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Abstract
Background: Although accurate pain assessment is crucial in clinical care, pain evaluation is traditionally 
based on self-report or observer-based scales. Artificial intelligence (AI) applied to facial expression 
recognition is promising for objective, automated, and real-time pain assessment.
Methods: The study followed PRISMA guidelines. We searched PubMed/MEDLINE, Scopus, Web of Science, 
Cochrane Library, and the IEEE Xplore databases for the literature published between 2015 and 2025 on 
the applications of AI for pain assessment via facial expression analysis. Eligible studies included original 
articles in English applying different AI techniques. Exclusion criteria were neonatal/pediatric populations, 
non-facial approaches, reviews, case reports, letters, and editorials. Methodological quality was assessed 
using the RoB 2 tool (for RCTs) and adapted appraisal criteria for AI development studies. This systematic 
review was registered in PROSPERO (https://doi.org/10.17605/OSF.IO/N9PZA).
Results: A total of 25 studies met the inclusion criteria. Sample sizes ranged from small experimental 
datasets (n < 30) to larger clinical datasets (n > 500). AI strategies included machine learning models, 
convolutional neural networks (CNNs), recurrent neural networks such as long short-term memory 
(LSTM), transformers, and multimodal fusion models. The accuracy in pain detection varied between ~70% 
and > 90%, with higher performance observed in deep learning and multimodal frameworks. The risk of 
bias was overall moderate, with frequent concerns related to small datasets and lack of external validation. 
No meta-analysis was performed due to heterogeneity in datasets, methodologies, and outcome measures.
Discussion: AI-based facial expression recognition shows promising accuracy for automated pain 
assessment, particularly in controlled settings and binary classification tasks. However, evidence remains 
limited by small sample sizes, methodological heterogeneity, and scarce external validation. Large-scale 
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multicenter studies are required to confirm clinical applicability and to strengthen the certainty of evidence 
for use in diverse patient populations.
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artificial intelligence, facial expression recognition, pain assessment, action units

Introduction
Pain assessment is a crucial aspect of healthcare. Since it traditionally relies on subjective assessments and 
observable symptoms, potential inaccuracies and delays in effective intervention can occur [1]. In recent 
years, automatic pain assessment (APA) has emerged as a research area of significant interest [1, 2]. This 
complex set of approaches is aimed at objectively evaluating pain. Therefore, APA can enable 
individualized, patient-centered care, helping healthcare providers and caregivers to develop timely and 
appropriate interventions for improving pain management and quality of life [3].

Interestingly, different strategies have been implemented for APA. They encompass biosignal-based 
investigations and behavior-based approaches. Recognition of facial expressions is the most investigated 
behavior for APA [4]. Given the significant advancements in the field of automatic facial image analysis 
through computer vision models, research on pain detection from facial expressions is encouraged [5]. 
Specifically, many approaches focus on the analysis of action units (AUs). They are the smallest visually 
observable facial muscle movements codified by the Facial Action Coding System (FACS). It is a 
standardized tool where each AU corresponds to the activation of one or more facial muscles [3–5]. 
Furthermore, in the context of multimodal strategies for APA research, AUs are often combined with other 
behaviors or biosignals, such as electrocardiography (ECG)-derived parameters, electrodermal activity 
(EDA), photoplethysmography (PPG), respiratory rate, and vocal features [6, 7].

Nevertheless, despite their interesting promises, the reliable application of these methods in pain 
evaluation is still an open challenge. These unresolved research questions concern the selection and 
standardization of datasets, the choice of artificial intelligence (AI) models and architectures, the design of 
processing pipelines, and the need for both internal and external validation in real-world conditions. 
Moreover, their applicability across different clinical contexts, such as acute versus chronic pain, and in 
diverse care settings, from emergency departments to palliative care, should be carefully investigated [8, 9].

Objective

The objective was to summarize and critically evaluate the evidence of published studies between 2015 and 
2025 on the application of AI for pain assessment through the analysis of facial expressions. The review 
addressed the following question: “What AI-based methods have been applied to detect or assess pain from 
facial expressions, and what is their accuracy and applicability in clinical or experimental settings?”.

Materials and methods
Literature search strategy

The search strategy was developed in line with the PRISMA (Preferred Reporting Items for Systematic 
reviews and Meta-Analyses) guidelines [10].

