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Abstract
The transition from non-alcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated steatotic 
liver disease (MASLD) reflects a paradigm shift in hepatology and highlights the need for a more 
pathophysiologically based classification. The aim of this review is to critically examine the conceptual 
evolution from NAFLD to MASLD, highlighting the implications for pathogenesis, diagnosis, risk 
stratification, and therapeutic strategies within the broader context of systemic metabolic dysfunction. 
Unlike the exclusion-based NAFLD definition, MASLD is grounded in positive diagnostic criteria and 
recognizes hepatic steatosis as a manifestation of metabolic disease. This reclassification improves clinical 
risk assessment and aligns hepatic care with cardiometabolic management. MASLD is closely linked to 
insulin resistance, lipotoxicity, chronic inflammation, and gut dysbiosis, which contribute to cardiovascular 
disease, chronic kidney disease, type 2 diabetes, and hepatocellular carcinoma. Non-invasive tools (e.g., FIB-
4, elastography, ELF score) and emerging biomarkers (e.g., miR-122, CK-18, FGF21) support early diagnosis 
and personalized approaches. Therapeutically, MASLD management includes lifestyle modification, 
antidiabetic agents (GLP-1 receptor agonists, SGLT2 inhibitors), PPAR agonists, and novel drugs such as 
resmetirom. This evolving framework demands integrated, multidisciplinary strategies to address the 
systemic burden and clinical heterogeneity of MASLD.
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Introduction
In recent decades, the rising prevalence of liver diseases associated with metabolic dysfunction has 
necessitated a substantial revision of traditional diagnostic paradigms. The term non-alcoholic fatty liver 
disease (NAFLD), introduced in the 1980s to describe hepatic steatosis in the absence of significant alcohol 
consumption, initially enabled the identification of a new clinical entity [1].

Today, NAFLD is recognized as the leading cause of chronic liver disease worldwide, with an estimated 
prevalence of 25–30% in the general population and even higher rates among individuals with type 2 
diabetes mellitus [2].

However, the conventional definition of NAFLD, based on exclusion criteria, has proven inadequate in 
reflecting the true pathophysiology of the disease, as it fails to acknowledge the central role of systemic 
metabolic dysfunction [3].

The lack of positive diagnostic criteria, phenotypic heterogeneity, and limited prognostic utility of the 
NAFLD definition have fueled growing dissatisfaction within the scientific community [4].

In 2020, a new nosological framework was proposed: metabolic dysfunction-associated fatty liver 
disease (MAFLD), defined by the presence of hepatic steatosis in conjunction with documented metabolic 
dysfunction [3].

Nevertheless, the term MAFLD met with criticism and was only partially adopted, in part due to 
terminological overlap with NAFLD and the resulting regulatory implications [5].

To address these issues, in 2023, the definition of MASLD was introduced, identifying hepatic steatosis 
in the presence of positive criteria for metabolic dysfunction, without necessarily excluding moderate 
alcohol consumption [6].

The increasing dissatisfaction with an exclusionary, non-pathophysiology-based definition led in 2020 
to the proposal of the term MAFLD, which characterizes steatosis in the context of documented metabolic 
dysfunction [7].

However, the terminological coexistence with NAFLD and associated regulatory concerns limited its 
widespread adoption. Consequently, in 2023, the term MASLD was introduced. MASLD defines hepatic 
steatosis in the presence of at least one cardiometabolic risk criterion, even in the absence of complete 
abstinence from alcohol. MASLD represents a paradigm shift: It not only recognizes the liver as a target 
organ but places it at the core of systemic metabolic dysfunction, within a continuum that includes obesity, 
insulin resistance, dyslipidemia, hypertension, and low-grade chronic inflammation [8].

Insulin resistance remains the principal pathogenic driver, promoting intrahepatic lipid accumulation, 
lipotoxicity, and the activation of inflammatory and fibrogenic pathways [9].

The transition to MASLD enables the use of inclusive and proactive diagnostic criteria, improving 
prognostic stratification and fostering the integration of the hepatic phenotype into cardiometabolic risk 
management pathways [10].

This review offers an in-depth analysis of the conceptual shift from NAFLD to MASLD, examining its 
pathophysiological foundations, diagnostic and therapeutic implications, and future perspectives within the 
broader context of systemic metabolic diseases.
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From NAFLD to MASLD: historical and scientific evolution
The term NAFLD was introduced in the 1980s to describe hepatic steatosis in individuals without 
significant alcohol consumption [1, 11].

Although initially useful in identifying a novel clinical entity, NAFLD was based on exclusion criteria 
and did not reflect the underlying pathophysiology of the disease [11].

Over time, accumulating scientific evidence has highlighted that metabolic dysfunction—rather than 
alcohol abstinence—is the principal causal factor in hepatic fat accumulation and disease progression [12].

The NAFLD paradigm has demonstrated significant limitations: reliance on exclusionary criteria, 
limited prognostic utility, and an inability to capture the clinical complexity of affected patients [13].

In response to these limitations, in 2020, an international panel of experts proposed a new designation: 
MAFLD, defined by the presence of hepatic steatosis in association with overweight/obesity, type 2 
diabetes mellitus, or specific metabolic abnormalities [3].

Although MAFLD represented a step forward in aligning the nomenclature with disease 
pathophysiology, its adoption was only partial, hindered by overlap with pre-existing classifications and 
concerns regarding patients with concurrent alcohol use [4].

To address these issues, the term metabolic MASLD was introduced in 2023. While maintaining a focus 
on metabolic dysfunction, MASLD allows for the inclusion of individuals with moderate alcohol 
consumption [6].

According to MASLD criteria, the diagnosis of hepatic steatosis—documented via imaging, histology, or 
biomarkers—must be accompanied by at least one cardiometabolic risk factor, including obesity, 
prediabetes or diabetes, dyslipidemia, or arterial hypertension [8].

This approach, based on inclusive and positive criteria, improves risk stratification, facilitates 
recruitment into clinical trials, and aligns liver disease classification with the real-world clinical profiles of 
patients [14].

Most importantly, MASLD redefines hepatic involvement as an integral component of systemic 
metabolic dysfunction, promoting the integration of hepatology into cardiometabolic care pathways [7, 15].

Recent data suggest that this redefinition enhances predictive accuracy for both hepatic and 
extrahepatic outcomes [6, 16].

In parallel, the introduction of metabolic dysfunction and alcohol-related liver disease (MetALD) has 
enabled more accurate classification of patients with mixed etiologies [4].

