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Abstract

Background: Although accurate pain assessment is crucial in clinical care, pain evaluation is traditionally
based on self-report or observer-based scales. Artificial intelligence (AI) applied to facial expression
recognition is promising for objective, automated, and real-time pain assessment.

Methods: The study followed PRISMA guidelines. We searched PubMed/MEDLINE, Scopus, Web of Science,
Cochrane Library, and the IEEE Xplore databases for the literature published between 2015 and 2025 on
the applications of Al for pain assessment via facial expression analysis. Eligible studies included original
articles in English applying different Al techniques. Exclusion criteria were neonatal /pediatric populations,
non-facial approaches, reviews, case reports, letters, and editorials. Methodological quality was assessed
using the RoB 2 tool (for RCTs) and adapted appraisal criteria for Al development studies. This systematic
review was registered in PROSPERO (https://doi.org/10.17605/0SF.I0/N9PZA).

Results: A total of 25 studies met the inclusion criteria. Sample sizes ranged from small experimental
datasets (n < 30) to larger clinical datasets (n > 500). Al strategies included machine learning models,
convolutional neural networks (CNNs), recurrent neural networks such as long short-term memory
(LSTM), transformers, and multimodal fusion models. The accuracy in pain detection varied between ~70%
and > 90%, with higher performance observed in deep learning and multimodal frameworks. The risk of
bias was overall moderate, with frequent concerns related to small datasets and lack of external validation.
No meta-analysis was performed due to heterogeneity in datasets, methodologies, and outcome measures.
Discussion: Al-based facial expression recognition shows promising accuracy for automated pain
assessment, particularly in controlled settings and binary classification tasks. However, evidence remains
limited by small sample sizes, methodological heterogeneity, and scarce external validation. Large-scale
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multicenter studies are required to confirm clinical applicability and to strengthen the certainty of evidence
for use in diverse patient populations.
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Introduction

Pain assessment is a crucial aspect of healthcare. Since it traditionally relies on subjective assessments and
observable symptoms, potential inaccuracies and delays in effective intervention can occur [1]. In recent
years, automatic pain assessment (APA) has emerged as a research area of significant interest [1, 2]. This
complex set of approaches is aimed at objectively evaluating pain. Therefore, APA can enable
individualized, patient-centered care, helping healthcare providers and caregivers to develop timely and
appropriate interventions for improving pain management and quality of life [3].

Interestingly, different strategies have been implemented for APA. They encompass biosignal-based
investigations and behavior-based approaches. Recognition of facial expressions is the most investigated
behavior for APA [4]. Given the significant advancements in the field of automatic facial image analysis
through computer vision models, research on pain detection from facial expressions is encouraged [5].
Specifically, many approaches focus on the analysis of action units (AUs). They are the smallest visually
observable facial muscle movements codified by the Facial Action Coding System (FACS). It is a
standardized tool where each AU corresponds to the activation of one or more facial muscles [3-5].
Furthermore, in the context of multimodal strategies for APA research, AUs are often combined with other
behaviors or biosignals, such as electrocardiography (ECG)-derived parameters, electrodermal activity
(EDA), photoplethysmography (PPG), respiratory rate, and vocal features [6, 7].

Nevertheless, despite their interesting promises, the reliable application of these methods in pain
evaluation is still an open challenge. These unresolved research questions concern the selection and
standardization of datasets, the choice of artificial intelligence (Al) models and architectures, the design of
processing pipelines, and the need for both internal and external validation in real-world conditions.
Moreover, their applicability across different clinical contexts, such as acute versus chronic pain, and in
diverse care settings, from emergency departments to palliative care, should be carefully investigated [8, 9].

Objective

The objective was to summarize and critically evaluate the evidence of published studies between 2015 and
2025 on the application of Al for pain assessment through the analysis of facial expressions. The review
addressed the following question: “What Al-based methods have been applied to detect or assess pain from
facial expressions, and what is their accuracy and applicability in clinical or experimental settings?”.

Materials and methods
Literature search strategy

The search strategy was developed in line with the PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) guidelines [10].