The systematic search was conducted in the main biomedical and computer databases, including 
PubMed/MEDLINE, Scopus, Cochrane Library, and Web of Science, integrated by IEEE Xplore for the 
literature in engineering and computer science. To ensure completeness, references of the selected articles 
and relevant citations were also manually checked. Only studies published in the period 1 January 2015–31 
July 2025 were considered. The latest electronic search was completed in July 2025. Search records were 
managed in the Rayyan software [11].
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Eligibility criteria

We included articles addressing techniques for APA through facial expression analysis. Studies conducted 
on adult patients of different clinical conditions, without restrictions related to the care setting (e.g., 
hospital, intensive care, outpatient, or experimental setting), were considered eligible. A mandatory 
comparator was not required; however, when present, traditional pain assessment tools (e.g., visual 
analogue scale, numeric rating scale, clinical observation) were evaluated.

Studies not related to the assessment of pain, opinion-only articles, editorials, conference abstracts 
without complete data, works that used non-AI-based approaches, or that employed AI in contexts 
unrelated to facial recognition were excluded.

Only peer-reviewed studies published in English were included. Unpublished articles, not peer-
reviewed manuscripts, technical reports, or grey literature were not considered.

Search strategy

The search strategy was developed according to the PCC (Population, Concept, Context) framework and 
tailored for each database.

The search terms combined controlled vocabulary (e.g., MeSH) and free-text words related to artificial 
intelligence (“artificial intelligence”, “machine learning”, “deep learning”, “neural networks”, “computer 
vision”), pain assessment (“pain assessment”, “pain detection”, “pain evaluation”, “pain monitoring”, “pain 
recognition”, “pain quantification”, “pain scoring”), and facial expressions (“facial expression recognition”, 
“facial expressions”, “face recognition”, “emotion recognition”, “facial coding”, “nonverbal communication”, 
“visual perception”).

Filters were applied to restrict results to:

Years of publication: 2015–2025;•

Language: English;•

Study design: primary research articles (excluding reviews, case reports, letters, and editorials);•

Population: adult humans (excluding neonatal and adolescent populations).•

Selection process and data collection

After removing duplicates, titles, and abstracts of all retrieved searches were independently screened by 
two reviewers (V Cerrone, MC) to assess if they met the inclusion criteria. Full texts of the included studies 
were then retrieved and reviewed for final selection. Disagreements were resolved through consultation 
with a third reviewer (DE). For each included study, two reviewers (V Cascella, MRM) independently 
extracted data using a standardized form developed for this review. Extracted information included study 
characteristics (authors, year, setting, population), methodological details, AI approaches applied, datasets 
used, and main outcomes. Discrepancies in data extraction were resolved through consensus.

Data items

For each included study, we extracted information on study characteristics (authors, year of publication, 
country, and setting), study population (sample size, age range, clinical condition), methodological design, 
AI approach (machine learning or deep learning algorithm used), type of dataset employed (public or 
clinical), and main outcomes. Outcomes of interest included accuracy, sensitivity, specificity, F1-score, area 
under the receiver operating characteristic curve (AUROC), and other reported performance metrics. 
Additional variables collected were funding sources, validation strategy (e.g., cross-validation, external 
validation), and whether the study involved real-world clinical implementation.

Study risk of bias assessment

Two reviewers (MRM, V Cascella) independently rated the methodological quality of all included studies 
using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) [12]. As recommended by the 
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guidelines, the risk of bias was described and assessed for all primary outcomes evaluated in each study. 
Any disagreements about the methodological quality were resolved through consensus.

Effect measures

The primary effect measures considered were accuracy, sensitivity, specificity, F1-score, AUROC, and other 
key AI metrics, as reported in the original studies.

Synthesis methods

Given the methodological heterogeneity across studies (e.g., different AI algorithms, datasets, and 
outcomes), a narrative synthesis was conducted. Studies were grouped by type of dataset (clinical vs. 
benchmark/public datasets) and by AI method applied (machine learning vs. deep learning). Results were 
tabulated to allow for structured comparison of study characteristics and main findings. No quantitative 
meta-analysis was conducted due to variability in outcome measures and study designs.

Reporting bias assessment

Asymmetry or reporting bias was not formally assessed through statistical tests, since no meta-analysis 
was performed. However, we noted whether studies selectively reported only favorable performance 
metrics or failed to provide confidence intervals.

Certainty assessment

Given the methodological nature of the review and the lack of homogeneity across outcomes, the certainty 
of the body of evidence was not graded using GRADE. Instead, emphasis was placed on highlighting 
recurring strengths and limitations of the included studies, as well as identifying areas of consistency 
versus heterogeneity.

Results
Study selection

The literature search generated 79 references (Scopus = 16, PubMed = 31, Web of Science = 4, Cochrane 
Library = 2, IEEE = 26), of which 25 studies met our inclusion criteria. Numbers and reasons for exclusion 
at each stage are reported in Figure 1. The full search strategy for each database is reported in Table S1.

