U.S. were projected to rise to $208.9 billion by 2020, largely due to 
population aging and expanding care needs [5–7].

Globally, CRC incidence is expected to rise sharply. By 2030, new cases are projected to exceed 2.2 
million, with over 1.1 million annual deaths. By 2040, these numbers may climb to 3.2 million new cases 



Explor Med. 2025;6:1001371 | https://doi.org/10.37349/emed.2025.1001371 Page 3

and 1.6 million deaths. Most of this increase will occur in countries with high or very high Human 
Development Index (HDI) rankings, reflecting aging populations and lifestyle-related risk factors such as 
diet and sedentary behavior [8]. Significant variation exists in CRC incidence and mortality worldwide, 
strongly influenced by healthcare access and development level [9]. Global analyses reveal a tenfold 
disparity in CRC rates, with low- and middle-income countries (LMICs) experiencing accelerating incidence 
compared to high-income nations, where rates have plateaued or declined due to widespread screening and 
advanced therapies [9, 10]. In LMICs, limited access to timely diagnosis and care results in later-stage 
presentation, higher mortality, and substantial out-of-pocket costs that often drive families into poverty. 
For instance, CRC ranked as the second leading cause of cancer-related death in Europe in 2015, with 
annual costs estimated at €19.1 billion, including indirect costs from lost productivity [11]. These financial 
burdens are even more acute in LMICs due to systemic infrastructure limitations.

Understanding CRC’s global impact requires comparative insights into its epidemiology and economic 
consequences, particularly in LMICs where incidence is rising due to urbanization, aging populations, and 
shifting lifestyles [8]. These trends highlight the urgent need for accessible, cost-effective interventions. 
Innovations such as artificial intelligence (AI) offer potential solutions, enabling scalable diagnostic tools 
that could improve timely CRC detection in low-resource settings. This review presents a synthesis of 
recent CRC incidence and mortality data, with a focus on AI-driven strategies that may reduce disparities 
through enhanced prevention, early detection, and treatment. Special attention is given to the implications 
for LMICs, where novel approaches are essential to improve equity and advance sustainable global cancer 
care.

Colorectal cancer incidence, mortality, and the impact of screening
CRC is the third most commonly diagnosed cancer worldwide and the second leading cause of cancer death 
in the United States [12–17]. In 2025, an estimated 107,320 colon and 46,950 rectal cancer cases will occur 
in the U.S. [17]. Globally, 20 million new cancer cases and 9.7 million deaths were reported in 2022, with 
projections reaching 35 million cases by 2050 due to population growth alone [13, 14].

In the U.S., CRC accounted for 51,869 deaths in 2020, with an age-adjusted mortality rate of 12.6 per 
100,000 [18]. Lifetime risk is 4.4% in men and 3.9% in women, with respective mortality risks of 1.6% and 
1.5% [18, 19]. SEER data show that incidence peaked in the 1980s, while mortality has declined steadily 
since 1984, accelerating post-2000 [20, 21]. From 2011–2019, incidence declined about 1% annually in 
individuals ≥ 65 but increased 1–2% per year in those < 55, representing a 51% rise in early-onset CRC 
(EOCRC) since 1994 [22, 23]. Adults aged 50–54 now have rates comparable to those aged 55–59, and 
underserved groups—including Alaska Native, American Indian, and Black populations—bear 
disproportionate burdens [24, 25].

Men consistently exhibit higher CRC incidence and mortality than women (35.3–52.3 vs. 25.0–45.1 per 
100,000) across all racial groups [19]. While most cases occur in individuals ≥ 55, approximately 15% affect 
those aged 45–54, with incidence peaking between 65–74 years [19, 23, 26]. Rising incidence in adults 
40–54 has been linked to poor diet, obesity, inactivity, inflammation, microbiome changes, and possible 
environmental or epigenetic factors [27, 28].

Early-onset colorectal cancer: an emerging global challenge
The global incidence of EOCRC—defined as CRC diagnosed before age 50—is rising sharply, particularly 
among women and racial/ethnic minorities, driven by strong birth cohort effects projected to persist 
through 2040 [29–32]. From 1990 to 2021, incidence increased from 5.4 to 6.1 per 100,000 (AAPC = 0.39), 
with the steepest annual rises in individuals aged 20–29 (7.9%), 30–39 (4.9%), and 40–49 (1.6%) [30, 32]. 
In Norway, EOCRC rose by 66% from 1993 to 2022, and global projections estimate an increase of roughly 
5.4% by 2030 [30, 32].

EOCRC is frequently diagnosed at advanced stages due to delayed symptom recognition. Common 
symptoms—rectal bleeding, anemia, weight loss, and abdominal pain—are often overlooked, leading to 
diagnostic delays of 4–6 months [33]. These delays are more pronounced in high-risk populations, 
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including Native Hawaiian, Pacific Islander, Black, and Hispanic individuals, who face elevated incidence 
and mortality due to systemic inequities [29].

Studying EOCRC on a global scale remains difficult due to inconsistent disease classification, 
fragmented data systems, limited international collaboration, and disparities in healthcare access. Cultural 
and structural barriers—including poverty, stigma, fatalism, and uneven screening availability—further 
impede prevention and timely diagnosis [34–36].

Despite ongoing challenges, growing awareness, international collaboration, and advances in data 
science are enabling global progress in EOCRC prevention. Recent initiatives support risk prediction 
modeling, early detection, and public health campaigns via traditional and digital platforms. The 2025 
Global Early-Onset Colorectal Cancer Think Tank (GEOCRCTT) convened stakeholders from 23 countries to 
establish coordinated strategies, following a 2024 workshop series by Fight CRC aimed at advancing risk 
stratification and international research efforts (Fight CRC 2024; GEOCRCTT 2025). ML models using real-
world electronic health record data show promise for EOCRC risk prediction, even among individuals below 
traditional screening age [37].

The rising burden of EOCRC—marked by increasing incidence, delayed diagnosis, and distinct 
molecular features—underscores the urgency of implementing equitable, risk-adapted screening and 
prevention strategies for CRCs. Established screening modalities have significantly reduced CRC incidence 
and mortality: sigmoidoscopy lowers distal CRC mortality [38], colonoscopic polypectomy removes 
precancerous lesions [39], and annual fecal occult blood testing (FOBT) reduces mortality by approximately 
33% [40]. Randomized and observational studies confirm the benefit of flexible sigmoidoscopy [41, 42], 
and although its effect on all-cause mortality is debated, the impact on CRC-specific outcomes is clear [43, 
44]. Early detection improves outcomes through the identification and removal of precursor lesions [45, 
46].