The systematic search was conducted in the main biomedical and computer databases, including
PubMed/MEDLINE, Scopus, Cochrane Library, and Web of Science, integrated by IEEE Xplore for the
literature in engineering and computer science. To ensure completeness, references of the selected articles
and relevant citations were also manually checked. Only studies published in the period 1 January 2015-31
July 2025 were considered. The latest electronic search was completed in July 2025. Search records were
managed in the Rayyan software [11].
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Eligibility criteria

We included articles addressing techniques for APA through facial expression analysis. Studies conducted
on adult patients of different clinical conditions, without restrictions related to the care setting (e.g.,
hospital, intensive care, outpatient, or experimental setting), were considered eligible. A mandatory
comparator was not required; however, when present, traditional pain assessment tools (e.g., visual
analogue scale, numeric rating scale, clinical observation) were evaluated.

Studies not related to the assessment of pain, opinion-only articles, editorials, conference abstracts
without complete data, works that used non-Al-based approaches, or that employed Al in contexts
unrelated to facial recognition were excluded.

Only peer-reviewed studies published in English were included. Unpublished articles, not peer-
reviewed manuscripts, technical reports, or grey literature were not considered.

Search strategy
The search strategy was developed according to the PCC (Population, Concept, Context) framework and
tailored for each database.

The search terms combined controlled vocabulary (e.g., MeSH) and free-text words related to artificial

» o« Y »n o«

intelligence (“artificial intelligence”, “machine learning”, “deep learning”, “neural networks”, “computer

» o« » o«

vision”), pain assessment (“pain assessment”, “pain detection”, “pain evaluation

» o« » o«

, “pain monitoring”, “pain
recognition”, “pain quantification”, “pain scoring”), and facial expressions (“facial expression recognition”,
“facial expressions”, “face recognition”, “emotion recognition”, “facial coding”, “nonverbal communication”,

“visual perception”).
Filters were applied to restrict results to:
¢ Years of publication: 2015-2025;
e Language: English;
» Study design: primary research articles (excluding reviews, case reports, letters, and editorials);

¢ Population: adult humans (excluding neonatal and adolescent populations).

Selection process and data collection

After removing duplicates, titles, and abstracts of all retrieved searches were independently screened by
two reviewers (V Cerrone, MC) to assess if they met the inclusion criteria. Full texts of the included studies
were then retrieved and reviewed for final selection. Disagreements were resolved through consultation
with a third reviewer (DE). For each included study, two reviewers (V Cascella, MRM) independently
extracted data using a standardized form developed for this review. Extracted information included study
characteristics (authors, year, setting, population), methodological details, Al approaches applied, datasets
used, and main outcomes. Discrepancies in data extraction were resolved through consensus.

Data items

For each included study, we extracted information on study characteristics (authors, year of publication,
country, and setting), study population (sample size, age range, clinical condition), methodological design,
Al approach (machine learning or deep learning algorithm used), type of dataset employed (public or
clinical), and main outcomes. Outcomes of interest included accuracy, sensitivity, specificity, F1-score, area
under the receiver operating characteristic curve (AUROC), and other reported performance metrics.
Additional variables collected were funding sources, validation strategy (e.g., cross-validation, external
validation), and whether the study involved real-world clinical implementation.

Study risk of bias assessment

Two reviewers (MRM, V Cascella) independently rated the methodological quality of all included studies
using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) [12]. As recommended by the
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guidelines, the risk of bias was described and assessed for all primary outcomes evaluated in each study.
Any disagreements about the methodological quality were resolved through consensus.

Effect measures

The primary effect measures considered were accuracy, sensitivity, specificity, F1-score, AUROC, and other
key Al metrics, as reported in the original studies.

Synthesis methods

Given the methodological heterogeneity across studies (e.g., different Al algorithms, datasets, and
outcomes), a narrative synthesis was conducted. Studies were grouped by type of dataset (clinical vs.
benchmark/public datasets) and by Al method applied (machine learning vs. deep learning). Results were
tabulated to allow for structured comparison of study characteristics and main findings. No quantitative
meta-analysis was conducted due to variability in outcome measures and study designs.

Reporting bias assessment

Asymmetry or reporting bias was not formally assessed through statistical tests, since no meta-analysis
was performed. However, we noted whether studies selectively reported only favorable performance
metrics or failed to provide confidence intervals.

Certainty assessment

Given the methodological nature of the review and the lack of homogeneity across outcomes, the certainty
of the body of evidence was not graded using GRADE. Instead, emphasis was placed on highlighting
recurring strengths and limitations of the included studies, as well as identifying areas of consistency
versus heterogeneity.

Results
Study selection

The literature search generated 79 references (Scopus = 16, PubMed = 31, Web of Science = 4, Cochrane
Library = 2, IEEE = 26), of which 25 studies met our inclusion criteria. Numbers and reasons for exclusion
at each stage are reported in Figure 1. The full search strategy for each database is reported in Table S1.