The conceptual convergence between MASLD and MetALD has been formally adopted in the 2024 
EASL–EASD–EASO Clinical Practice Guidelines, marking a critical step toward the standardization of 
terminology and clinical practice [8].

This chronological transition is visually summarized in a timeline that outlines key terminological 
milestones—from the exclusion-based definition of NAFLD to the inclusive and metabolically grounded 
frameworks of MAFLD and MASLD, culminating in their integration into international clinical guidelines 
(Figure 1).

This evolution represents a turning point in modern hepatology, enhancing diagnostic precision and 
fostering multidisciplinary approaches to the growing global epidemic of metabolic liver disease [14].

The evolving definitions from NAFLD to MASLD reflect a progressive shift toward positive diagnostic 
criteria and improved clinical utility. A comparative overview of these nosological entities, including their 
respective diagnostic frameworks, limitations, and implications, is summarized in Table 1.

Controversies and challenges in the transition to MASLD

Although the term MASLD was formally adopted in June 2023 by an international expert panel, including 
the AASLD, its integration varies substantially across healthcare systems. Many institutions and 
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Figure 1. Evolution of fatty liver disease terminology: from NAFLD to MASLD and beyond. Timeline of the terminological 
evolution in hepatic steatosis from non-alcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated steatotic liver 
disease (MASLD) and its adoption into international clinical guidelines. NAFLD, introduced in the 1980s, was based on 
exclusion criteria. The MAFLD definition, proposed in 2020, introduced positive diagnostic parameters focused on metabolic 
dysfunction. In 2023, MASLD was established as a consensus-based term, allowing for more inclusive criteria. The same year, 
MetALD was introduced to classify cases involving moderate alcohol consumption. The EASL–EASD–EASO guidelines of 2024 
formally adopted this nomenclature, consolidating clinical practice. Image created using GraphPad Prism version 10, and 
Microsoft PowerPoint 2021.

Table 1. Nosological evolution of hepatic steatosis from NAFLD to MASLD: definition comparison.

Definition Year of 
introduction

Main diagnostic criteria Main limitations Clinical implications References

NAFLD 1980s Hepatic steatosis in the 
absence of significant alcohol 
consumption

Based on exclusion 
criteria; does not account 
for metabolic dysfunction; 
phenotypic heterogeneity

Poor prognostic utility; 
exclusion of individuals 
with moderate alcohol 
intake

[1–4, 11]

MAFLD 2020 Hepatic steatosis + 
overweight/obesity; T2DM, or 
metabolic dysfunction

Terminological overlap 
with NAFLD; not 
universally accepted

Better alignment with 
metabolic 
pathophysiology; partial 
clinical adoption

[3–5, 7, 12]

MASLD 2023 Hepatic steatosis + ≥ 1 
cardiometabolic risk factor; 
allows moderate alcohol 
consumption

Variable integration into 
healthcare systems; still 
undergoing formal 
codification

Inclusive diagnosis; 
promotes prognostic 
stratification and inclusion 
in clinical trials

[6, 8, 10, 14, 
16, 18]

MAFLD: metabolic dysfunction-associated fatty liver disease (intermediate definition not fully adopted); MASLD: metabolic 
dysfunction-associated steatotic liver disease (current definition endorsed by EASL–EASD–EASO 2024); T2DM: type 2 diabetes 
mellitus.

professionals continue to use “NAFLD” or “MAFLD,” resulting in terminological heterogeneity in the 
scientific literature and interpretive confusion among clinicians, researchers, and patients [17].

Concurrently, updates to coding systems—particularly the implementation of MASLD within ICD-11—
are still ongoing, undermining consistency in data collection, diagnostic coding, and therapeutic pathways. 
In addition, the transition faces regulatory obstacles, the need for structured training of healthcare 
professionals, and the revision of existing clinical and care protocols—factors that collectively hinder global 
adoption [18].

Molecular and clinical pathogenesis of the transition from NAFLD to 
MASLD
The conceptual transition from NAFLD to MASLD is grounded in a more precise understanding of the 
molecular and clinical mechanisms underlying hepatic steatosis, now recognized as a manifestation of 
complex systemic metabolic dysfunction [6].
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The interplay between insulin resistance, lipotoxicity, chronic inflammation, mitochondrial 
dysfunction, and gut dysbiosis defines the core molecular framework of MASLD pathogenesis, as illustrated 
in a comprehensive mechanistic model (Figure 2).

Figure 2. Illustration of the molecular and systemic pathomechanisms involved in MASLD. Graphical model illustrating 
the molecular and systemic mechanisms driving the progression of metabolic dysfunction-associated steatotic liver disease 
(MASLD). Insulin resistance initiates lipotoxicity through ceramide accumulation, promoting chronic inflammation mediated by 
tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). This cascade leads to reactive oxygen species (ROS) production 
and mitochondrial dysfunction. Pattern recognition receptor (PRR) activation and bile acid-related farnesoid X receptor (FXR) 
signaling modulate liver–gut–adipose crosstalk, reinforcing metabolic and inflammatory loops. These interorgan interactions 
perpetuate MASLD pathogenesis and systemic involvement. Image created using GraphPad Prism version 10, and Microsoft 
PowerPoint 2021.

The principal pathophysiological driver is insulin resistance, which leads to increased lipolysis in 
visceral adipose tissue and a consequent rise in hepatic influx of free fatty acids (FFAs) [9, 19].

The excess of intrahepatic lipid substrates activates lipotoxic and pro-inflammatory signaling 
pathways, promoting oxidative stress, mitochondrial dysfunction, and hepatocellular death [20, 21].

Concurrently, chronic hyperinsulinemia-induced de novo lipogenesis further exacerbates hepatic lipid 
overload, with accumulation of triglycerides and toxic lipid species [22, 23].

A key event is the disruption of mitochondrial homeostasis: impaired oxidative capacity and increased 
production of reactive oxygen species (ROS) trigger a vicious cycle of hepatocellular injury [20, 24].

Low-grade chronic inflammation also plays a central role in pathogenesis [25].

Pattern recognition receptors (PRRs) activate innate immune responses, promoting the release of pro-
inflammatory cytokines such as TNF-α, IL-6, and IL-1β [25, 26].

An additional contributor is intestinal dysbiosis, which facilitates microbial translocation and increased 
hepatic exposure to lipopolysaccharides (LPS), further activating innate immunity [27, 28].
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Progression to metabolic dysfunction-associated steatohepatitis (MASH) occurs through hepatocellular 
injury, hepatocyte ballooning, and fibrosis—processes amplified by hepatic stellate cell activation and 
extracellular matrix deposition [29, 30].