During the full-text review, four studies were excluded despite initially appearing to meet the inclusion 
criteria. The study by Chan et al. [13] was excluded because it was only an abstract (conference proceeding) 
and did not provide sufficient methodological details for inclusion. Other manuscripts were excluded [4, 
14–16]. Specifically, they failed to focus on facial expression-based pain assessment [4, 14, 16], or we found 
a lack of AI strategies [15].

Study characteristics

In this systematic review, a total of 25 studies published between 2015 and 2025 were included [17–41]. 
Most of this scientific output concerned experimental or feasibility studies. The number of participants 
varied widely, ranging from small experimental samples of fewer than 30 healthy volunteers exposed to 
controlled pain stimuli (e.g., cold pressor or heat pain tests) to large clinical datasets exceeding 500 
postoperative patients.

The population covered different contexts, such as healthy adults in laboratory conditions, surgical and 
perioperative patients, intensive care unit (ICU) patients, older adults with dementia, and oncology 
patients. While the common focus of these studies was the use of AI applied to facial expressions for the 
automatic detection or quantification of pain, some studies also integrated multimodal data (e.g., speech, 
audio, physiological signals), though facial analysis remained the primary input modality.

About the AI methods, researchers employed different AI modalities. They ranged from classical 
machine learning algorithms (e.g., random forests and support vector machines) to deep learning 
approaches. Artificial neural network models included convolutional neural networks (CNNs), often 
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Figure 1. PRISMA flow diagram. Adapted from [10]. © 2019 The Authors. Licensed under a Creative Commons Attribution (CC 
BY 4.0).

combined with recurrent neural networks (RNNs) or long short-term memory (LSTM) units [18, 27, 29, 35, 
37]. More recent contributions introduced vision transformers (ViTs). These architectures leverage self-
attention mechanisms to process images as sequences of patches, thereby improving robustness in 
different challenging conditions such as ICU scenarios [17, 31]. In parallel, attention-based deep learning 
architectures, such as enhanced residual attention-based subject-specific network (ErAS-Net), were 
specifically designed to enhance feature selection and improve classification performance across datasets 
[33]. A distinct subgroup of studies focused on multimodal approaches, integrating facial data with 
additional modalities such as speech, audio, or physiological signals [20, 22, 28, 38]. These systems 
consistently outperformed unimodal facial analysis, particularly in challenging populations such as ICU 
patients with partial facial occlusion [40] or older adults with dementia [36], although at the expense of 
increased computational and methodological complexity. Other innovative approaches included the 
application of transfer entropy to landmark time-series analysis [25], surface electromyographic (sEMG) 
signals to capture subtle muscle activation [32], and binary classifiers trained on facial AUs derived from 
the FACS [21, 26].
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The reported outcomes were generally expressed as accuracy, area under the curve (AUC), sensitivity, 
specificity, and F1-score, with many studies achieving high performance on benchmark datasets, such as 
Delaware [42], University of Northern British Columbia Pain Expression dataset (UNBC)-McMaster dataset 
[43], or on locally collected clinical datasets.

The summary of the individual study characteristics, including setting and number of patients included, 
population, approach, and inclusion criteria, AI method, and reported outcomes, is presented in Table 1.

Table 1. Summary of the included studies.

Source/Year Dataset/n Population Approach/Inclusion 
criteria

AI method Outcome (as 
reported)

Bargshady 
et al. [17], 
2024

Lab datasets 
(AI4PAIN: 51; 
BioVid: 87)

Adults Acute Pain Datasets 
(video-based)

Video vision 
transformers 
(ViViTs)

Accuracy 66.9% 
(AI4PAIN), 79.9% 
(BioVid), 
outperforming 
ResNet baselines

Bargshady 
et al. [18], 
2020

UNBC-
McMaster, 
MIntPAIN

Adults Benchmark datasets Ensemble DL model 
(CNN + RNN hybrid, 
EDLM)

Accuracy > 89%, 
ROC 0.93; robust 
vs. single-stream 
CNN

Bellal et al. 
[19], 2024

ICU, 30 
patients

Critically ill, non-
communicative adults

NEVVA® pilot device 
calibration

AI-based computer 
vision integrated in 
devices

Feasible, device 
calibrated against 
expert 
assessment

Benavent-
Lledo et al. 
[20], 2023

UNBC, BioVid Adults Public pain 
expression datasets

Transformer-based 
computer vision

Accuracy > 96% 
(UNBC), > 94% 
(BioVid); high 
precision, recall

Cascella et 
al. [21], 2024

Oncology + 
public datasets 
(Delaware, 
UNBC)

Cancer patients, adults Binary classifier using 
AUs

Neural network (17 
AUs, OpenFace)