During the full-text review, four studies were excluded despite initially appearing to meet the inclusion
criteria. The study by Chan et al. [13] was excluded because it was only an abstract (conference proceeding)
and did not provide sufficient methodological details for inclusion. Other manuscripts were excluded [4,
14-16]. Specifically, they failed to focus on facial expression-based pain assessment [4, 14, 16], or we found
a lack of Al strategies [15].

Study characteristics

In this systematic review, a total of 25 studies published between 2015 and 2025 were included [17-41].
Most of this scientific output concerned experimental or feasibility studies. The number of participants
varied widely, ranging from small experimental samples of fewer than 30 healthy volunteers exposed to
controlled pain stimuli (e.g., cold pressor or heat pain tests) to large clinical datasets exceeding 500
postoperative patients.

The population covered different contexts, such as healthy adults in laboratory conditions, surgical and
perioperative patients, intensive care unit (ICU) patients, older adults with dementia, and oncology
patients. While the common focus of these studies was the use of Al applied to facial expressions for the
automatic detection or quantification of pain, some studies also integrated multimodal data (e.g., speech,
audio, physiological signals), though facial analysis remained the primary input modality.

About the Al methods, researchers employed different Al modalities. They ranged from classical
machine learning algorithms (e.g., random forests and support vector machines) to deep learning
approaches. Artificial neural network models included convolutional neural networks (CNNs), often
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Figure 1. PRISMA flow diagram. Adapted from [10]. © 2019 The Authors. Licensed under a Creative Commons Attribution (CC
BY 4.0).

combined with recurrent neural networks (RNNs) or long short-term memory (LSTM) units [18, 27, 29, 35,
37]. More recent contributions introduced vision transformers (ViTs). These architectures leverage self-
attention mechanisms to process images as sequences of patches, thereby improving robustness in
different challenging conditions such as ICU scenarios [17, 31]. In parallel, attention-based deep learning
architectures, such as enhanced residual attention-based subject-specific network (ErAS-Net), were
specifically designed to enhance feature selection and improve classification performance across datasets
[33]. A distinct subgroup of studies focused on multimodal approaches, integrating facial data with
additional modalities such as speech, audio, or physiological signals [20, 22, 28, 38]. These systems
consistently outperformed unimodal facial analysis, particularly in challenging populations such as ICU
patients with partial facial occlusion [40] or older adults with dementia [36], although at the expense of
increased computational and methodological complexity. Other innovative approaches included the
application of transfer entropy to landmark time-series analysis [25], surface electromyographic (SEMG)
signals to capture subtle muscle activation [32], and binary classifiers trained on facial AUs derived from
the FACS [21, 26].
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The reported outcomes were generally expressed as accuracy, area under the curve (AUC), sensitivity,
specificity, and F1-score, with many studies achieving high performance on benchmark datasets, such as
Delaware [42], University of Northern British Columbia Pain Expression dataset (UNBC)-McMaster dataset
[43], or on locally collected clinical datasets.

The summary of the individual study characteristics, including setting and number of patients included,
population, approach, and inclusion criteria, Al method, and reported outcomes, is presented in Table 1.

Table 1. Summary of the included studies.