Recent studies have identified a role for glucagon resistance in the MASLD context: impaired amino 
acid clearance and secondary hyperglucagonemia exacerbate metabolic dysfunction [31–33].

Intracellular lipid metabolism is profoundly disrupted, with accumulation of DAG and ceramides—
bioactive molecules that promote insulin resistance and inflammation [33].

Another abnormality involves lipoprotein metabolism, characterized by inefficient very-low-density 
lipoprotein (VLDL) production and the accumulation of toxic lipids [34].

Bile acid metabolism is also implicated: Reduced activity of the FXR promotes dyslipidemia, steatosis, 
and hepatic inflammation [35].

Immunometabolic dysregulation further leads to neutrophil activation and infiltration of immune cells 
into hepatic lobules [30].

In advanced stages of MASLD, oncologic risk increases: persistent oxidative stress, chronic 
inflammation, and epigenetic alterations promote the development of hepatocellular carcinoma (HCC) [36].

Emerging evidence also indicates an increased incidence of intrahepatic cholangiocarcinoma (iCCA) in 
patients with severe MASLD [7, 37].

Cardiovascular involvement is likewise significant: MASLD is associated with endothelial dysfunction, 
early atherosclerosis, and arterial stiffness [7, 38, 39].

Additionally, MASLD adversely impacts renal risk, accelerating progression to chronic kidney disease 
(CKD) through shared inflammatory mechanisms [40, 41].

These findings underscore the urgent need for an integrated and personalized clinical and therapeutic 
approach [42].

The central pathophysiological mechanisms involved in MASLD—including insulin resistance, 
lipotoxicity, chronic inflammation, and gut dysbiosis—culminate in progressive liver damage and systemic 
complications, as illustrated in the mechanistic diagram (Figure 3).

Endothelial dysfunction: a central systemic pathogenetic mechanism

While hepatocentric mechanisms remain relevant, endothelial dysfunction is emerging as a critical systemic 
process in the pathogenesis of MASLD [43].

In the early stages, a reduction in NO-mediated vasodilation is observed, accompanied by a pro-
inflammatory and pro-thrombotic state that promotes arterial stiffness, impaired renal perfusion, and the 
onset of subclinical atherosclerosis [44].

These alterations contribute to subclinical atherosclerosis, vascular stiffening, and diminished renal 
perfusion [45].

The interplay between hepatic steatosis, insulin resistance, and endothelial dysfunction—mediated by 
impaired eNOS activity and reduced NO availability—creates a pathophysiological feedback loop that 
promotes subclinical atherosclerosis and systemic metabolic injury (Figure 4).

Endothelial dysfunction represents a key pathogenetic node linking MASLD to cardiovascular risk. It 
acts both by amplifying traditional risk factors (dyslipidemia, hypertension, hyperglycemia) and by directly 
inducing vascular injury through chronic inflammation, oxidative stress, and dysregulation of the 
renin–angiotensin–endothelin system [46].

Castillo-Núñez Y et al. [47] further elucidate the molecular and cellular mechanisms connecting MASLD 
to atherosclerosis, including atherogenic dyslipidemia, low-grade vascular inflammation, foam cell 
formation, proliferation of vascular smooth muscle cells, gut dysbiosis, hypercoagulability, and impaired 
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Figure 3. Pathophysiological mechanisms underlying the progression and systemic impact of MASLD. Mechanistic 
representation of the pathophysiological progression and systemic impact of metabolic dysfunction-associated steatotic liver 
disease (MASLD). Free fatty acid (FFA) overload, oxidative stress, and gut dysbiosis contribute to hepatic lipotoxicity, driven by 
bioactive lipids such as ceramides and diacylglycerols (DAG). This induces chronic hepatic inflammation mediated by pro-
inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). The 
translocation of lipopolysaccharides (LPS) from the gut amplifies immune activation, reinforcing inflammation. Persistent 
inflammatory and lipotoxic stimuli promote fibrogenesis, which may progress to hepatocellular carcinoma (HCC) and is 
associated with systemic cardiometabolic complications. Image created using GraphPad Prism version 10, and Microsoft 
PowerPoint 2021.

fibrinolysis. Emerging data also suggest a causal relationship between hepatic lipid accumulation driven by 
genetic variants and coronary artery disease, mediated by ApoB-containing lipoproteins [47].

In essence, endothelial dysfunction promotes systemic immune activation, contributing to multiorgan 
damage. In the setting of kidney transplantation, as shown by Prabhahar A et al. [44], it is associated with 
declining glomerular function, worse cardiovascular outcomes, and reduced graft survival. Despite initial 
improvement post-transplant, endothelial homeostasis remains only partially restored due to the influence 
of uremic toxins, immunosuppression, and persistent inflammation [44].

Concurrently, endothelial dysfunction intensifies systemic immune activation, exacerbating multiorgan 
injury. Recent studies—including cohorts with advanced hepatic fibrosis and kidney transplant 
populations—have confirmed its central role, reinforcing the need for therapeutic strategies targeting 
endothelial health in MASLD patients [48].

In summary, endothelial dysfunction not only precedes but also integrates and amplifies MASLD 
progression toward cardiovascular, renal, and systemic complications. This underscores the need for 
endothelial screening strategies and targeted therapies to preserve vascular function from the earliest 
stages of the disease.

The multifactorial pathogenesis of MASLD involves complex molecular and systemic mechanisms that 
promote both hepatic injury and extrahepatic complications. An integrated summary of these key 
pathways, including their mediators and systemic consequences, is provided in Table 2.

MASLD as a central node in the network of metabolic diseases
The redefinition of hepatic steatosis as MASLD has formally established the liver’s role as a key organ in the 
systemic pathophysiology of metabolic diseases [19, 32].
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Figure 4. Mechanistic illustration of the role of endothelial dysfunction in the systemic progression of MASLD. Diagram 
illustrating the central role of endothelial dysfunction in the systemic progression of metabolic dysfunction-associated steatotic 
liver disease (MASLD). Hepatic steatosis and insulin resistance contribute to impaired endothelial nitric oxide synthase (eNOS) 
activity, resulting in reduced nitric oxide (NO) bioavailability. This triggers endothelial dysfunction, which is further exacerbated 
by renin–angiotensin–aldosterone system (RAAS) activation and elevated levels of pro-atherogenic factors such as 
apolipoprotein B (ApoB) and trimethylamine N-oxide (TMAO). These processes promote subclinical atherosclerosis and 
systemic cardiometabolic dysfunction, establishing a self-reinforcing pathophysiological loop. Image created using GraphPad 
Prism version 10, and Microsoft PowerPoint 2021.