CRC trends in the U.S. from 1975 to 2022 reveal substantial improvements in prevention, treatment, 
and outcomes. Long-term trends in CRC incidence, mortality, and 5-year relative survival in the United 
States from 1975 to 2022 are illustrated in Figure 1, based on SEER and national mortality data [47]. The 
incidence rate, based on SEER 8 data, peaked in the mid-1980s at approximately 66.6 per 100,000 and 
declined steadily to about 35.8 per 100,000 by 2022—a 46% reduction—reflecting the impact of 
widespread screening, removal of precancerous polyps, and modifiable risk factor control. Mortality rates 
also fell markedly, from roughly 28 per 100,000 in 1975 to 12.8 per 100,000 in 2022 (a 54% decline), with 
acceleration after the mid-1990s likely due to earlier detection, advances in treatment, and coordinated 
care. Concurrently, 5-year relative survival improved from 49% in 1975 to over 69% by 2016, largely 
attributable to earlier-stage diagnoses and enhanced therapeutic strategies. While the incidence and 
mortality trends continue to improve, the recent plateau in survival gains highlights the need for novel 
approaches, including personalized treatments, targeted efforts for EOCRC, and focused interventions in 
high-risk populations.

Trends in CRC incidence by age group are presented in Figure 2, though some subgroup data for 
2007–2008 were not available [1, 48].

Mental health disorders in colorectal cancer patients after postoperative 
complications
CRC patients face substantial psychological challenges after surgery, especially when postoperative 
complications occur [49, 50]. Complications such as infections, anastomotic leaks, prolonged recovery, and 
stoma formation increase the risk of depression, anxiety, and adjustment disorders, compounding physical 
discomfort, body-image disturbance, and social functioning difficulties. Psychiatric comorbidities in CRC 
patients are linked to poorer adherence to treatment, longer hospital stays, higher healthcare costs, and 
worse survival, underscoring the importance of early psychological screening, timely psychiatric 
intervention, and integration of mental health care into multidisciplinary practice [50].



Explor Med. 2025;6:1001371 | https://doi.org/10.37349/emed.2025.1001371 Page 5

Figure 1. Colorectal cancer mortality over years in the U.S.

Figure 2. Colorectal cancer incidence over years in the U.S.

Evidence supports the prognostic impact of these disorders. A three-year follow-up study of 
gastrointestinal cancer patients (n = 320; 210 CRC) reported baseline rates of anxiety (~40%) and 
depression (~33%), both of which worsened over time, with depression independently associated with 
reduced survival [51]. Prospective cohort studies confirm that complications and stoma creation predict 
poorer emotional outcomes and lower health-related quality of life, while higher anxiety and depression 
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scores correlate with increased mortality. Predictive tools, such as risk nomograms incorporating 
postoperative complications, stoma creation, comorbidities, and adjuvant therapy, demonstrate good 
accuracy (AUC ≈ 0.79–0.81) in identifying high-risk patients [52]. Furthermore, a meta-analysis showed 
that anxiety modestly increases mortality risk (OR ≈ 1.07), while depression more than doubles it (OR ≈ 
2.76) [53].

Taken together, these findings demonstrate that postoperative complications not only worsen 
psychological outcomes but may also directly influence long-term survival. Addressing mental health 
proactively is therefore critical for optimizing recovery, quality of life, and prognosis in CRC patients. 
Common disorders are summarized in Table 1.

Table 1. Mental health disorders in CRC patients following postoperative complications.

Disorder Triggers/Associations Impact on patients

Depression Prolonged recovery, infections, stoma formation, 
loss of independence

Reduced quality of life, poor adherence to 
therapy, higher risk of mortality

Anxiety Fear of recurrence, uncertainty after 
complications, changes in body image

Sleep disturbances, impaired coping, increased 
healthcare utilization

Adjustment disorder Difficulty adapting to stoma, functional limitations, 
lifestyle disruption

Social withdrawal, reduced occupational 
functioning, prolonged psychological distress

Post-traumatic stress 
disorder (PTSD)

Severe or unexpected surgical complications 
(e.g., anastomotic leak, ICU stay)

Flashbacks, hypervigilance, avoidance 
behaviors, impaired daily functioning

Body image disturbance Stoma placement, surgical scarring, altered 
bowel function

Low self-esteem, social anxiety, sexual 
dysfunction

CRC: colorectal cancer.

Integrated analysis of colorectal cancer diagnosis, prognosis, and 
modifiable determinants
CRC prognosis is influenced by tumor stage, histologic grade, molecular features, and host factors. Early 
detection through screening and molecular diagnostics has contributed to improvements in 5-year 
survival—from ~50% in the 1970s to 65% between 2012 and 2018—though disparities remain across age 
and racial groups [25, 54]. CRC development involves a complex interplay between genetic predisposition, 
epigenetic regulation, environmental exposures, and modifiable lifestyle factors [21, 55, 56].

Inherited syndromes (e.g., Lynch syndrome, FAP) and somatic mutations in genes such as APC, KRAS, 
BRAF, and TP53 underlie many CRC cases [57–59]. Epigenetic mechanisms, including MLH1 and MGMT 
promoter methylation, influence prognosis and therapy response. Biomarkers such as methylated NDRG4, 
BMP3, SEPT9, and specific miRNAs, detectable via liquid biopsy, are increasingly used for diagnosis and 
surveillance [60]. Polygenic risk scores enable stratified risk prediction [61], and targeted epigenetic 
therapies, such as DNMT and HDAC inhibitors, are under investigation [62, 63].

Modifiable risk factors include family CRC history, high-risk adenomas, IBD, diabetes, radiation 
exposure, and dietary habits [64, 65]. CRC often arises from adenomatous or serrated polyps, especially in 
the proximal colon [66, 67]. A 2025 UK cohort of over 540,000 women linked high-fiber, plant-based diets 
and low red/processed meat intake with lower CRC incidence, while higher fecal bile acid levels were 
associated with increased risk [68, 69]. Physical activity, healthy weight, and avoidance of alcohol and 
tobacco remain key preventive strategies [70, 71].

Environmental factors such as green space access and lower socioeconomic disadvantage are also 
protective [72]. The gut microbiome serves as a mediator, with Fusobacterium nucleatum promoting 
immune evasion and CRC progression, while beneficial microbial metabolites influence therapeutic 
response [73, 74]. Dietary interventions post-diagnosis—emphasizing whole grains, calcium, and coffee—
improve survival, whereas high sugar and alcohol intake worsen outcomes. Obesity, especially in youth, 
elevates CRC risk through inflammatory and metabolic pathways, contributing to EOCRC with a 1.54-fold 
increased risk [32, 75]. A murine RCT showed that ketogenic diets reduced tumor burden by modulating 
microbiota [76], and probiotic or fiber-rich interventions are gaining clinical interest [77, 78].



Explor Med. 2025;6:1001371 | https://doi.org/10.37349/emed.2025.1001371 Page 7

Immunologically, mismatch repair-deficient (dMMR)/high microsatellite instability (MSI-H) tumors 
respond well to immune checkpoint inhibitors, while microsatellite stable (MSS) CRCs (~85%) remain 
resistant due to poor antigenicity and suppressive microenvironments [79–91]. Novel strategies such as 
tumor mutational burden (TMB)-based stratification, CAR-T cells, vaccines, and oncolytic viruses are being 
explored to overcome immune resistance [92–100].