Accuracy ~94%; 
AUROC 0.98

Cascella et 
al. [22], 2024

Oncology Adult cancer patients Video + audio (facial + 
speech)

Multimodal AI 
(speech emotion + 
facial expression)

Feasibility shown; 
early accuracy 
promising

Cascella et 
al. [23], 2023

Clinical 
feasibility (real-
time)

Adults Real-time pain 
detection from facial 
videos

YOLOv8 object 
detection

Feasible, metrics 
reported with 
good accuracy 
(JPR)

Casti et al. 
[24], 2019

Clinical/Lab 
setting

Adults Automatic pain 
detection calibration

DL-based system 
(CNN)

Benchmarked; 
addressed inter-
/intra-observer 
variability

Casti et al. 
[25], 2021

Public dataset 
(video pain 
sequences)

Adults Landmark time-series 
analysis

Transfer entropy 
(TE) + ML classifiers

TE-based 
approach 
improved 
accuracy, robust 
to noise

Chen et al. 
[26], 2022

UNBC + lung 
cancer dataset

Adults, including patients 
with lung cancer

Pain-related AUs Weakly supervised 
MIL/MCIL

Accuracy 87%, 
AUC 0.94 
(UNBC); validated 
also on clinical 
lung cancer data

Dutta and M 
[27], 2018

UNBC + live 
video

Adults Real-time video-
based pain 
recognition

Hybrid DL model Validated in real-
time; high 
accuracy reported

Ghosh et al. 
[28], 2025

UNBC, BioVid 
+ VIVAE 
(audio)

Adults Multimodal (facial + 
audio)

Ensemble DL with 
CNN + fusion

Accuracy up to 
99.5% (3-class), 
87.4% (5-class); 
audio peak 98%

Guo et al. 
[29], 2021

Cold pressor 
experiment; 29 
subjects

Adults Cold pain induction CNN (Inception V3, 
VGG-LSTM, 
ConvLSTM)

F1 score 79.5% 
(personalized 
ConvLSTM)



Explor Med. 2025;6:1001370 | https://doi.org/10.37349/emed.2025.1001370 Page 7

Table 1. Summary of the included studies. (continued)

Source/Year Dataset/n Population Approach/Inclusion 
criteria

AI method Outcome (as 
reported)

Heintz et al. 
[30], 2025

Perioperative, 
multicenter 
(503 pts)

Adults perioperative Computer vision 
nociception detection

CNN-based Strong AUROC, 
external 
validation, and 
feasibility proven

Mao et al. 
[31], 2025

UNBC Adults Pain intensity 
estimation

Conv-Transformer 
(multi-task joint 
optimization)

Outperformed 
SOTA; improved 
regression + 
classification

Mieronkoski 
et al. [32], 
2020

31 healthy 
volunteers, 
experimental

Adults Pain induction + 
sEMG

ML (supervised on 
muscle activation)

Modest c-index 
0.64; eyebrow/lip 
muscles most 
predictive

Morsali and 
Ghaffari [33], 
2025

UNBC, BioVid Adults Public Pain Datasets ErAS-Net (attention-
based DL)

Accuracy 98.8% 
(binary, UNBC); 
94.2% (4-class); 
cross-dataset 
BioVid 78%

Park et al. 
[34], 2024

155 pts post-
gastrectomy

Postoperative adults Clinical recordings ML models (facial, 
ANI, vitals)

AUROC 0.93 
(facial); better 
than ANI/vitals

Pikulkaew et 
al. [35], 2021

UNBC dataset Adults Sequential facial 
images

CNN (DL motion 
detection)

Precision: 99.7% 
(no pain), 92.9% 
(becoming pain), 
95.1% (pain)

Rezaei et al. 
[36], 2021

Dementia 
patients, LTC 
setting

Older adults, dementia Unobtrusive video 
dataset

Deep learning + 
pairwise/contrastive 
training

Outperformed 
baselines; 
validated on 
dementia cohort

Rodriguez et 
al. [37], 2022

UNBC + CK Adults Raw video frames CNN + LSTM Outperformed 
SOTA AUC 
(UNBC); 
competitive on 
CK

Semwal and 
Londhe [38], 
2024

Multimodal 
dataset

Adults Facial + multimodal 
integration

Multi-stream spatio-
temporal network

Showed robust 
multiparametric 
pain assessment

Tan et al. 
[39], 2025

200 patients Adults 
perioperative/interventional

Video recording (STA-
LSTM)

STA-LSTM DL 
network

Accuracy, 
sensitivity, recall, 
F1 ≈ 0.92; clinical 
feasibility

Yuan et al. 
[40], 2024

ICU, public + 2 
new datasets

Critically ill adults 
(ventilated)