Table 2. Key pathogenetic mechanisms of MASLD: an integrated overview.

Mechanism Description Main 
mediators/pathways

Systemic 
implications

References

Insulin resistance Increases lipolysis and FFA flux to the 
liver

IRS-1/2, Akt, hormone-
sensitive lipase

Promotes steatosis, 
endothelial 
dysfunction

[19, 22, 33]

Lipotoxicity and 
oxidative stress

Accumulation of ceramides and DAG, 
mitochondrial dysfunction

ROS, impaired 
mitophagy

Fibrosis, progressive 
liver damage

[20, 23, 24]

Chronic low-grade 
inflammation

Activation of innate immunity and 
cytokine production

TNF-α, IL-6, IL-1β, 
PRRs

Promotes hepatic and 
systemic injury

[25, 26, 30]

Gut dysbiosis LPS translocation, TLR4 activation LPS, TLR4, intestinal 
permeability

Hepatic fibrosis, 
systemic inflammation

[27, 28]

Hepatic stellate cell 
activation and 
fibrogenesis

ECM deposition and fibrosis 
progression

TGF-β, TIMP-1 Advanced stages: 
cirrhosis, carcinoma

[29, 30]

Glucagon resistance Altered amino acid clearance, 
hyperglucagonemia

Glucagon receptor, urea 
cycle

Worsens metabolic 
dysfunction

[31–33]

Lipoprotein 
dysmetabolism

Reduced VLDL secretion, toxic lipid 
accumulation

ApoB, inefficient VLDL Accelerated 
atherosclerosis

[33, 34]

FXR receptor 
dysfunction

Impaired bile acid homeostasis FXR, SHP Dyslipidemia, 
steatosis, 
inflammation

[35]

Endothelial 
dysfunction

Reduced NO, pro-
inflammatory/vasoconstrictive state

eNOS, RAAS, vascular 
inflammation

Cardiovascular and 
renal complications

[40, 41]

DAG: diacylglycerols; ECM: extracellular matrix; FFA: free fatty acids; FXR: farnesoid X receptor; NO: nitric oxide; PRRs: 
pattern recognition receptors; RAAS: renin–angiotensin–aldosterone system; ROS: reactive oxygen species; SHP: small 
heterodimer partner.
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MASLD is not an isolated hepatic condition; rather, it represents the fulcrum of a complex network of 
pathological interactions involving obesity, insulin resistance, type 2 diabetes mellitus, atherogenic 
dyslipidemia, and arterial hypertension [9, 49, 50].

Numerous epidemiological studies have demonstrated that MASLD is associated with a significantly 
increased cardiovascular risk, independent of traditional risk factors [51–55].

Vascular alterations include endothelial dysfunction, arterial stiffness, and subclinical atherosclerosis, 
driven by systemic chronic inflammation and disruptions in lipid metabolism [51, 55].

MASLD is also associated with an elevated risk of developing CKD, through mechanisms involving 
insulin resistance, systemic inflammation, and endothelial dysfunction [40, 56].

The intersection with type 2 diabetes mellitus is particularly noteworthy: In diabetic individuals, the 
presence of MASLD is linked to more rapid fibrosis progression, a heightened risk of cirrhosis, and a greater 
incidence of HCC [57, 58].

The coexistence of MASLD and diabetes defines a high-risk clinical phenotype that necessitates a 
targeted, multidisciplinary management approach [32, 39, 59].

MASLD is likewise associated with other metabolic and endocrine conditions, including obstructive 
sleep apnea syndrome (OSAS), polycystic ovary syndrome (PCOS), and sarcopenia [60–62].

From an oncological perspective, MASLD is considered a major risk factor not only for HCC but also for 
iCCA, underscoring the disease’s potential to drive carcinogenesis beyond the hepatic compartment [36, 
37].

Key mechanisms underlying this transition include chronic inflammation, lipotoxicity, and immune 
dysfunction [29, 63].

In parallel, patients with MASLD have been shown to face an increased risk of severe infections, as 
highlighted in a recent meta-analysis by Mantovani A et al. [64].

MASLD is also linked to a higher prevalence of cognitive impairment and dementia, suggesting 
systemic involvement that extends into neurodegenerative processes [65].

The contribution of gut dysbiosis further reinforces the systemic nature of MASLD: Alterations in the 
intestinal microbiota promote both metabolic dysfunction and hepatic fibrosis progression [27, 28, 66].

Within the framework of precision medicine, MASLD offers a unique opportunity to develop novel risk 
stratification models based on metabolic, inflammatory, and genomic biomarkers [67].

The prognostic implications of MASLD have been confirmed by multiple longitudinal studies, which 
have documented increased all-cause mortality among patients with metabolic hepatic steatosis compared 
to the general population [2, 68].

Ultimately, MASLD acts as a true “dysmetabolic hub,” capable of amplifying and accelerating the 
progression of non-communicable chronic diseases across multiple organ systems. This underscores the 
need for an integrated, predictive, and multidisciplinary management approach [15, 49].

The multisystemic nature of MASLD is reflected in its broad spectrum of extrahepatic complications, 
ranging from cardiovascular and renal dysfunction to endocrine, neurological, and oncologic disorders. 
These associations are detailed in Table 3, highlighting the systemic burden and clinical heterogeneity of 
the disease.

Gender differences in cardiovascular outcomes of MASLD

Recent evidence highlights gender-specific cardiovascular risk profiles in patients with MASLD. Male 
individuals exhibit a higher prevalence of hepatic steatosis, a greater incidence of early atherosclerosis, and 
increased cardiovascular mortality [69, 70].
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Table 3. Multisystem complications associated with MASLD: organs involved, mechanisms, and clinical implications.