Advanced molecular diagnostics, including next-generation sequencing (NGS), identify actionable 
mutations for targeted therapy and resistance prediction (e.g., KRAS, NRAS, BRAF, PIK3CA) [101–104]. 
Liquid biopsies enable real-time monitoring of circulating tumor DNA (ctDNA), improving surveillance for 
minimal residual disease and enabling adaptive treatment strategies [105–108].

Molecular pathological epidemiology (MPE) provides a transdisciplinary framework for integrating 
these factors [109]. MPE links exposures—such as diet, BMI, and aspirin use—with tumor-specific 
molecular alterations, including MSI, CIMP, and LINE-1 methylation, offering insights into etiologic 
heterogeneity and clinical stratification [110–116]. Gestational and early-life exposures may shape CRC 
phenotypes, and MPE-based pregnancy cohort studies could further elucidate these connections [117–119]. 
AI enhances MPE by predicting molecular subtypes from histology (e.g., Swin Transformers) and 
identifying prognostic multi-omics signatures, improving the integration of exposomic, imaging, and 
biomarker data into personalized oncology [114, 119–121].

Colorectal cancer screening and costs
CRC screening options vary in sensitivity, specificity, cost, and accessibility, with test selection influenced 
by age, risk, and patient preference. Positive results typically require diagnostic follow-up via colonoscopy. 
The U.S. Preventive Services Task Force (USPSTF) recommends several screening methods, including 
HSgFOBT, fecal immunochemical test (FIT), FIT-DNA (Cologuard), computed tomography (CT) 
colonography, flexible sigmoidoscopy, and colonoscopy, each with different costs and effectiveness profiles 
(Table 2).

Table 2. USPSTF recommended colorectal cancer screening tests.

Test USPSTF recommended 
frequency

Sensitivity Specificity Cost CDPHP coverage

High-sensitivity guaiac fecal occult 
blood test (HSgFOBT)

Every year Low (33%) Moderate $22 Yes

Fecal immunochemical test (FIT-
iFOBT)

Every year Moderate (75%) Moderate $22 Yes

FIT-DNA (Cologuard) Every 3 years High (92%) High $502 Yes
Computed tomography 
colonography

Every 5 years High (89%) High 
(75%)

$315 Prior authorization 
required

Flexible sigmoidoscopy Every 5 years Moderate to high (> 
95% in distal colon)

High $520 Yes

Colonoscopy Every 10 years High (93%) High 
(73%)

$950 Yes

USPSTF: U.S. Preventive Services Task Force.

Cologuard, despite its $502 price, offers high sensitivity, non-invasiveness, and at-home convenience, 
enhancing compliance and early detection. Colonoscopy remains the gold standard with high accuracy but 
is more costly and invasive. Prices vary significantly by provider type: surgery centers offer 29% lower 
costs than outpatient hospitals—for example, $1,136 vs. $1,608 for standard colonoscopy [122].

A detailed breakdown shows facility fees make up nearly 64% of total colonoscopy costs, with 
anesthesia and provider fees comprising the remainder [123]. Costs also vary by state: Alaska has the 
highest average at $2,033, while Iowa has the lowest at $1,430 [123].

Understanding the financial aspects of CRC screening is vital for improving access, especially among 
uninsured populations. Transparent pricing, insurance coverage, and cost-effective options are essential to 
reducing disparities and enhancing preventive care.
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Insurance coverage for colorectal cancer screening
The Affordable Care Act (ACA) mandates that private health plans initiated on or after September 23, 2010, 
cover USPSTF-recommended CRC screening tests with no out-of-pocket costs for eligible individuals [124]. 
Medicare and most Medicaid programs also cover CRC screening—including colonoscopy, sigmoidoscopy, 
fecal occult blood tests, and stool DNA tests—though Medicaid eligibility and guidelines vary by state [22, 
125, 126]. A summary of coverage across insurance types is presented in Table 3.

Table 3. Insurance coverage for colorectal cancer screening tests.

Insurance 
type

Screening tests covered Out-of-pocket 
costs

Guidelines and eligibility

Medicare Colonoscopy, Sigmoidoscopy, 
Fecal Occult Blood Test, Stool DNA 
Test

No out-of-pocket 
costs for most 
services

Coverage for eligible beneficiaries as per CMS 
guidelines

Medicaid Colonoscopy, Sigmoidoscopy, 
Fecal Occult Blood Test, Stool DNA 
Test

Varies by state Coverage and eligibility criteria differ by state; states 
follow CMS and USPSTF recommendations

Private 
insurance

Colonoscopy, Sigmoidoscopy, 
Fecal Occult Blood Test, Stool DNA 
Test

No out-of-pocket 
costs for most 
services

Coverage mandated by ACA for plans starting on or 
after September 23, 2010; adheres to USPSTF 
recommendations

CMS: Centers for Medicare and Medicaid Services; USPSTF: U.S. Preventive Services Task Force; ACA: Affordable Care Act.

Despite these provisions, disparities persist. National Health Interview Survey (NHIS) and Behavioral 
Risk Factor Surveillance System (BRFSS) data show lower CRC screening rates among uninsured 
individuals compared to those with Medicaid or private insurance [24, 127]. In adults aged 50–64, the 2005 
NHIS data found screening rates of 48.5% [private Health Maintenance Organization (HMO)], 45.2% 
(private non-HMO), 42.1% (medicaid/other public), and only 17.2% (uninsured) [127].

Insurance coverage is critical to expanding access to preventive care. By removing financial barriers, 
Medicare, Medicaid, and ACA-aligned private plans improve screening uptake and early CRC detection, 
especially in underserved populations [128–130].

Colorectal cancer screening tests
CRC screening includes stool-based, blood-based, and visual/structural exams, each with distinct 
sensitivity, specificity, and frequency considerations.

Stool-based tests

gFOBT detects hidden blood via a chemical reaction but requires dietary restrictions and has low 
specificity [131, 132].

•

FIT uses antibodies to detect human hemoglobin without dietary restrictions; annual use is 
recommended with 79% sensitivity and 94% specificity [133–135].

•

FIT-DNA (Cologuard®) combines FIT with DNA testing (e.g., KRAS, BMP3), offering 92% sensitivity 
for CRC and a 3-year interval [136–138].

•

See Table 4 for test comparisons.

Table 4. Fecal occult blood tests (FOBT) for colorectal cancer screening.

Test type Example brand Detection method Dietary restrictions Sensitivity to human hemoglobin

gFOBT Hemocult® Chemical reaction Yes Less specific
FIT InSure® Immunological reaction No More specific and sensitive
FIT-DNA ColoGuard® DNA and immunological test No More specific and sensitive
FIT: fecal immunochemical test.
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Blood-based tests

Blood-based screening detects CRC-related cell-free DNA (cfDNA) and methylation markers like 
methylated SEPT9 (mSEPT9). Tests include Epi proColon®, Guardant, Freenome, Grail, and others 
[139, 140].