Facial occlusion 
management

AU-guided CNN 
framework

Superior 
performance in 
binary, 4-class, 
regression tasks

Zhang et al. 
[41], 2025

503 postop 
patients + 
volunteers

Adults postoperative Clinical Pain Dataset 
(CPD; 3,411 images) 
+ Simulated Pain 
Dataset (CD)

VGG16 pretrained AUROC 0.898 
(CPD severe 
pain), 0.867 (CD); 
software 
prototype 
developed

AI: artificial intelligence; ResNet: Residual Network; UNBC: University of Northern British Columbia Pain Expression dataset; 
MIntPAIN: Multimodal International Pain dataset; DL: deep learning; CNN: convolutional neural network; RNN: recurrent neural 
network; EDLM: ensemble deep learning model; ROC: receiver operating characteristic; ICU: intensive care unit; NEVVA: Non-
Verbal Visual Analog device; AUs: action units; AUROC: area under the receiver operating characteristic curve; YOLOv8: You 
Only Look Once version 8; JPR: Journal of Pain Research; ML: machine learning; AUC: area under the curve; MIL: multiple 
instance learning; MCIL: multiple clustered instance learning; VIVAE: Visual and Vocal Acute Expression dataset; VGG: visual 
geometry group; LSTM: long short-term memory; ConvLSTM: convolutional long short-term memory; SOTA: state-of-the-art; 
sEMG: surface electromyography; ErAS-Net: enhanced residual attention-based subject-specific network; ANI: analgesia 
nociception index; LTC: long-term care; CK: Cohn-Kanade dataset; STA-LSTM: Spatio-Temporal Attention Long Short-Term 
Memory; CD: Control Dataset.

Risk of bias in studies

Since most included studies were observational, experimental, or methodological (not RCTs), the RoB 2 tool 
was adapted to the specific study designs. Specifically, the category “Low risk” was assigned when the 
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methods, datasets, and validation were clearly reported; “Some concerns” was used when limitations such 
as small samples, lack of external validation, or simulation-only data were present (Table 2).

Table 2. Risk of bias of included studies.

Author/Year Country Intervention/AI 
approach

Timing Outcomes 
measurement

Validation 
of tool 
(Y/N)

Quality 
assessment (RoB 2 
overall)

Bargshady et 
al. [17], 2024

Australia/USA Vision 
transformer

Acute pain 
datasets

Accuracy, 
comparison with 
baselines

Y Low risk (well-
reported external 
datasets)

Bargshady et 
al. [18], 2020

Australia/Netherlands Ensemble CNN 
+ RNN

Lab datasets Accuracy, ROC Y Some concerns (no 
external clinical 
validation)

Bellal et al. 
[19], 2024

France NEVVA® device 
(AI facial)

ICU pilot Device 
calibration vs. 
experts

Y Some concerns 
(small sample, 
feasibility only)

Benavent-
Lledo et al. 
[20], 2023

Spain Transformer-
based CV

Lab datasets Accuracy, F1 Y Low risk (robust 
datasets, 
transparent 
methods)

Cascella et al. 
[21], 2024

Italy Binary AU-
based classifier

Oncology 
outpatient

Accuracy, 
AUROC

Y Some concerns 
(limited clinical 
cohort)

Cascella et al. 
[22], 2024

Italy Multimodal 
(speech + 
facial)

Clinical trial 
NCT04726228

Classification 
accuracy

Y Low risk (registered 
trial, multimodal)

Cascella et al. 
[23], 2023

Italy YOLOv8 Lab/clinical 
feasibility

Detection 
metrics

Y Some concerns 
(pilot, limited 
validation)

Casti et al. 
[24], 2019

Italy DL pain 
intensity system

Lab Accuracy, 
calibration

Y Low risk (strong 
methodological 
rigor)

Casti et al. 
[25], 2021

Italy Transfer 
entropy + ML

Lab Accuracy, 
robustness

Y Low risk

Chen et al. 
[26], 2022

USA AU 
combinations + 
MIL

Clinical + lab Accuracy, AUC Y Low risk

Dutta and M 
[27], 2018

India Hybrid DL Lab + simulated Accuracy, 
computational 
metrics

Y Some concerns 
(older methods, 
limited clinical data)

Ghosh et al. 
[28], 2025

India/Switzerland Multimodal 
(facial + audio)

Lab datasets Accuracy (2–5 
classes)

Y Low risk

Guo et al. 
[29], 2021

China CNN/LSTM Cold pressor F1 score Y Some concerns 
(small sample)

Heintz et al. 
[30], 2025

USA multicenter CNN-based Perioperative AUROC, Brier 
score

Y Low risk (robust 
clinical dataset)