System/organ Main complication Pathogenetic mechanism Clinical impact References

Cardiovascular Early atherosclerosis, 
heart failure

Endothelial dysfunction, chronic 
inflammation, lipotoxicity

Increased MACE, CV 
mortality

[43, 46, 47, 
52]

Kidney CKD Insulin resistance, systemic 
inflammation, vascular 
dysfunction

Progression to ESRD, 
worse outcomes

[40, 41, 45, 
56]

Liver HCC, iCCA Advanced fibrosis, oxidative 
stress, epigenetic alterations

Cancers even without 
cirrhosis

[36, 37, 63]

Central nervous 
system

Cognitive decline, 
dementia

Systemic inflammation, cerebral 
endothelial dysfunction

Increased risk of 
cognitive impairment

[65]

Immune system Severe infections Immune dysregulation, chronic 
inflammatory state

Hospitalizations, 
increased mortality

[64]

Endocrine/metabolic 
system

PCOS, OSAS, 
sarcopenia

Hormonal dysfunction, 
adiposopathy, inflammation

Worsening of metabolic 
dysfunction

[60–62]

Postmenopausal 
women

Increased cardiovascular 
and MASLD risk

Loss of estrogen protection, 
visceral obesity

Worsened metabolic 
phenotype

[66, 72, 73]

CKD: chronic kidney disease; CV: cardiovascular; ESRD: end-stage renal disease; HCC: hepatocellular carcinoma; iCCA: 
intrahepatic cholangiocarcinoma; MACE: major adverse cardiovascular events; OSAS: obstructive sleep apnea syndrome; 
PCOS: polycystic ovary syndrome.

Hao WR et al. [71] further emphasized the importance of an integrated and timely clinical approach to 
mitigate this mortality risk.

Women, protected by estrogen during reproductive years, lose this advantage after menopause, 
leading to worsening metabolic profiles, increased insulin resistance, and visceral adiposity. These changes 
contribute to a higher prevalence of MASLD and chronic cardiovascular disease in postmenopausal women 
[66, 72].

A prospective study by Yang C et al. [73] involving over 4,300 women demonstrated that menopause 
increases the risk of MASLD (HR 1.219, 95% CI: 1.088–1.365), partially mediated by visceral adipose tissue 
accumulation.

A Korean population-based cohort study (n = 5,666,728; ages 20–39 years) found that MASLD was 
significantly associated with increased risk of major adverse cardiovascular events (MACE), with adjusted 
hazard ratios of 1.23 for myocardial infarction [95% CI: 1.18–1.27], 1.12 for ischemic stroke [95% CI: 
1.07–1.17], and 1.18 for heart failure [95% CI: 1.15–1.21], compared to individuals without steatosis. 
Subgroup analysis revealed that cardiovascular risk was especially pronounced in obese women with 
MASLD [74].

These findings underscore the need to stratify cardiovascular risk by sex and reproductive stage, and 
to tailor therapeutic and preventive interventions accordingly.

MASLD and heart failure in young adults: an emerging epidemic

MASLD, frequently associated with diabetes and obesity, is increasingly recognized as an independent 
determinant of heart failure, even at a young age [75, 76].

Heart failure in individuals under 40 years of age now accounts for more than 3% of all cases, with 
rising prevalence. Parizad R et al. [77] report a puzzling increase driven by obesity, insulin resistance, and 
metabolic syndrome—now emerging as key risk factors for early-onset heart failure.

In a national Korean cohort of over 7.2 million adults aged 20 to 79, MASLD was significantly 
associated with an increased risk of cardiovascular events (HR per risk factor increment: 1.18; 95% CI: 
1.18–1.19). Incident MASLD further amplified this risk (HR 1.28), whereas regression of MASLD was linked 
to a reduction in cardiovascular events (HR 0.84) [78].

These data underscore the importance of proactively incorporating MASLD diagnosis into 
cardiovascular risk prediction models, including for younger individuals and those with apparently normal 
body weight.
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The multisystemic impact of MASLD, involving cardiovascular, renal, endocrine, pancreatic, immune, 
and neurological domains, is summarized in a schematic representation that underscores its role as a 
systemic metabolic disease (Figure 5).

Figure 5. Multisystem complications of MASLD. Overview of the main multisystem comorbidities associated with metabolic 
dysfunction-associated steatotic liver disease (MASLD). Beyond hepatic involvement, MASLD is implicated in a wide range of 
extrahepatic conditions, including cardiovascular disease (e.g., atherosclerosis, endothelial dysfunction), chronic kidney disease 
(CKD), type 2 diabetes mellitus, sarcopenia, cognitive decline, chronic inflammation, polycystic ovary syndrome (PCOS), and 
increased susceptibility to infections. These associations reflect the systemic impact of MASLD and underscore the need for 
integrated, multidisciplinary management approaches. Image created using GraphPad Prism version 10, and Microsoft 
PowerPoint 2021.

Diagnosis of MASLD
The diagnosis of MASLD is based on the identification of hepatic steatosis in the presence of positive criteria 
for metabolic dysfunction, thereby moving beyond the exclusion-based approach characteristic of NAFLD 
[6, 8, 13].

According to the EASL–EASD–EASO Clinical Practice Guidelines, diagnosis requires demonstration of 
steatosis by imaging, histological examination, or biomarkers, in combination with at least one of the 
following factors: obesity, prediabetes or type 2 diabetes mellitus, atherogenic dyslipidemia, or arterial 
hypertension [8].

The adoption of positive diagnostic criteria enables greater inclusivity, encompassing patients with 
moderate alcohol consumption or with so-called “cryptogenic” steatosis [10, 79].

This paradigmatic shift also facilitates prognostic stratification, patient selection for clinical trials, and 
the integration of hepatic management within cardiometabolic care pathways [2].

Non-invasive techniques for the diagnosis of steatosis and fibrosis

Hepatic steatosis can be detected through various non-invasive modalities [80, 81].

Abdominal ultrasonography is the most commonly used tool due to its low cost and wide availability, 
though its sensitivity declines in cases of steatosis < 20% and in obese patients [82, 83].

Transient elastography (FibroScan®), combined with the controlled attenuation parameter (CAP), 
allows for semiquantitative assessment of steatosis and estimation of liver fibrosis [84–86].
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Magnetic resonance imaging with proton density fat fraction (MRI-PDFF) is currently the gold standard 
for quantifying steatosis, offering high sensitivity even in patients with severe obesity; however, its use is 
limited by high cost and limited accessibility [87, 88].

For the evaluation of hepatic fibrosis, non-invasive scores such as FIB-4 and the non-alcoholic fatty 
liver disease fibrosis score (NFS) are widely used in clinical practice [89, 90].

A FIB-4 value below 1.3 has a high negative predictive value (NPV) for ruling out advanced fibrosis, 
whereas values above 2.67 indicate a high likelihood of its presence [80, 83].