•

Epi proColon® is an FDA-approved blood-based screening test for CRC that detects mSEPT9 DNA in 
plasma. However, its sensitivity (approximately 48–73%) and specificity (around 80%) do not meet 
the Centers for Medicare and Medicaid Services (CMS) minimum thresholds for coverage (≥ 74% 
sensitivity and ≥ 90% specificity), and thus it is not currently covered by Medicare [139, 141–145].

•

Guardant Shield, validated by Chung et al. [146], showed 83.1% sensitivity and 89.6% specificity in 
average-risk adults.

•

Compared to FIT, mSEPT9 has lower specificity (82% vs. 97%) [147].•

See Table 5 for details.

Table 5. CRC screening tests using blood-based markers with AI integration and cited performance.

Blood test name 
or vendor

Analytes Target AI algorithm + input Data Performance metrics References

mSEPT9 ctDNA CRC 
specific

Random forest (cfDNA 
methylation data)

AUC 0.82–0.89; Sens 69–77%; 
Spec 88–92%

[148, 149]

Freenome ctDNA + 
protein

CRC 
specific

Ensemble deep learning 
(multi-omics: cfDNA, protein)

AUC 0.94; Sens 79–91%; Spec 
91–96%

[150, 151]

CancerSEEK ctDNA + 
protein

Multi-
cancer

Random forest + logistic 
regression (multi-analyte)

AUC 0.94; Sens 69% (CRC); Spec 
99%

[152, 153]

Guardant ctDNA CRC 
specific

Targeted NGS + ML classifier 
(proprietary)

Sens ~91%; Spec ~94% [154, 155]

Grail (Galleri) ctDNA Multi-
cancer

Deep neural networks (cfDNA 
methylation)

Sens 67% (CRC); Spec 99.5%; 
PPV 88.7%; early-stage sens 
~27.5%

[156–165]

Clinical Genomics ctDNA CRC 
specific

Likely logistic regression/SVM 
on methylation

Sens 81%; Spec 91% (early trials) [166–169]

CRC: colorectal cancer; AI: artificial intelligence; mSEPT9: methylated SEPT9; ctDNA: circulating tumor DNA; cfDNA: cell-free 
DNA; Sens: sensitivity; Spec: specificity; ML: machine learning.

Visual or structural exams

Capsule endoscopy captures images via a swallowed camera capsule; sensitivity is 88% for polyps ≥ 
6 mm, but may miss sessile/flat lesions [170, 171].

•

CT colonography is noninvasive, with 67–98% sensitivity for adenomas ≥ 6–10 mm but less effective 
for flat polyps; recommended every 5 years [172, 173].

•

Sigmoidoscopy visualizes the distal colon; less favored in the U.S. due to its limited reach (only 60% 
of CRCs occur distally) [131].

•

Colonoscopy is the gold standard, enabling full visualization and polyp removal, with a 10-year 
screening interval and rare complications [131].

•

Each test offers trade-offs in accuracy, invasiveness, and cost. Selection should consider patient risk, 
preference, and access. Combining emerging technologies (e.g., liquid biopsy) with traditional screening 
methods may enhance early detection and population coverage.

Effectiveness, strategies, and innovations in colorectal cancer screening
CRC screening has substantially reduced incidence and mortality, accounting for 53% of a 26% decline in 
U.S. CRC mortality between 1975 and 2000 [174]. Screening effectiveness depends on test sensitivity, 
specificity, and evidence quality. The CMS recommends triennial blood-based screening for adults aged 
50–85 only if sensitivity is ≥ 74% and specificity ≥ 90% [175, 176].
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Historically, FOBT was supported by randomized trials, but it is no longer recommended due to limited 
accuracy. The FIT is now preferred for annual screening because of superior sensitivity and specificity, 
while stool DNA-FIT tests (e.g., Cologuard), though more costly and prone to false positives, are suggested 
every 1–3 years [177–179]. Colonoscopy remains the gold standard, offering the greatest reduction in CRC 
risk and mortality; for example, a large cohort study showed that a normal colonoscopy reduced CRC risk 
by 46% and mortality by 88% over 12 years [180]. Comparative modeling supports lowering the screening 
initiation age to 45, given the rise in EOCRC [181]. Colonoscopy prevents the most CRC cases and deaths but 
requires more procedures and carries higher complication risks, while FIT and stool DNA-FIT result in 
fewer colonoscopies per 1,000 individuals screened [182].

Despite strong evidence, screening efficacy is limited by test performance and implementation 
challenges. FIT may miss serrated lesions, stool DNA-FIT has higher false-positive rates, and nearly 23% of 
CRC deaths are linked to missed or incomplete screening [183]. Colonoscopy outcomes depend on bowel 
preparation quality, endoscopist skill, sedation practices, and completeness of lesion removal. Higher 
adenoma detection rates (ADR) are directly protective; a 1% increase in ADR reduces interval CRC risk by 
3% [184, 185]. To optimize outcomes, some institutions restrict procedures to gastroenterologists, and 
regional differences in sedation practices affect exam completeness and patient tolerance [186]. Expanded 
colonoscopy uptake, as seen in Korea, has improved early detection rates [187].

Emerging innovations are reshaping CRC screening. Liquid biopsy enables early detection and 
recurrence monitoring through ctDNA [188], while AI-assisted tools improve polyp detection and risk 
stratification [189–191]. However, AI adoption faces barriers including algorithmic bias from non-
representative datasets, limited annotated samples, inconsistent data quality, and ethical issues related to 
privacy, consent, and the opacity of “black-box” algorithms. These challenges limit clinical trust and 
regulatory approval, particularly in low-resource settings with constrained infrastructure and expertise.

Persistent disparities in screening uptake across income, race, gender, and geography remain a critical 
concern [192, 193]. Targeted strategies—such as mailed FIT kits, telehealth, mobile clinics, and culturally 
tailored outreach—have been effective in improving access [194–198]. Policy initiatives, including 
expanded insurance coverage and preventive care subsidies, have also helped reduce racial disparities in 
CRC outcomes by nearly 50% over the past decade [199, 200].

A combined approach—anchored in evidence-based guidelines, optimized procedural quality, 
technological innovation, and equitable access—is essential to maximize CRC screening effectiveness and 
reduce disease burden across diverse populations.

Colorectal cancer screening rates, public health goals, and quality metrics
CRC screening remains a cornerstone of early detection and prevention efforts in the U.S. [201–203]. 
National campaigns—such as the National Colorectal Cancer Roundtable’s “80% by 2018” and Healthy 
People 2020—have aimed to boost uptake [204, 205]. Surveillance tools like BRFSS, NHIS, and the NCI State 
Cancer Profiles track national and subnational progress and disparities [203].