Source/Year Dataset/n Population Approach/inclusion Al method Outcome (as
criteria reported)
Bargshady  Lab datasets  Adults Acute Pain Datasets  Video vision Accuracy 66.9%
etal. [17], (AI4PAIN: 51; (video-based) transformers (AI4PAIN), 79.9%
2024 BioVid: 87) (ViViTs) (BioVid),
outperforming
ResNet baselines
Bargshady UNBC- Adults Benchmark datasets = Ensemble DL model Accuracy > 89%,
et al. [18], McMaster, (CNN + RNN hybrid, ROC 0.93; robust
2020 MintPAIN EDLM) vs. single-stream
CNN
Bellal et al. ICU, 30 Critically ill, non- NEVVA?® pilot device ~ Al-based computer  Feasible, device
[19], 2024 patients communicative adults calibration vision integrated in calibrated against
devices expert
assessment
Benavent- UNBC, BioVid Adults Public pain Transformer-based  Accuracy > 96%
Lledo et al. expression datasets ~ computer vision (UNBC), > 94%
[20], 2023 (BioVid); high
precision, recall
Cascellaet  Oncology + Cancer patients, adults Binary classifier using Neural network (17 Accuracy ~94%;
al. [21], 2024 public datasets AUs AUs, OpenFace) AUROC 0.98
(Delaware,
UNBC)
Cascellaet  Oncology Adult cancer patients Video + audio (facial + Multimodal Al Feasibility shown;
al. [22], 2024 speech) (speech emotion + early accuracy
facial expression) promising
Cascellaet Clinical Adults Real-time pain YOLOVS8 object Feasible, metrics
al. [23], 2023 feasibility (real- detection from facial ~ detection reported with
time) videos good accuracy
(JPR)
Casti et al. Clinical/Lab Adults Automatic pain DL-based system Benchmarked;
[24], 2019 setting detection calibration ~ (CNN) addressed inter-
fintra-observer
variability
Casti et al. Public dataset  Adults Landmark time-series  Transfer entropy TE-based
[25], 2021 (video pain analysis (TE) + ML classifiers approach
sequences) improved
accuracy, robust
to noise
Chen et al. UNBC +lung  Adults, including patients Pain-related AUs Weakly supervised  Accuracy 87%,
[26], 2022 cancer dataset with lung cancer MIL/MCIL AUC 0.94
(UNBC); validated
also on clinical
lung cancer data
Duttaand M UNBC + live Adults Real-time video- Hybrid DL model Validated in real-
[27], 2018 video based pain time; high
recognition accuracy reported
Ghosh etal. UNBC, BioVid Adults Multimodal (facial + Ensemble DL with Accuracy up to
[28], 2025 + VIVAE audio) CNN + fusion 99.5% (3-class),
(audio) 87.4% (5-class);
audio peak 98%
Guo et al. Cold pressor  Adults Cold pain induction CNN (Inception V3,  F1 score 79.5%
[29], 2021 experiment; 29 VGG-LSTM, (personalized
subjects ConvLSTM) ConvLSTM)
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Table 1. Summary of the included studies. (continued)

Source/Year Dataset/n Population Approach/inclusion Al method Outcome (as
criteria reported)
Heintz et al. Perioperative, Adults perioperative Computer vision CNN-based Strong AUROC,
[30], 2025 multicenter nociception detection external
(503 pts) validation, and
feasibility proven
Mao et al. UNBC Adults Pain intensity Conv-Transformer Outperformed
[31], 2025 estimation (multi-task joint SOTA; improved
optimization) regression +
classification
Mieronkoski 31 healthy Adults Pain induction + ML (supervised on Modest c-index
et al. [32], volunteers, sEMG muscle activation) 0.64; eyebrow/lip
2020 experimental muscles most
predictive
Morsaliand UNBC, BioVid Adults Public Pain Datasets  ErAS-Net (attention- Accuracy 98.8%

Ghaffari [33],
2025

Park et al.
[34], 2024

Pikulkaew et
al. [35], 2021

Rezaei et al.
[36], 2021

Rodriguez et
al. [37], 2022

Semwal and
Londhe [38],
2024

Tan et al.
[39], 2025

Yuan et al.
[40], 2024

Zhang et al.
[41], 2025

155 pts post-
gastrectomy

UNBC dataset

Dementia
patients, LTC
setting

UNBC + CK

Multimodal
dataset

200 patients

ICU, public + 2
new datasets

503 postop
patients +
volunteers

Postoperative adults

Adults

Older adults, dementia

Adults

Adults

Adults
perioperative/interventional

Critically ill adults
(ventilated)

Adults postoperative

Clinical recordings

Sequential facial
images

Unobtrusive video
dataset

Raw video frames

Facial + multimodal
integration

Video recording (STA-

LSTM)

Facial occlusion
management

Clinical Pain Dataset
(CPD; 3,411 images)
+ Simulated Pain
Dataset (CD)

based DL)

ML models (facial,
AN, vitals)

CNN (DL motion
detection)

Deep learning +
pairwise/contrastive
training

CNN + LSTM

Multi-stream spatio-
temporal network

STA-LSTM DL
network

AU-guided CNN
framework

VGG16 pretrained

(binary, UNBC);
94.2% (4-class);
cross-dataset
BioVid 78%

AUROC 0.93
(facial); better
than ANl/vitals

Precision: 99.7%
(no pain), 92.9%
(becoming pain),
95.1% (pain)