Mao et al. 
[31], 2025

China Conv-
Transformer 
multitask

Lab Regression + 
classification

Y Low risk

Mieronkoski et 
al. [32], 2020

Finland sEMG + ML Experimental 
pain

c-index, features Y Some concerns 
(small sample, 
modest accuracy)

Morsali and 
Ghaffari [33], 
2025

Iran/UK ErAS-Net Lab datasets Accuracy, cross-
dataset

Y Low risk

Park et al. 
[34], 2024

Korea ML (facial, ANI, 
vitals)

Postoperative AUROC Y Low risk (clinical 
real-world)

Pikulkaew et 
al. [35], 2021

Thailand CNN Lab Precision, 
accuracy

Y Low risk

Rezaei et al. 
[36], 2021

Canada DL Long-term care Sensitivity, 
specificity

Y Low risk (validated 
on target 
population)

Rodriguez et 
al. [37], 2022

Spain/Denmark CNN + LSTM Lab AUC, accuracy Y Low risk
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Table 2. Risk of bias of included studies. (continued)

Author/Year Country Intervention/AI 
approach

Timing Outcomes 
measurement

Validation 
of tool 
(Y/N)

Quality 
assessment (RoB 2 
overall)

Semwal and 
Londhe [38], 
2024

India Spatio-temporal 
network

Lab Accuracy Y Some concerns (no 
external validation)

Tan et al. [39], 
2025

Singapore STA-LSTM Clinical Accuracy, F1 Y Low risk

Yuan et al. 
[40], 2024

China AU-guided CNN ICU, ventilated 
pts

Accuracy, 
regression

Y Low risk

Zhang et al. 
[41], 2025

China VGG16 
pretrained

Postoperative AUROC, F1 Y Low risk

AI: artificial intelligence; CNN: convolutional neural network; RNN: recurrent neural network; ROC: receiver operating 
characteristic; NEVVA: Non-Verbal Visual Analog device; ICU: intensive care unit; CV: computer vision; AU: action unit; 
AUROC: area under the receiver operating characteristic curve; YOLOv8: You Only Look Once version 8; ML: machine 
learning; MIL: multiple instance learning; AUC: area under the curve; DL: deep learning; LSTM: long short-term memory; sEMG: 
surface electromyography; ErAS-Net: enhanced residual attention-based subject-specific network; ANI: analgesia nociception 
index; STA-LSTM: Spatio-Temporal Attention Long Short-Term Memory.

Overall, we assigned low risk of bias to studies with robust datasets, transparent methodology, external 
validation, or those conducted within the framework of a registered clinical trial. Studies judged as having 
some concerns were typically characterized by small sample sizes, absence of external validation, or 
approaches tested only in laboratory-controlled settings, which can limit their generalizability. None of the 
studies included clearly fell into the category of high risk of bias.

Results of individual studies

The included studies reported heterogeneous outcomes reflecting the performance of AI applied to facial 
expression recognition for pain assessment. Most studies evaluated models on either publicly available 
datasets [e.g., UNBC-McMaster Shoulder Pain, BioVid Heat Pain, Multimodal International Pain dataset 
(MIntPAIN)] or on original clinical cohorts (perioperative, postoperative, oncology, or ICU patients). 
Outcomes were mainly expressed as accuracy, AUROC, sensitivity, specificity, recall, and F1-scores. 
Confidence intervals were rarely reported.

Experimental and dataset-based studies demonstrated very high performance. Bargshady et al. [18] 
proposed an ensemble deep learning framework integrating CNN and RNN, reaching > 89% accuracy and 
AUC 0.93 on MIntPAIN and UNBC. Chen et al. [26] introduced a weakly supervised approach based on 
combinations of AUs, achieving 87% accuracy with AUC 0.94 on UNBC. Morsali and Ghaffari [33] developed 
ErAS-Net, an attention-based deep learning model, achieving 98.7% accuracy for binary and 94.2% for four-
class pain classification, with cross-dataset validation on BioVid still showing robust results (78.1%). 
Rodriguez et al. [37] combined CNNs and LSTMs for temporal analysis, outperforming state-of-the-art 
methods on UNBC. Pikulkaew et al. [35] applied deep learning to 2D motion and expressions, achieving > 
95% accuracy across three pain classes.

Transformer-based methods showed promise. Bargshady et al. [17] employed video ViTs (ViViTs) on 
AI4PAIN and BioVid datasets, with accuracies of 66.9% and 79.9%, outperforming CNN baselines. Mao et al. 
[31] refined Conv-Transformer architectures with multi-task learning, improving estimation of continuous 
pain intensities on UNBC.