Screening rates for adults aged ≥ 45 rose from 52% in 2002 to 68% in 2020 but remain suboptimal, 
with state-level rates ranging from 50–70% [206, 207]. Disparities persist among younger adults, Asian 
Americans, women, and the uninsured due to lower referral rates, provider preferences, or structural 
barriers [25, 208, 209]. Notably, 83% of unscreened individuals had never undergone testing [208]. In light 
of rising EOCRC, likely due to birth-cohort effects, guidelines now recommend beginning screening at age 
45 [210].

While modeling suggests that lowering the screening age to 45 could prevent 29,400 CRC cases and 
11,100 deaths over five years, raising screening rates to 80% among those aged 50–75 could avert nearly 
three times as many deaths at a lower cost [211, 212].

Quality measurement frameworks such as the Healthcare Effectiveness Data and Information Set 
(HEDIS) further support screening improvements. Used by over 90% of U.S. health plans and integrated 
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into Medicare Advantage Star Ratings, HEDIS identifies care gaps and supports performance benchmarking 
[213, 214]. CRC screening rates derived from HEDIS data guide incentive programs like Pay for 
Performance and Quality Bonus Funds [215, 216], relying on accurate billing and documentation to ensure 
quality assessment [217–219].

The CRC screening measure assesses adults ages 50–75 who received appropriate screening using any 
of the following modalities: annual fecal occult blood test, flexible sigmoidoscopy every 5 years, 
colonoscopy every 10 years, CT colonography every 5 years, or stool DNA test every 3 years. In alignment 
with the USPSTF recommendations, the HEDIS Measurement Year 2022 update expanded the eligible age 
range to 45–75 years [220].

Longitudinal data from 2004 to 2023 indicate evolving colorectal cancer (CRC) screening rates across 
four major insurance categories [220]. Commercial HMO and Medicare HMO plans consistently achieved 
higher screening rates compared to their Preferred Provider Organization (PPO) counterparts. Medicare 
HMO showed a substantial increase beginning around 2010, peaking above 70% in 2018 and 2020, while 
Commercial HMO maintained relatively stable rates in the low-to-mid 60% range. Medicare PPO exhibited a 
similar upward trend, albeit with greater variability, and Commercial PPO—though improving—
persistently trailed behind HMO plans throughout the period.

Data for 2019 were unavailable for both Medicare HMO and Medicare PPO due to the CMS suspension 
of reporting during the COVID-19 pandemic, underscoring broader disruptions to healthcare quality 
measurement. These long-term trends highlight the effectiveness of managed care models, particularly 
HMOs, in promoting preventive screening. Ongoing investment in public health initiatives and standardized 
quality metrics remains essential to increasing CRC screening uptake and reducing disparities across 
insured populations.

AI in colorectal cancer screening: from potential to practical impact
AI, particularly deep learning, is rapidly transforming modern medicine, and CRC diagnosis is no exception. 
Built on neural network architectures, deep learning has shown strong performance in analyzing medical 
images, pathology slides, and genomic data with high accuracy [221–223].

CRC remains a major global health burden, where early detection is essential to improving survival. 
Advances in AI and ML are reshaping care through imaging, risk stratification, and precision treatment. AI 
enhances diagnostic accuracy via automated detection, biomarker discovery, and convolutional neural 
networks for image analysis, reducing variability in histopathological interpretation and supporting 
treatment planning [224]. For example, Case Western investigators demonstrated that AI applied to routine 
magnetic resonance imaging (MRI) could predict rectal cancer outcomes, offering a non-invasive strategy to 
avoid overtreatment [225]. At the same time, concerns remain that unequal access to quality imaging may 
exacerbate existing disparities [226].

AI is also transforming traditional CRC screening and diagnostics. Computer-aided detection (CAD) 
systems in colonoscopy improve adenoma and polyp detection [227, 228], while deep learning applied to 
CT and MRI enhances staging and localization [229, 230]. In pathology, AI enables automated tumor 
classification and prediction of MSI, informing immunotherapy decisions [231, 232]. Beyond imaging, AI 
augments liquid biopsy by interpreting ctDNA signals to detect minimal residual disease and recurrence 
risk [233]. Innovative platforms such as Zeng et al.’s real-time optical coherence tomography system [234] 
may improve endoscopic sensitivity, while Bilal et al. [235] and Yu et al. [236] highlight applications in 
immunotherapy prediction and digital epidemiology, including GeoAI.

Despite this progress, challenges remain, including dataset variability, limited generalizability, and the 
need for pragmatic, large-scale validation to demonstrate real-world effectiveness [237, 238]. As Wang et 
al. [239] emphasize, transparent validation, equitable implementation, and integration into clinical 
workflows are essential for AI to meaningfully advance CRC care. With deep learning and related 
approaches continuing to evolve, AI is emerging as a transformative tool for screening, diagnosis, and 
management, moving toward more precise, data-driven, and patient-centered care.
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Diagnostic imaging modalities: enhancing colorectal cancer detection with 
AI
The foundation of accurate CRC diagnosis rests on imaging modalities such as CT, MRI, and 18F-FDG 
positron emission tomography (PET). CT and MRI offer structural detail for staging, while PET identifies 
metastatic spread and treatment response. Integration with AI has the potential to elevate these modalities 
beyond human capabilities.

Several studies have shown how imaging innovations shape CRC management. Taylor et al. [240] found 
whole-body MRI to be an effective, low-radiation alternative for staging, while Maas et al. [241] 
demonstrated its accuracy in detecting recurrent disease. García-Figueiras et al. [242, 243] highlight the 
diagnostic advantage of combining anatomical and molecular data.

AI-augmented radiomics, diffusion-weighted MRI, and contrast-enhanced protocols further refine 
these modalities. Liu et al. [244] and Serinsöz et al. [245] advocate for a tailored, multimodal imaging 
approach guided by clinical context. While Dobos et al. [246] and Kekelidze et al. [247] established the 
groundwork, newer AI-supported tools provide actionable insights that may support earlier detection, 
more accurate staging, and personalized surveillance.

AI-enhanced endoscopy: improving lesion detection and risk stratification
AI-assisted endoscopy presents a practical avenue for reducing missed lesions and improving ADR. Kudo et 
al. [248] and Lui et al. [249] demonstrate how real-time AI integration enhances lesion detection, while 
Sinagra et al. [250] confirm increased adenoma recognition.

Beyond accuracy, AI supports procedural standardization and workflow efficiency. Zhou et al. [251] 
and Barua et al. [252] showed high diagnostic accuracy with AI models in neoplastic polyp identification. 
Broader applications are noted by Hsiao et al. [253], who validated AI for gastric cancer diagnosis, hinting 
at cross-cancer utility.

Despite the enthusiasm, reviews by Messmann et al. [254] and Wallace et al. [255] underscore 
implementation barriers, such as over-reliance, alert fatigue, and ethical oversight. Koh et al. [256] and 
Spadaccini et al. [257, 258] propose real-time image analysis and AI-driven classification as the next steps 
toward precision endoscopy.