Outperformed
baselines;
validated on
dementia cohort

Outperformed
SOTA AUC
(UNBC);
competitive on
CK

Showed robust
multiparametric
pain assessment

Accuracy,
sensitivity, recall,
F1 = 0.92; clinical
feasibility

Superior
performance in
binary, 4-class,
regression tasks

AUROC 0.898
(CPD severe
pain), 0.867 (CD);
software
prototype
developed

Al: artificial intelligence; ResNet: Residual Network; UNBC: University of Northern British Columbia Pain Expression dataset;
MIntPAIN: Multimodal International Pain dataset; DL: deep learning; CNN: convolutional neural network; RNN: recurrent neural
network; EDLM: ensemble deep learning model; ROC: receiver operating characteristic; ICU: intensive care unit; NEVVA: Non-
Verbal Visual Analog device; AUs: action units; AUROC: area under the receiver operating characteristic curve; YOLOvV8: You
Only Look Once version 8; JPR: Journal of Pain Research; ML: machine learning; AUC: area under the curve; MIL: multiple
instance learning; MCIL: multiple clustered instance learning; VIVAE: Visual and Vocal Acute Expression dataset; VGG: visual
geometry group; LSTM: long short-term memory; ConvLSTM: convolutional long short-term memory; SOTA: state-of-the-art;
sEMG: surface electromyography; ErAS-Net: enhanced residual attention-based subject-specific network; ANI: analgesia
nociception index; LTC: long-term care; CK: Cohn-Kanade dataset; STA-LSTM: Spatio-Temporal Attention Long Short-Term

Memory; CD: Control Dataset.

Risk of bias in studies

Since most included studies were observational, experimental, or methodological (not RCTs), the RoB 2 tool
was adapted to the specific study designs. Specifically, the category “Low risk” was assigned when the
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methods, datasets, and validation were clearly reported; “Some concerns” was used when limitations such
as small samples, lack of external validation, or simulation-only data were present (Table 2).

Table 2. Risk of bias of included studies.

Author/Year Country Intervention/Al Timing Outcomes Validation Quality
approach measurement  of tool assessment (RoB 2
(Y/N) overall)
Bargshady et  Australia/USA Vision Acute pain Accuracy, Y Low risk (well-
al. [17], 2024 transformer datasets comparison with reported external
baselines datasets)
Bargshady et  Australia/Netherlands Ensemble CNN Lab datasets Accuracy, ROC Y Some concerns (no
al. [18], 2020 + RNN external clinical
validation)
Bellal et al. France NEVVA® device ICU pilot Device Y Some concerns
[19], 2024 (Al facial) calibration vs. (small sample,
experts feasibility only)
Benavent- Spain Transformer- Lab datasets Accuracy, F1 Y Low risk (robust
Lledo et al. based CV datasets,
[20], 2023 transparent
methods)
Cascella et al. ltaly Binary AU- Oncology Accuracy, Y Some concerns
[21], 2024 based classifier outpatient AUROC (limited clinical
cohort)
Cascella et al. Italy Multimodal Clinical trial Classification Y Low risk (registered
[22], 2024 (speech + NCT04726228 accuracy trial, multimodal)
facial)
Cascella et al. ltaly YOLOv8 Lab/clinical Detection Y Some concerns
[23], 2023 feasibility metrics (pilot, limited
validation)
Casti et al. Italy DL pain Lab Accuracy, Y Low risk (strong
[24], 2019 intensity system calibration methodological
rigor)
Casti et al. Italy Transfer Lab Accuracy, Y Low risk
[25], 2021 entropy + ML robustness
Chen et al. USA AU Clinical + lab Accuracy, AUC Y Low risk
[26], 2022 combinations +
MIL
Dutta and M India Hybrid DL Lab + simulated Accuracy, Y Some concerns
[27], 2018 computational (older methods,
metrics limited clinical data)
Ghosh et al. India/Switzerland Multimodal Lab datasets Accuracy 2-5 Y Low risk
[28], 2025 (facial + audio) classes)
Guo et al. China CNN/LSTM Cold pressor F1 score Y Some concerns
[29], 2021 (small sample)
Heintz et al. USA multicenter CNN-based Perioperative AUROC, Brier Y Low risk (robust
[30], 2025 score clinical dataset)
Mao et al. China Conv- Lab Regression + Y Low risk
[31], 2025 Transformer classification
multitask
Mieronkoski et Finland sEMG + ML Experimental c-index, features Y Some concerns
al. [32], 2020 pain (small sample,
modest accuracy)
Morsali and Iran/UK ErAS-Net Lab datasets Accuracy, cross- Y Low risk
Ghaffari [33], dataset
2025
Park et al. Korea ML (facial, ANI, Postoperative = AUROC Y Low risk (clinical
[34], 2024 vitals) real-world)
Pikulkaew et Thailand CNN Lab Precision, Y Low risk
al. [35], 2021 accuracy
Rezaeietal. Canada DL Long-term care Sensitivity, Y Low risk (validated
[36], 2021 specificity on target
population)
Rodriguez et Spain/Denmark CNN + LSTM Lab AUC, accuracy Y Low risk

al. [37], 2022
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Table 2. Risk of bias of included studies. (continued)