The selective role of liver biopsy

Despite being an invasive procedure, liver biopsy remains the diagnostic gold standard for confirming 
MASH and for accurate staging of fibrosis [91, 92].

It is particularly indicated in cases where discrepancies exist between imaging results and non-invasive 
scores, in patients at high risk of disease progression, or when precise staging is required for prognostic 
purposes or enrollment in clinical trials [86, 93].

However, procedural risks, interobserver variability, and associated costs limit its routine use in 
current clinical practice [94].

A variety of non-invasive techniques and biomarkers are available to assess hepatic steatosis and 
fibrosis in MASLD, each with specific diagnostic strengths and limitations. A comparative summary of these 
tools is provided in Table 4, supporting their complementary use in clinical decision-making.

Table 4. Non-invasive diagnostic tools and emerging biomarkers in MASLD.

Method/biomarker Principle Advantages Limitations References

Abdominal 
ultrasound

Assesses hepatic 
echogenicity

Inexpensive, widely available Low sensitivity in obesity 
and < 20% steatosis

[82, 83]

CAP (FibroScan®) Ultrasonographic liver 
attenuation

Semi-quantitative; 
simultaneous fibrosis 
assessment

Operator-dependent, 
affected by high BMI

[84–86]

MRI-PDFF Quantifies hepatic fat 
fraction

Gold standard for steatosis; 
high sensitivity

Expensive, limited access [87, 88]

FIB-4/NFS Composite scores from 
clinical and lab data

Fibrosis risk stratification; 
suitable for outpatient use

Limited accuracy in 
intermediate-risk cases

[89, 90]

ELF score Direct measure of 
fibrogenesis

High accuracy for fibrosis Costly, limited availability [91]

CK-18 fragments A marker of hepatocyte 
apoptosis

Differentiates MASH from 
simple steatosis

Variable cut-offs, low 
standardization

[95, 96]

miR-122/miR-34a Liver-specific microRNAs High potential for early 
diagnosis

Not yet in routine clinical use [67]

BMI: body mass index; CAP: controlled attenuation parameter; CK-18: cytokeratin 18; ELF: enhanced liver fibrosis; FIB-4: 
fibrosis-4 index; MASH: metabolic dysfunction-associated steatohepatitis; MRI-PDFF: magnetic resonance imaging with proton 
density fat fraction; NFS: non-alcoholic fatty liver disease fibrosis score.

Emerging biomarkers and “omics” approaches

Growing interest in precision medicine has driven the development of novel biomarkers for non-invasive 
diagnosis and prognostic stratification in MASLD [93].

Liver-specific microRNAs, such as miR-122 and miR-34a, have shown promising diagnostic potential 
[67].

Other protein biomarkers—including cytokeratin-18 (CK-18) fragments, fibroblast growth factor 21 
(FGF21), and soluble Fas (sFas)—have demonstrated utility in distinguishing simple steatosis from MASH 
[95, 96].

Omics technologies, such as metabolomics and lipidomics, are enabling increasingly refined molecular 
phenotyping, supporting a more integrated and personalized diagnostic approach [41, 67].
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Diagnostic criteria for MASLD: from guidelines to clinical practice

The 2024 EASL–EASD–EASO Clinical Practice Guidelines define MASLD as the presence of hepatic steatosis 
(documented via imaging, histology, or biomarkers) in conjunction with at least one of the following 
cardiometabolic dysfunction criteria:

Overweight or obesity (BMI ≥ 25 kg/m2, or ≥ 23 kg/m2 for Asian individuals);•

Prediabetes or type 2 diabetes mellitus;•

Atherogenic dyslipidemia (triglycerides ≥ 150 mg/dL and/or HDL < 40 mg/dL in men or < 50 mg/dL 
in women, or treatment for dyslipidemia);

•

Arterial hypertension (≥ 130/85 mmHg or use of antihypertensive medication) [8].•

Importantly, according to the updated guidelines, moderate alcohol consumption does not exclude a 
diagnosis of MASLD. Patients consuming up to 30 g/day of alcohol for men and 20 g/day for women can be 
classified within the MASLD phenotype, thereby moving beyond the restrictive binary model of NAFLD [8].

These criteria support broader and earlier identification of at-risk individuals, aligning with real-world 
clinical profiles. Risk stratification can further be refined through the combination of non-invasive tests and 
composite scoring systems.

Lean MASLD: diagnostic challenges in apparently normal-weight individuals

One of the key challenges in diagnosing MASLD lies in the so-called “lean” form—lean MASLD—which 
occurs in individuals with a normal BMI but significant metabolic dysfunction [97].

Although particularly prevalent in Asian populations, the lean phenotype is increasingly documented in 
European and Mediterranean settings as well [98].

Lean MASLD patients are often underdiagnosed, as they do not meet BMI-based criteria. Therefore, the 
use of alternative indicators such as the triglyceride-glucose (TyG) index and waist-to-hip ratio has been 
proposed, as these are more sensitive in detecting hidden dysmetabolic phenotypes [99, 100].

Lean MASLD is associated with a risk of progression to fibrosis and systemic complications that is 
comparable to, or even greater than, that observed in obese MASLD patients [101].

Early identification is thus critical and lays the groundwork for an ethnically and phenotypically 
tailored redefinition of diagnostic cut-offs.

Therapeutic implications of the new MASLD paradigm
The treatment of MASLD requires an integrated, multidimensional approach targeting multiple pathogenic 
drivers simultaneously: intrahepatic lipid accumulation, chronic inflammation, insulin dysfunction, and 
fibrosis progression [21, 31].

The shift from the NAFLD to MASLD definition has entailed a conceptual reorientation of therapeutic 
strategies, redirecting focus from strictly hepatologic endpoints to broader systemic, cardiometabolic, and 
inflammatory targets [7, 102].

The cornerstone of therapy remains intensive lifestyle modification [8].

Hypocaloric diets rich in fiber and low in simple sugars, combined with regular physical activity, can 
induce significant regression of steatosis with ≥ 5% weight loss and reduction of fibrosis with ≥ 10% weight 
loss [103, 104].

However, long-term adherence to these lifestyle changes remains a critical challenge in clinical practice 
[105].

Among pharmacological treatments, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) currently 
represent the most promising therapeutic option [106, 107].
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Semaglutide and liraglutide have shown efficacy in reducing steatosis and MASH, improving 
inflammatory profiles, and in some cases, stabilizing fibrosis [99, 108].

Recent evidence confirms that GLP-1 RAs produce concrete histologic and metabolic benefits in 
MASLD, with particularly pronounced effects in patients with type 2 diabetes.