Radiology and infrared imaging: expanding non-invasive diagnostics
Advanced imaging, when paired with AI, broadens diagnostic capability beyond conventional tools. Ferrari 
et al. [259] and Wang et al. [260] illustrate how AI enhances MRI-based assessment of treatment response 
in rectal cancer. Taylor et al. [240] further validated whole-body MRI as an efficient staging tool.

Emerging technologies, such as Fourier transform infrared (FTIR) imaging, benefit from AI’s pattern 
recognition capabilities. Villamanca et al. [261] and Gerwert et al. [262] demonstrated early detection of 
CRC and MSI, respectively. These technologies could inform treatment pathways without invasive biopsy.

Notably, AI expands accessibility. Waljee et al. [263] applied AI in sub-Saharan Africa, while 
Ziegelmayer et al. [264] used AI to differentiate CRC from diverticulitis on CT. Peng et al. [265] advanced 
image fusion methods, optimizing diagnostic efficiency. Together, these studies underscore AI’s role in 
scalable, context-sensitive diagnostics.

AI in pathology imaging: enhancing accuracy and interpretability
AI’s application in pathology imaging redefines tissue analysis by enabling automated classification, 
subtype identification, and biomarker detection. Sirinukunwattana et al. [266] and Wang et al. [267] 
demonstrated molecular subtype classification using deep learning, which supports tailored treatment 
planning.
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Innovations such as Yu’s semi-supervised learning model [268] allow efficient use of limited labeled 
data, while Ho et al. [269] and Ju et al. [270] validated AI for tumor staging and survival estimation. 
Interpretability and transparency remain central concerns; Neto et al. [271] advocate for explainable 
models suitable for clinical adoption.

Saillard et al. [272] validated MSIntuit for MSI detection, and studies by Bilal [273], Griem [274], and 
Prezja [275] confirm AI’s effectiveness in prescreening and tissue classification. These tools collectively 
enable more efficient workflows and potentially reduce diagnostic delays.

Image-based prognostics: toward dynamic, personalized risk models
AI’s ability to extract prognostic features from histopathology and imaging has advanced survival 
prediction in CRC. Kather et al. [276] demonstrated survival estimation using digitized slides, while Pai et 
al. [277] and Pham et al. [278, 279] built hybrid models incorporating imaging, gene expression, and deep 
learning for recurrence-free survival predictions.

Jiang et al. [280] validated MRI-based AI prognostics for rectal cancer, and L’Imperio et al. [281] used 
ML for colon cancer risk stratification. Wagner et al. [120] advanced biomarker prediction with 
transformer-based models, while Yin et al. [191] introduced a generalized transfer learning method for 
broader applicability.

Together, these findings suggest that AI-driven prognostics may surpass traditional staging in 
predicting outcomes and guiding treatment. Still, challenges remain in achieving cross-population 
generalizability and clinical integration.

Chronological overview of AI applications in colorectal cancer diagnosis, 
prognosis, and treatment
The integration of AI in medicine has been transformative, especially for complex diseases like CRC. AI 
technologies, from deep learning to advanced imaging, have significantly improved the accuracy, efficiency, 
and personalization of cancer diagnostics and treatments. This table (Table 6) provides a chronological 
summary of key studies on AI in CRC, detailing each AI model, its benefits, and limitations. This 
organization illustrates both the technological advancements and the ongoing challenges in adopting AI 
tools in oncology, reflecting nearly two decades of progressive impact in the field.

Table 6. A chronological overview of AI applications in colorectal cancer diagnosis, prognosis, and treatment.

Citation Authors (year) AI model Advantages Disadvantages

[259] Ferrari et al. (2019) MR-based AI model Predicts therapy response, non-
invasive

Requires high-quality MRI, 
expensive technology

[282] Yang et al. (2019) Deep learning for 
imaging

High accuracy, non-invasive 
diagnosis

Requires large datasets, high 
computational resources

[283] Mao et al. (2020) MRI High specificity for liver 
metastasis, non-invasive

High costs, availability limitations

[234] Zeng et al. (2020) PR-OCT with deep 
learning

Rapid diagnosis, high sensitivity Expensive technology, requires 
specialized equipment

[239] Wang et al. (2020) AI for diagnosis and 
therapy

Improves diagnostic accuracy, 
potential for therapy optimization

High initial costs, need for 
integration into clinical practice

[248] Kudo et al. (2020) AI-assisted endoscopy Improves adenoma detection 
rates, real-time analysis

Potential over-reliance on AI, 
need for high-quality images

[249] Lui et al. (2020) AI in colonoscopy Reduces missed polyps, 
enhances detection rates

False positives, potential for 
over-screening

[250] Sinagra et al. (2020) AI for adenoma 
detection

Enhances detection rates, 
supports endoscopists

Requires large datasets for 
training, potential biases in AI 
models

[251] Zhou et al. (2020) Deep learning for 
optical diagnosis

High accuracy in optical 
diagnosis, non-invasive

Requires large datasets, 
expensive to implement
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Table 6. A chronological overview of AI applications in colorectal cancer diagnosis, prognosis, and treatment. 
(continued)

Citation Authors (year) AI model Advantages Disadvantages

[225] News-Medical.Net 
(2021)

AI-driven imaging Real-time analysis, improved 
detection rates

Limited by data quality, potential 
biases

[253] Hsiao et al. (2021) AI in endoscopic 
screening

Early detection, high sensitivity Expensive technology, requires 
specialized equipment

[284] Parsa et al. (2021) AI for polyp 
characterization

Reduces human error, enhances 
polyp characterization

Potential for over-reliance on AI, 
requires continuous updates

[285] Wang et al. (2021) AI for polyp detection Improves detection rates, real-
time classification

Requires large datasets, 
potential for false positives

[260] Wang et al. (2021) MRI-based AI model High specificity for rectal cancer, 
non-invasive

High costs, limited availability

[266] Sirinukunwattana et 
al. (2021)

Deep learning for 
subtyping

High accuracy in molecular 
subtyping, aids in personalized 
treatment

Requires large datasets, 
expensive to implement

[267] Wang et al. (2021) AI for histopathology High accuracy in diagnosis, 
supports pathologists

Requires large annotated 
datasets, potential biases in AI 
models

[268] Yu et al. (2021) Semi-supervised deep 
learning

Reduces need for labeled data, 
high accuracy

Computationally intensive, 
requires continuous updates

[235] Bilal et al. (2023) Digital pathology with 
AI

Facilitates large-scale analysis, 
enhances pathology workflow

Potential for over-reliance on AI, 
data security concerns

[236] Yu et al. (2022) ML Predictive capabilities, 
personalized treatment plans

Algorithm complexity, requires 
ongoing updates

[252] Barua et al. (2022) AI-based optical 
diagnosis

Real-time analysis, high accuracy 
in polyp detection

Potential for false positives, 
requires high-quality images

[254] Messmann et al. 
(2022)