Clinical studies confirmed feasibility in real-world settings. Zhang et al. [41] applied VGG16 to > 3,000 
images from 503 postoperative patients, reporting AUROC 0.898 for severe pain detection and consistent 
F1-scores. Heintz et al. [30] validated CNN-based nociception recognition perioperatively, reporting robust 
AUROC and calibration (Brier score) across multicenter datasets. Park et al. [34] compared models in 155 
gastrectomy patients, showing that facial-expression machine learning achieved an AUROC 0.93 for severe 
postoperative pain, outperforming analgesia nociception index (ANI) and vital signs. Bellal et al. [19] tested 
the NEVVA© device in ICU patients, showing the feasibility of automated detection in non-communicative 
patients.
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Other methodological innovations included electromyography of facial muscles [32], showing modest 
predictive capacity (c-index 0.64), and transfer entropy applied to facial landmarks [25], which 
demonstrated robustness to uncertainty. Earlier, Casti et al. [24] benchmarked multi-expert calibration, 
confirming reproducibility of automated systems. Moreover, Dutta and M [27] provided proof-of-concept 
evidence for real-time video analysis.

Special populations were investigated. Rezaei et al. [36] validated a deep learning system in older 
adults with dementia, showing reliable detection where self-report is not possible. Yuan et al. [40] 
developed an AU-guided CNN for ICU patients with occluded faces (ventilation), reporting strong 
performance across binary, multiclass, and regression tasks. On the other hand, oncology-related 
contributions are limited. In 2023, Cascella et al. [23] developed a binary classifier on cancer patients’ 
videos, achieving ~94% accuracy and an AUROC of 0.98. Later, the same authors integrated facial and vocal 
features in oncologic pain monitoring, confirming feasibility in clinical use [21] and subsequently also 
tested the You Only Look Once version 8 (YOLOv8) architecture for real-time pain detection, reporting 
strong detection performance [22].

Several multimodal approaches combined facial expression with additional modalities. Benavent-Lledo 
et al. [20] used computer vision and multimodal signals, achieving > 96% accuracy and > 94% F1-score on 
UNBC and BioVid. Ghosh et al. [28] proposed an IoT-enabled system integrating facial and audio data, 
reaching near-perfect accuracy (> 99%) in binary and three-class classification. Semwal and Londhe [38] 
designed a spatio-temporal behavioral system with multimodal integration, confirming the added value of 
combining sources.

In summary, across the 25 included studies [17–41], AI-based facial expression recognition for pain 
consistently demonstrated high performance in controlled datasets and increasing feasibility in clinical 
populations (postoperative, perioperative, oncology, ICU, dementia). The overall result ranged from modest 
(with an accuracy c-index of 0.64) [32] to excellent (with an accuracy > 98%) [33]. Figure 2 illustrates 
performance (i.e., accuracy) ranges across different AI methods.

Figure 2. AI methods used for facial expression-based pain assessment (2015–2025) and their reported performance 
ranges (i.e., accuracies). Traditional machine learning (ML) approaches showed moderate performance (65–85%). 
Convolutional neural networks (CNNs) and RNN/hybrid (recurrent neural network) models achieved higher accuracy (70–95% 
and 75–93%, respectively). Transformer-based models reached accuracies ranging from 66% to 98%. Multimodal approaches 
(facial + audio and/or physiological signals) consistently outperformed unimodal systems, achieving accuracies up to 99.5%.

Discussion
This systematic review highlights both the promise and the limitations of AI applied to facial expression 
analysis for APA. Across 25 studies published between 2015 and 2025, AI-based systems demonstrated 
consistently strong performance in controlled settings, with reported accuracies often exceeding 90% and 
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AUROC values ranging between 0.87 and 0.98 in clinical studies [21, 30, 34, 41]. Collectively, these results 
support the feasibility of APA recognition and underscore the potential of AI to provide objective, real-time 
assessments in contexts where traditional self-report is unreliable or unavailable. On the other hand, it is 
important to note that not all approaches yielded successful outcomes. Some studies, for instance, reported 
modest or even poor performance. Specifically, performance varied markedly depending on study design, 
population, and dataset source. For example, models trained and validated exclusively on benchmark 
datasets (e.g., UNBC-McMaster, BioVid, MIntPAIN) achieved very high accuracies, sometimes exceeding 
95% [18, 20, 26, 33, 35, 37], although their generalizability to clinical cohorts was limited. In contrast, 
studies conducted in real-world clinical populations, including perioperative patients [30, 39], oncology 
cohorts [21–23], ICU patients [19, 40], and older adults with dementia [36], reported slightly lower but 
more clinically relevant performance. Importantly, this gap is more evident for analyses relying on small 
datasets, limited facial visibility (e.g., ICU settings), or when applying methods such as sEMG-based models 
that achieved only moderate predictive value (c-index 0.64) [32]. These negative or suboptimal results 
highlight the fragility of certain approaches and underscore the need for robust, diverse, and clinically 
validated datasets. Moreover, when comparing studies using benchmark datasets with those relying on 
clinical populations, it emerges that while benchmark-based models frequently reported very high 
accuracies (> 90%) [18, 20, 26, 33, 35, 37], their clinical generalizability was often limited. Conversely, 
clinical studies, although achieving slightly lower performance, provided more realistic insights into real-
world feasibility and robustness [19, 21–23, 30, 34, 36, 40, 41].