In phase 3 randomized trials, weekly semaglutide 2.4 mg led to reductions in hepatic steatosis, 
inflammation, and fibrosis after 72 weeks of treatment [109, 110].

Similarly, real-world observational data have shown significant reductions in mortality, cardiovascular 
events, and complications from portal hypertension in patients treated with GLP-1 RAs [111].

Emerging clinical evidence also supports the use of tirzepatide, a once-weekly dual GIP/GLP-1 receptor 
agonist, for significant histological improvement in advanced MASLD/MASH (fibrosis stages F2–F3) [112].

In a 52-week trial, tirzepatide achieved MASH resolution without fibrosis worsening in over 44–62% of 
patients (vs. 10% with placebo) and ≥ 1-stage fibrosis improvement in 51–55% of cases [103].

This effect was accompanied by substantial weight loss (up to −15.6%) and marked reductions in 
hepatic enzymes and inflammatory markers [103].

Compared with other treatments, tirzepatide stands out as one of the most promising pharmacologic 
strategies for histologic and fibrotic improvement in this setting. Its superior efficacy over semaglutide in 
promoting weight loss—recently confirmed in non-diabetic obese individuals in the SURMOUNT-5 trial 
[113]—reinforces the pathophysiologic rationale for its use in MASLD, where adipose burden and insulin 
resistance are key disease drivers.

These therapeutic effects are mediated by the pleiotropic actions of this class, including appetite 
regulation, weight reduction, improved glucose and lipid metabolism, and attenuation of systemic 
inflammation. As such, GLP-1 RAs—and even more so GIP/GLP-1 RAs—emerge as promising tools for a 
multimodal therapeutic approach to MASLD in patients with and without type 2 diabetes.

Another therapeutic axis is represented by PPAR receptor agonists. Pioglitazone (PPAR-γ) has 
demonstrated beneficial effects on insulin resistance and inflammation, while lanifibranor, a pan-PPAR 
agonist currently in clinical trials, shows promise for fibrosis improvement [106].

SGLT2 inhibitors have also proven effective in improving hepatic biomarkers and reducing steatosis, 
with potential synergistic effects when combined with GLP-1 RAs or pioglitazone [59, 114].

Among emerging agents, resmetirom—a selective thyroid hormone receptor-β agonist—represents a 
breakthrough: It has shown histologic efficacy in patients with MASH and stage F2–F3 fibrosis, and is the 
first drug to receive specific regulatory approval for MASLD [115].

In parallel, FXR receptor agonists such as obeticholic acid are in advanced stages of development, 
though not without relevant side effects [35].

A particularly promising area involves the gut microbiota: Its modulation through prebiotics, 
probiotics, and synbiotics may influence systemic inflammation and the gut-liver axis [27].

Future clinical trials should adopt multiparametric endpoints. In addition to histologic improvement, 
they should evaluate cardiovascular risk parameters, inflammatory biomarkers, and quality of life. This 
broader orientation has also been incorporated into the most recent EASL–EASD–EASO guidelines [8].

Finally, the integration of artificial intelligence into clinical practice and the implementation of 
personalized molecular phenotyping may help identify high-risk subgroups and optimize therapeutic 
responses [20, 67].

In summary, the therapeutic vision for MASLD must transcend an organ-specific framework and evolve 
toward a systemic, multifactorial, and personalized model—one that comprehensively addresses 
cardiometabolic risk, liver disease progression, and patient quality of life.
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A variety of pharmacological agents targeting different pathogenic pathways have demonstrated 
efficacy in MASLD management. Table 5 summarizes current and emerging treatments, including their 
mechanisms of action, clinical benefits, and limitations, guiding therapeutic decision-making in 
personalized care models.

Table 5. Emerging pharmacological treatments for MASLD: targets, efficacy, and limitations.

Drug class Molecular 
target

Development stage Clinical benefits Limitations/adverse 
effects

References

GLP-1 RAs (e.g., 
semaglutide)

GLP-1 receptor Phase 3/approved Reduction in 
steatosis, 
inflammation, weight

Gastrointestinal effects, 
high cost

[109, 110]

PPAR agonists (e.g., 
pioglitazone, 
lanifibranor)

PPAR-γ, pan-
PPAR

Pioglitazone 
approved, lanifibranor 
under study

Improvement in 
insulin resistance and 
fibrosis

Weight gain, fluid 
retention

[106, 121]

SGLT2 inhibitors (e.g., 
empagliflozin)

SGLT2 Off-label Reduction in liver 
enzymes and 
steatosis

Urogenital infections [59, 125]

FXR agonists (e.g., 
obeticholic acid)

FXR Advanced trials Fibrosis improvement Pruritus, dyslipidemia [35]

Resmetirom Thyroid 
hormone 
receptor β

Approved Histological 
improvement in 
MASH

Long-term data 
pending

[115]

Tirzepatide Dual GIP/GLP-
1 receptor 
agonist

Phase 3 MASH resolution, 
weight and fibrosis 
reduction

Long-term safety under 
evaluation

[103, 112]

FXR: farnesoid X receptor; GIP: glucose-dependent insulinotropic polypeptide; GLP-1 RAs: glucagon-like peptide-1 receptor 
agonists; MASH: metabolic dysfunction-associated steatohepatitis; PPAR: peroxisome proliferator-activated receptor; SGLT2: 
sodium-glucose transporter 2.

Prognostic implications and risk stratification
Prognostic stratification in patients with MASLD represents a major clinical challenge due to the 
heterogeneous nature of the disease and its potential progression to hepatic, cardiovascular, renal, and 
oncologic complications [86, 116].

Disease evolution does not follow a linear course and depends on the interplay of metabolic, genetic, 
immune, and environmental factors [21, 25].

Among all available predictors, liver fibrosis stands as the most robust prognostic determinant: 
Numerous studies have shown that fibrosis stage ≥ F2 is significantly associated with increased all-cause 
mortality, regardless of the presence of steatosis or histologic inflammation [117, 118].

However, not all individuals with significant fibrosis present with overt clinical phenotypes. The 
concept of “silent progressors” refers to patients at high risk of histologic progression despite lacking 
evident clinical markers (e.g., normal BMI, normoglycemia, mildly elevated aminotransferases) [2, 10].

In such cases, the use of advanced tools—such as liver elastography, direct fibrosis biomarkers like ELF 
or Pro-C3, and molecular biomarkers—is essential for early diagnosis and accurate risk stratification [67, 
86].