AI in gastrointestinal 
endoscopy

Standardizes detection, improves 
consistency

High costs, requires extensive 
training

[255] Wallace et al. (2022) AI in neoplasia 
detection

Reduces miss rates, enhances 
detection accuracy

Potential over-reliance on AI, 
needs constant updates

[261] Villamanca et al. 
(2022)

AI with Fourier 
transform infrared

Non-invasive, high sensitivity Requires specialized equipment, 
limited clinical application

[263] Waljee et al. (2022) AI/ML for early 
detection

Early detection in low-resource 
settings, scalable

Requires data and infrastructure, 
potential biases in training data

[269] Ho et al. (2022) Deep learning for 
histopathology

High accuracy, supports 
pathologists

Requires high-quality images, 
potential for false positives

[270] Ju et al. (2022) AI for pathological 
staging

High accuracy, non-invasive 
staging

Requires large datasets, 
expensive to implement

[256] Koh et al. (2023) AI-aided endoscopy Enhances detection rates, 
supports experienced 
endoscopists

Expensive, requires integration 
into clinical practice

[257] Spadaccini et al. 
(2023)

AI-aided endoscopy Improves screening accuracy, 
real-time feedback

Potential for false positives, 
requires large training datasets

[262] Gerwert et al. (2023) AI-integrated infrared 
imaging

Label-free detection, fast results Expensive technology, requires 
specialized training

[264] Ziegelmayer et al. 
(2023)

Deep learning for CT 
imaging

Differentiates conditions 
accurately, non-invasive

Requires high-quality CT images, 
potential for misclassification

[273] Bilal et al. (2023) AI-based prescreening Reduces workload for 
pathologists, improves efficiency

Potential for over-reliance on AI, 
data security concerns

[274] Griem et al. (2023) AI for tumor detection Enhances detection accuracy, 
supports tissue analysis

Requires high-quality images, 
potential for false positives

[275] Prezja et al. (2023) Refined deep learning High accuracy, supports tissue 
decomposition analysis

Requires large datasets, high 
computational resources

[272] Saillard et al. (2023) AI for MSI detection High accuracy, supports pre-
screening

Expensive to implement, requires 
specialized training

[120] Wagner et al. (2023) Transformer-based AI High accuracy, supports 
biomarker prediction

Requires large datasets, 
computationally intensive

[191] Yin et al. (2023) Deep learning High accuracy in diagnosis, early 
detection

Requires large datasets for 
training, high computational 
resources

Generalized AI with High flexibility, supports multiple Requires large datasets, [286] Yin et al. (2023)
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Table 6. A chronological overview of AI applications in colorectal cancer diagnosis, prognosis, and treatment. 
(continued)

Citation Authors (year) AI model Advantages Disadvantages

transfer learning tasks potential for overfitting
[279] Pham et al. (2023) AI fusion Combines multiple data sources, 

high accuracy
Requires high-quality data, 
expensive to implement

[280] Jiang et al. (2023) Deep learning for MRI Predicts outcomes, supports 
clinical decisions

Requires high-quality MRI, 
computationally expensive

[281] L’Imperio et al. 
(2023)

ML for risk 
stratification

High accuracy, supports clinical 
risk assessment

Requires validation, potential for 
misclassification

[287] Pham et al. (2023) Markov models with AI Predicts survival outcomes, 
supports clinical decision-making

Requires large datasets, 
computationally intensive

[288] Tsai et al. (2023) AI for multi-omics 
prediction

High accuracy, supports 
personalized medicine

Requires high-quality data, 
expensive to implement

[258] Spadaccini et al. 
(2024)

AI-assisted 
colonoscopy

Enhances screening, reduces 
miss rates

Expensive, requires integration 
into existing systems

[265] Peng et al. (2024) ML for image fusion Combines multiple imaging 
modalities, improves accuracy

Computationally expensive, 
requires large datasets

[271] Neto et al. (2024) Interpretable ML 
system

High interpretability, supports 
diagnosis

Requires high-quality images, 
potential for misclassification

AI: artificial intelligence; MRI: magnetic resonance imaging; CT: computed tomography; ML: machine learning.

Structured evaluation of AI tools in colorectal cancer screening
AI technologies are being applied across multiple domains of CRC screening and diagnosis, with varying 
levels of maturity, performance, and clinical applicability. CAD for colonoscopy is at an early adoption stage, 
supported by FDA approval and proven trial benefits, yet real-world outcomes remain inconsistent and 
operator dependent [176, 289]. Radiology AI (CT/MRI) is still investigational—demonstrating accuracy in 
staging and localization but hindered by dataset variability and integration challenges [229, 230, 290, 291]. 
Pathology AI has shown strong accuracy in tumor classification and MSI prediction in pilot studies, but its 
broader adoption is constrained by the need for large, diverse datasets and costly infrastructure [231, 232]. 
Infrared imaging with AI (e.g., FTIR spectroscopy) remains in early research, with encouraging sensitivity in 
distinguishing tumor from normal tissue, though limited by heterogeneity and sparse validation [189–191]. 
Liquid biopsy with AI (ctDNA) is emerging in clinical trials, offering promise for detecting residual disease 
and recurrence, but is challenged by low sensitivity in early CRC and assay standardization issues [233]. 
Collectively, these tools highlight both opportunities and barriers, underscoring the need for pragmatic 
trials, diverse datasets, transparent validation, and equity-focused implementation.

CAD for colonoscopy readiness: early adoption, with FDA-approved tools in use. Performance: 
improves adenoma detection in trials. Limitations: mixed results in real-world practice; dependent on 
visualization quality and bowel preparation. Applicability: useful adjunct for polyp detection but requires 
skilled operators.

AI in radiology (CT/MRI) readiness: moderate, investigational stage. Performance: accurate for 
staging and localization. Limitations: dataset variability and challenges with workflow integration. 
Applicability: potential for preoperative planning and non-invasive staging.

AI in pathology (digital slides) readiness: pilot adoption in select centers. Performance: high 
accuracy in tumor classification and MSI prediction. Limitations: requires large annotated datasets and 
costly infrastructure. Applicability: supports diagnostics and reduces workload in high-volume labs.

Infrared imaging + AI (FTIR spectroscopy) readiness: early research stage. Performance: sensitive 
to tumor-normal tissue distinctions with robust biomarkers. Limitations: experimental heterogeneity and 
limited clinical validation. Applicability: promising for intraoperative margin assessment but not yet 
routine.

Liquid biopsy with AI (ctDNA) readiness: emerging, under clinical trial. Performance: detects 
minimal residual disease and recurrence. Limitations: limited sensitivity in early CRC; assay 
standardization needed. Applicability: potential for surveillance and therapy guidance once validated.
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Role of internet of things (IoT) in colorectal cancer
Recent technological advances in surgical practice have embraced the IoT, which integrates interconnected 
devices, sensors, and data analytics to optimize patient care. In CRC, IoT applications are emerging across 
prevention, diagnosis, perioperative care, and long-term follow-up [292–295].