Author/Year Country Intervention/Al Timing Outcomes Validation Quality
approach measurement  of tool assessment (RoB 2

(Y/N) overall)

Semwal and  India Spatio-temporal Lab Accuracy Y Some concerns (no

Londhe [38], network external validation)

2024

Tan et al. [39], Singapore STA-LSTM Clinical Accuracy, F1 Y Low risk

2025

Yuan et al. China AU-guided CNN ICU, ventilated  Accuracy, Y Low risk

[40], 2024 pts regression

Zhang et al. China VGG16 Postoperative AUROC, F1 Y Low risk

[41], 2025 pretrained

Al: artificial intelligence; CNN: convolutional neural network; RNN: recurrent neural network; ROC: receiver operating
characteristic; NEVVA: Non-Verbal Visual Analog device; ICU: intensive care unit; CV: computer vision; AU: action unit;
AUROC: area under the receiver operating characteristic curve; YOLOv8: You Only Look Once version 8; ML: machine
learning; MIL: multiple instance learning; AUC: area under the curve; DL: deep learning; LSTM: long short-term memory; sEMG:
surface electromyography; ErAS-Net: enhanced residual attention-based subject-specific network; ANI: analgesia nociception
index; STA-LSTM: Spatio-Temporal Attention Long Short-Term Memory.

Overall, we assigned low risk of bias to studies with robust datasets, transparent methodology, external
validation, or those conducted within the framework of a registered clinical trial. Studies judged as having
some concerns were typically characterized by small sample sizes, absence of external validation, or
approaches tested only in laboratory-controlled settings, which can limit their generalizability. None of the
studies included clearly fell into the category of high risk of bias.

Results of individual studies

The included studies reported heterogeneous outcomes reflecting the performance of Al applied to facial
expression recognition for pain assessment. Most studies evaluated models on either publicly available
datasets [e.g.,, UNBC-McMaster Shoulder Pain, BioVid Heat Pain, Multimodal International Pain dataset
(MIntPAIN)] or on original clinical cohorts (perioperative, postoperative, oncology, or ICU patients).
Outcomes were mainly expressed as accuracy, AUROC, sensitivity, specificity, recall, and F1-scores.
Confidence intervals were rarely reported.

Experimental and dataset-based studies demonstrated very high performance. Bargshady et al. [18]
proposed an ensemble deep learning framework integrating CNN and RNN, reaching > 89% accuracy and
AUC 0.93 on MIntPAIN and UNBC. Chen et al. [26] introduced a weakly supervised approach based on
combinations of AUs, achieving 87% accuracy with AUC 0.94 on UNBC. Morsali and Ghaffari [33] developed
ErAS-Net, an attention-based deep learning model, achieving 98.7% accuracy for binary and 94.2% for four-
class pain classification, with cross-dataset validation on BioVid still showing robust results (78.1%).
Rodriguez et al. [37] combined CNNs and LSTMs for temporal analysis, outperforming state-of-the-art
methods on UNBC. Pikulkaew et al. [35] applied deep learning to 2D motion and expressions, achieving >
95% accuracy across three pain classes.

Transformer-based methods showed promise. Bargshady et al. [17] employed video ViTs (ViViTs) on
AI4PAIN and BioVid datasets, with accuracies of 66.9% and 79.9%, outperforming CNN baselines. Mao et al.
[31] refined Conv-Transformer architectures with multi-task learning, improving estimation of continuous
pain intensities on UNBC.