Multimodal approaches integrating facial expressions with speech, audio, or physiological signals 
generally outperformed unimodal systems [20, 22, 28, 38], particularly in challenging scenarios such as ICU 
patients [40] or dementia patients [36]. Nevertheless, these models also introduced greater complexity, 
raising issues of computational burden, implementation feasibility, and interpretability in clinical practice.

Concerning the AI-based strategies, methodological evolution across the last decade reflects a shift 
from classical CNN- and RNN-based pipelines to more sophisticated approaches involving transformer-
based and multimodal systems. Specifically, compared to CNNs, ViTs, and hybrid Conv-Transformer models 
have demonstrated superior ability to capture long-range dependencies and subtle spatio-temporal 
dynamics in facial expressions [17, 31]. Similarly, attention-based networks such as ErAS-Net provide 
efficient feature selection and cross-dataset robustness, achieving accuracies close to 99% in binary pain 
classification [33]. In parallel, multimodal fusion architectures that integrate facial cues with audio, speech 
emotion recognition, or physiological signals have consistently improved F1-scores and AUROC values 
compared with unimodal models [20, 22, 28, 38]. These advances highlight a trend toward increasingly 
complex frameworks capable of addressing challenging clinical conditions, such as facial occlusion in ICU 
patients [40] or atypical expressions in dementia [36]. Furthermore, the integration of explainable AI (XAI) 
techniques and standardized multimodal datasets may represent key steps to improve transparency, 
scalability, and cross-institutional generalizability.

The risk of bias was overall moderate. Studies based on larger, multicentre clinical cohorts with 
transparent methodology and external validation were considered low risk [21–23, 30, 34, 41], while 
smaller experimental works without external validation raised concerns [27, 32]. Importantly, no study 
was deemed consistently at high risk of bias. Furthermore, selective reporting remains an issue as many 
experimental studies emphasized accuracy, F1-score, or AUROC [18, 26, 29, 33, 37], while failing to report 
misclassification rates, calibration statistics, or subgroup-specific results. The lack of registered protocols in 
most works further increases the risk of reporting bias and reduces comparability across studies [22, 30]. 
Moreover, a recurrent limitation is the reliance on small, non-representative datasets and the frequent 
absence of confidence intervals in reporting. These factors increase the risk of overestimating performance 
and reduce the robustness of the reported findings. From the analysis, other key issues emerged. For 
example, we underline that while systematic use of calibration metrics and external validation is crucial for 
clinical translation, their absence in most studies represents a major barrier to clinical adoption and should 
be prioritized in future research.
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Multimodal models integrating facial data with physiological or audio signals outperformed unimodal 
approaches, particularly in challenging clinical scenarios. Moreover, the certainty of the evidence is best 
described as moderate for binary classification tasks (pain vs. no pain), where results are consistent across 
different datasets and study designs [18, 26, 33, 36], but low for more advanced applications such as pain 
intensity estimation [29, 31, 32] or deployment in fragile populations [19, 36, 41]. This downgrading is 
mainly due to small sample sizes, reliance on controlled datasets, and the absence of precision measures 
such as confidence intervals. Consequently, dataset-related limitations strongly affected model 
performance. Thus, restricted sample sizes, lack of demographic diversity, and heterogeneous annotation 
protocols limited reproducibility and generalizability, especially across populations with diverse ethnic and 
clinical backgrounds.

Despite these interesting results, several challenges should be addressed. The ethical implications of 
AI-based pain assessment cannot be overlooked. Patient privacy in facial video datasets, the absence of 
clear data sharing policies, and the limited interpretability of most deep learning models raise concerns 
regarding fairness, transparency, and responsible use in clinical care.

In conclusion, the findings confirm that AI can complement traditional pain assessment, particularly in 
patients unable to self-report. Nevertheless, key challenges remain before large-scale clinical adoption can 
be realized. These include the need for standardized datasets reflecting real-world heterogeneity, 
transparent reporting practices, and multicentre trials for evaluating AI performance across diverse 
populations and settings.
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