Early detection and screening: IoT-enabled home-based screening devices, such as smart fecal test 
kits and wearable biosensors, can continuously monitor biomarkers and relay results directly to healthcare 
providers. This real-time data sharing may enhance adherence to CRC screening programs and facilitate 
early diagnosis.

Surgical practice and intraoperative monitoring: In minimally invasive colorectal surgery, IoT-
based smart instruments and connected laparoscopic systems improve precision, workflow, and safety. 
Integration with ML further enhances intraoperative decision-making, potentially reducing complications 
and improving oncological outcomes.

Postoperative care and survivorship: IoT-enabled wearables and mobile health platforms allow 
remote monitoring of vital signs, bowel function, and quality-of-life indicators after CRC surgery. These 
tools support early detection of complications, personalized rehabilitation, and continuity of care.

Data-driven personalized medicine: By linking patient-generated health data with electronic health 
records and AI-driven analytics, IoT provides a foundation for predictive modeling in CRC risk assessment, 
prognosis, and tailored treatment strategies.

Despite its promise, challenges remain in ensuring data security, interoperability, and equitable access, 
especially in low-resource settings. Nevertheless, IoT represents a transformative step toward connected, 
patient-centered CRC care [296].

Discussion
AI has emerged as a transformative force in CRC screening and diagnosis, yet its integration into real-world 
practice reveals several unresolved challenges. While the USPSTF has established comprehensive CRC 
screening guidelines emphasizing early detection and test accessibility, a critical but often overlooked 
barrier involves diagnostic coding. When a colonoscopy is ordered as a “screening colonoscopy,” it is 
typically covered by insurance at minimal or no cost. Conversely, procedures coded as “diagnostic 
colonoscopies,” such as those performed for patients presenting with rectal bleeding or after a positive non-
invasive test, may not be fully reimbursed, leaving patients responsible for substantial out-of-pocket costs 
[297]. These discrepancies extend to follow-up procedures after positive FIT or stool DNA assays, where 
the confirmatory colonoscopy is often reclassified as diagnostic rather than screening. Such financial 
disincentives may inadvertently discourage patients from participating in non-invasive testing despite its 
proven effectiveness and convenience.

Beyond systemic coding and reimbursement challenges, AI-driven tools hold great promise for 
improving CRC screening accuracy, enhancing polyp detection, and enabling more individualized treatment 
strategies through the integration of radiologic, pathologic, and genomic data. However, AI’s performance 
remains contingent on the quality of visual information provided during endoscopic procedures. The 
maxim “AI cannot detect what it cannot see” highlights its dependency on operator technique and 
visualization quality. Incomplete mucosal inspection due to colonic folds, residual stool, or suboptimal 
bowel preparation can lead to missed lesions and reduced diagnostic accuracy [176]. As such, technological 
advances must coincide with rigorous procedural standards and comprehensive operator training.

Evidence from clinical studies underscores the variability of AI performance between controlled and 
pragmatic environments. Ladabaum et al. (2023) [289] demonstrated that CAD systems did not 
significantly improve polyp detection rates among colonoscopists in real-world settings, contrasting with 
earlier randomized trials and meta-analyses showing improved ADR under experimental conditions [227, 
228, 298–302]. This discrepancy underscores the persistent gap between experimental efficacy and 
practical effectiveness. Factors such as operator dependency, variation in bowel preparation, and system 
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integration influence outcomes. Additional concerns include dataset bias, the generalizability of training 
populations, and whether excessive reliance on CAD may erode traditional diagnostic competencies among 
gastroenterology trainees. Several fellowship directors have expressed apprehension that overdependence 
on AI-assisted devices could impede the development of essential observational and interpretive skills 
required for independent clinical judgment. These concerns align with broader issues regarding model 
transparency, accountability, and long-term clinical utility [237, 238, 303].

Collectively, these findings highlight the need for a balanced approach that integrates AI as an adjunct 
rather than a substitute for human expertise. While AI can augment lesion detection, standardize quality 
metrics, and provide real-time decision support, its success ultimately depends on maintaining operator 
proficiency, ensuring rigorous validation, and addressing systemic and ethical constraints.

Next steps
Moving forward, the integration of AI into CRC screening should focus on evidence-based, equitable, and 
transparent implementation strategies. Large-scale, multicenter pragmatic trials are needed to validate 
CAD and ML models across diverse patient populations and practice settings, ensuring reproducibility and 
generalizability beyond controlled environments [238]. Refinement of algorithms to mitigate bias, enhance 
interpretability, and ensure continuous learning within regulatory frameworks will be essential for clinical 
trust and adoption [237].

Parallel to technical advancements, structured training programs should educate clinicians on AI-
assisted workflows without diminishing traditional diagnostic skill development. AI should serve as a 
complement to, not a replacement for, the human eye—providing feedback, identifying overlooked regions, 
and reinforcing procedural completeness. Integration within electronic health record and imaging 
platforms should prioritize workflow efficiency, data security, and algorithmic transparency [303].

Finally, addressing systemic barriers such as diagnostic coding inconsistencies and financial inequities 
is essential to ensure that screening innovations translate into real-world health benefits. Policy efforts 
should advocate for insurance frameworks that classify follow-up colonoscopies after positive non-invasive 
tests as screening procedures, reducing patient cost burdens and improving adherence. Through 
interdisciplinary collaboration among gastroenterologists, radiologists, data scientists, ethicists, and 
policymakers, AI can evolve from an experimental adjunct to a practical, equitable, and ethically grounded 
instrument in the global effort to reduce CRC mortality.

Conclusions
CRC continues to represent a major public health challenge, demanding innovative yet practical approaches 
that improve early detection and outcomes. AI has emerged as a pivotal component in this evolution, 
enhancing diagnostic precision and offering opportunities for individualized, data-driven care. However, its 
ultimate impact will depend on how effectively technology is aligned with the realities of clinical practice, 
patient equity, and system-level integration.

As the field advances, emphasis should shift from proof-of-concept demonstrations to measurable 
improvements in patient outcomes, workflow efficiency, and accessibility. The successful adoption of AI-
driven screening requires not only technological refinement but also robust validation, transparent 
regulation, and sustained clinician engagement. Importantly, ethical stewardship—encompassing data 
integrity, patient trust, and equitable access—must remain at the forefront of AI implementation.

Looking ahead, a multidisciplinary framework that unites clinicians, data scientists, health economists, 
and policymakers will be critical to ensure that innovation translates into population-level benefit. By 
coupling precision technologies with health-system reform and patient-centered delivery models, the 
integration of AI into CRC screening and diagnosis can meaningfully contribute to reducing disease burden 
and improving long-term outcomes worldwide.
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