Clinical studies confirmed feasibility in real-world settings. Zhang et al. [41] applied VGG16 to > 3,000
images from 503 postoperative patients, reporting AUROC 0.898 for severe pain detection and consistent
F1-scores. Heintz et al. [30] validated CNN-based nociception recognition perioperatively, reporting robust
AUROC and calibration (Brier score) across multicenter datasets. Park et al. [34] compared models in 155
gastrectomy patients, showing that facial-expression machine learning achieved an AUROC 0.93 for severe
postoperative pain, outperforming analgesia nociception index (ANI) and vital signs. Bellal et al. [19] tested
the NEVVA® device in ICU patients, showing the feasibility of automated detection in non-communicative
patients.
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Other methodological innovations included electromyography of facial muscles [32], showing modest
predictive capacity (c-index 0.64), and transfer entropy applied to facial landmarks [25], which
demonstrated robustness to uncertainty. Earlier, Casti et al. [24] benchmarked multi-expert calibration,
confirming reproducibility of automated systems. Moreover, Dutta and M [27] provided proof-of-concept
evidence for real-time video analysis.

Special populations were investigated. Rezaei et al. [36] validated a deep learning system in older
adults with dementia, showing reliable detection where self-report is not possible. Yuan et al. [40]
developed an AU-guided CNN for ICU patients with occluded faces (ventilation), reporting strong
performance across binary, multiclass, and regression tasks. On the other hand, oncology-related
contributions are limited. In 2023, Cascella et al. [23] developed a binary classifier on cancer patients’
videos, achieving ~94% accuracy and an AUROC of 0.98. Later, the same authors integrated facial and vocal
features in oncologic pain monitoring, confirming feasibility in clinical use [21] and subsequently also
tested the You Only Look Once version 8 (YOLOv8) architecture for real-time pain detection, reporting
strong detection performance [22].

Several multimodal approaches combined facial expression with additional modalities. Benavent-Lledo
et al. [20] used computer vision and multimodal signals, achieving > 96% accuracy and > 94% F1-score on
UNBC and BioVid. Ghosh et al. [28] proposed an IoT-enabled system integrating facial and audio data,
reaching near-perfect accuracy (> 99%) in binary and three-class classification. Semwal and Londhe [38]
designed a spatio-temporal behavioral system with multimodal integration, confirming the added value of
combining sources.

In summary, across the 25 included studies [17-41], Al-based facial expression recognition for pain
consistently demonstrated high performance in controlled datasets and increasing feasibility in clinical
populations (postoperative, perioperative, oncology, ICU, dementia). The overall result ranged from modest
(with an accuracy c-index of 0.64) [32] to excellent (with an accuracy > 98%) [33]. Figure 2 illustrates
performance (i.e., accuracy) ranges across different Al methods.

Multimodal F ]

Transformers |

RNN/Hybrid - —_——

CNNs

ML (classical) |
60 65 70 75 80 85 90 95 100
Reported Accuracy (%)

Figure 2. Al methods used for facial expression-based pain assessment (2015-2025) and their reported performance
ranges (i.e., accuracies). Traditional machine learning (ML) approaches showed moderate performance (65-85%).
Convolutional neural networks (CNNs) and RNN/hybrid (recurrent neural network) models achieved higher accuracy (70-95%
and 75-93%, respectively). Transformer-based models reached accuracies ranging from 66% to 98%. Multimodal approaches
(facial + audio and/or physiological signals) consistently outperformed unimodal systems, achieving accuracies up to 99.5%.

Discussion

This systematic review highlights both the promise and the limitations of Al applied to facial expression
analysis for APA. Across 25 studies published between 2015 and 2025, Al-based systems demonstrated
consistently strong performance in controlled settings, with reported accuracies often exceeding 90% and
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AUROC values ranging between 0.87 and 0.98 in clinical studies [21, 30, 34, 41]. Collectively, these results
support the feasibility of APA recognition and underscore the potential of Al to provide objective, real-time
assessments in contexts where traditional self-report is unreliable or unavailable. On the other hand, it is
important to note that not all approaches yielded successful outcomes. Some studies, for instance, reported
modest or even poor performance. Specifically, performance varied markedly depending on study design,
population, and dataset source. For example, models trained and validated exclusively on benchmark
datasets (e.g.,, UNBC-McMaster, BioVid, MIntPAIN) achieved very high accuracies, sometimes exceeding
95% [18, 20, 26, 33, 35, 37], although their generalizability to clinical cohorts was limited. In contrast,
studies conducted in real-world clinical populations, including perioperative patients [30, 39], oncology
cohorts [21-23], ICU patients [19, 40], and older adults with dementia [36], reported slightly lower but
more clinically relevant performance. Importantly, this gap is more evident for analyses relying on small
datasets, limited facial visibility (e.g., ICU settings), or when applying methods such as SEMG-based models
that achieved only moderate predictive value (c-index 0.64) [32]. These negative or suboptimal results
highlight the fragility of certain approaches and underscore the need for robust, diverse, and clinically
validated datasets. Moreover, when comparing studies using benchmark datasets with those relying on
clinical populations, it emerges that while benchmark-based models frequently reported very high
accuracies (> 90%) [18, 20, 26, 33, 35, 37], their clinical generalizability was often limited. Conversely,
clinical studies, although achieving slightly lower performance, provided more realistic insights into real-
world feasibility and robustness [19, 21-23, 30, 34, 36, 40, 41].

Multimodal approaches integrating facial expressions with speech, audio, or physiological signals
generally outperformed unimodal systems [20, 22, 28, 38], particularly in challenging scenarios such as ICU
patients [40] or dementia patients [36]. Nevertheless, these models also introduced greater complexity,
raising issues of computational burden, implementation feasibility, and interpretability in clinical practice.

Concerning the Al-based strategies, methodological evolution across the last decade reflects a shift
from classical CNN- and RNN-based pipelines to more sophisticated approaches involving transformer-
based and multimodal systems. Specifically, compared to CNNs, ViTs, and hybrid Conv-Transformer models
have demonstrated superior ability to capture long-range dependencies and subtle spatio-temporal
dynamics in facial expressions [17, 31]. Similarly, attention-based networks such as ErAS-Net provide
efficient feature selection and cross-dataset robustness, achieving accuracies close to 99% in binary pain
classification [33]. In parallel, multimodal fusion architectures that integrate facial cues with audio, speech
emotion recognition, or physiological signals have consistently improved F1-scores and AUROC values
compared with unimodal models [20, 22, 28, 38]. These advances highlight a trend toward increasingly
complex frameworks capable of addressing challenging clinical conditions, such as facial occlusion in ICU
patients [40] or atypical expressions in dementia [36]. Furthermore, the integration of explainable Al (XAI)
techniques and standardized multimodal datasets may represent key steps to improve transparency,
scalability, and cross-institutional generalizability.

The risk of bias was overall moderate. Studies based on larger, multicentre clinical cohorts with
transparent methodology and external validation were considered low risk [21-23, 30, 34, 41], while
smaller experimental works without external validation raised concerns [27, 32]. Importantly, no study
was deemed consistently at high risk of bias. Furthermore, selective reporting remains an issue as many
experimental studies emphasized accuracy, F1-score, or AUROC [18, 26, 29, 33, 37], while failing to report
misclassification rates, calibration statistics, or subgroup-specific results. The lack of registered protocols in
most works further increases the risk of reporting bias and reduces comparability across studies [22, 30].
Moreover, a recurrent limitation is the reliance on small, non-representative datasets and the frequent
absence of confidence intervals in reporting. These factors increase the risk of overestimating performance
and reduce the robustness of the reported findings. From the analysis, other key issues emerged. For
example, we underline that while systematic use of calibration metrics and external validation is crucial for
clinical translation, their absence in most studies represents a major barrier to clinical adoption and should
be prioritized in future research.
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Multimodal models integrating facial data with physiological or audio signals outperformed unimodal
approaches, particularly in challenging clinical scenarios. Moreover, the certainty of the evidence is best
described as moderate for binary classification tasks (pain vs. no pain), where results are consistent across
different datasets and study designs [18, 26, 33, 36], but low for more advanced applications such as pain
intensity estimation [29, 31, 32] or deployment in fragile populations [19, 36, 41]. This downgrading is
mainly due to small sample sizes, reliance on controlled datasets, and the absence of precision measures
such as confidence intervals. Consequently, dataset-related limitations strongly affected model
performance. Thus, restricted sample sizes, lack of demographic diversity, and heterogeneous annotation
protocols limited reproducibility and generalizability, especially across populations with diverse ethnic and
clinical backgrounds.

Despite these interesting results, several challenges should be addressed. The ethical implications of
Al-based pain assessment cannot be overlooked. Patient privacy in facial video datasets, the absence of
clear data sharing policies, and the limited interpretability of most deep learning models raise concerns
regarding fairness, transparency, and responsible use in clinical care.

In conclusion, the findings confirm that Al can complement traditional pain assessment, particularly in
patients unable to self-report. Nevertheless, key challenges remain before large-scale clinical adoption can
be realized. These include the need for standardized datasets reflecting real-world heterogeneity,
transparent reporting practices, and multicentre trials for evaluating Al performance across diverse
populations and settings.
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