A key tool is the three-tiered risk stratification model (low, intermediate, high), proposed to facilitate 
outpatient clinical management. These models, based on simple variables (age, diabetes status, FIB-4 or 
NFS scores), help optimize resource allocation by directing high-risk patients toward advanced evaluation 
or clinical trial inclusion [80, 93].

Three-tiered risk stratification model

A tiered approach to managing patients with suspected liver fibrosis includes:

Low Risk: FIB-4 < 1.30, absence of diabetes mellitus and other relevant metabolic risk factors. In this 
category, the NPV is approximately 90%, supporting periodic clinical and laboratory monitoring without 
invasive testing.
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Intermediate Risk: FIB-4 between 1.30 and 2.67, particularly in the presence of metabolic 
comorbidities (e.g., diabetes, obesity). In these cases, second-tier testing (e.g., VCTE/elastography, ELF test) 
is indicated to differentiate advanced risk and guide specialist management.

High Risk: FIB-4 > 2.67 or confirmation of advanced fibrosis via second-tier testing. Here, the positive 
predictive value (PPV) ranges from 60–80%, and the risk of severe liver events (cirrhosis, HCC, 
transplantation) is significantly increased. Non-invasive testing with higher diagnostic accuracy and 
referral to a hepatology center are recommended [119, 120].

This model allows prioritization of resources, directing high-priority patients toward advanced 
evaluations or trial enrollment. The intermediate-risk category includes the majority of MASLD patients 
[121].

In these cases, second-level techniques such as ultrasound elastography, ELF score, and MRI-PDFF 
improve diagnostic accuracy and prevent underdiagnosis of advanced fibrosis [80, 87].

Additional emerging prognostic factors include advanced age, male sex, type 2 diabetes mellitus, 
arterial hypertension, mixed dyslipidemia, and increased waist circumference [48, 122].

The coexistence of MASLD and diabetes is particularly concerning, as it confers a markedly increased 
risk of progression to cirrhosis and HCC [57].

Cardiovascular risk stratification is equally critical, as most deaths in patients with MASLD are 
attributable to cardiovascular rather than hepatic causes [7, 38].

The use of composite scores integrating hepatic and cardiovascular parameters (e.g., SCORE2 or ASCVD 
Risk Calculator) is recommended [123].

Renal risk must not be overlooked: MASLD has been associated with increased incidence of 
albuminuria, reduced estimated glomerular filtration rate (eGFR), and progression to CKD [40, 41].

The oncologic implications of MASLD—particularly its association with HCC and iCCA—further 
complicate risk stratification. MASLD is now recognized as an independent risk factor for HCC, even in the 
absence of cirrhosis [37].

The increasing use of molecular biomarkers and “omics” approaches promises to revolutionize risk 
stratification by enabling more precise phenotyping [67].

Some algorithms already incorporate genetic, metabolic, and inflammatory variables, bringing 
metabolic hepatology closer to the principles of precision medicine [41].

Effective risk stratification in MASLD requires the integration of fibrosis scores, clinical variables, and 
emerging biomarkers. Table 6 provides a comprehensive overview of stratification models and prognostic 
factors to identify high-risk individuals and optimize surveillance strategies.

Ethnic heterogeneity and variations in diagnostic criteria

Ethnic heterogeneity represents a critical factor in the identification and management of MASLD. Asian 
populations exhibit metabolic dysfunction, hepatic fibrosis, and “lean” clinical phenotypes at significantly 
lower BMIs compared to Western cohorts [124].

The 2024 EASL–EASD–EASO guidelines acknowledge this peculiarity by recommending a BMI ≥ 
23 kg/m2 as the threshold for overweight in Asian individuals [8]. Nonetheless, genetic (e.g., PNPLA3 
variants), cultural, and epigenetic differences persist, necessitating further regional adaptation of 
diagnostic thresholds and algorithms based on non-invasive tests (e.g., FIB-4, transient elastography).

This heterogeneity underscores the need for a “regionalization” of diagnostic scales and a personalized 
approach that integrates anthropometric, genetic, and cultural factors to enhance diagnostic accuracy, risk 
stratification, and global therapeutic strategies [115, 125].
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Table 6. Risk stratification models and prognostic predictors in MASLD.

Category Model/factor Description/cut-off Prognostic implications References

FIB-4 < 1.3 Low risk, NPV approximately 
90%

Outpatient follow-up [80, 119]

FIB-4 1.3–2.67 Intermediate risk Requires second-level testing 
(elastography, ELF)

[80, 120]

Three-tier 
models

FIB-4 > 2.67 High risk High probability of advanced 
fibrosis

[80, 119]

Fibrosis ≥ F2 Associated with increased 
overall mortality

Indication for intensive 
surveillance

[117, 118]

T2DM + MASLD High-risk phenotype Accelerated progression to 
cirrhosis and HCC

[57, 121]

Clinical factors

Older age, male sex, 
mixed dyslipidemia

Independent aggravating 
factors

Increased CV and renal risk [48]

Integrative tools SCORE2, ASCVD Risk 
Calculator

Cardiovascular risk integration Greater predictive accuracy [111]

Renal stratifiers Albuminuria, reduced 
eGFR

Nephropathy risk assessment CKD monitoring [40, 41]

Emerging 
biomarkers

Pro-C3, “omics”, PNPLA3 Personalized approaches Towards precision medicine [41, 67, 
115]

CKD: chronic kidney disease; CV: cardiovascular; eGFR: estimated glomerular filtration rate; ELF: enhanced liver fibrosis; HCC: 
hepatocellular carcinoma; NPV: negative predictive value; T2DM: type 2 diabetes mellituss.

Limitations of real-world data and absence of long-term follow-up

Although the MASLD paradigm is grounded in robust biological evidence, its implementation in clinical 
practice faces significant limitations. Available real-world datasets—drawn from electronic health records 
and multicenter observational studies—exhibit methodological variability, non-standardized criteria, and 
potential selection bias [126].

Moreover, current literature lacks long-term follow-up data (beyond 5–10 years) to assess whether 
early diagnostic reclassification leads to a clinically meaningful reduction in liver disease progression, 
mortality, or cardiovascular outcomes. It remains uncertain whether the transition from NAFLD to MASLD 
promotes earlier adoption of “lean” or personalized therapeutic strategies and whether such approaches 
truly improve prognosis.

There is thus an urgent need for prospective, multicenter studies with extended follow-up capable of 
validating the effectiveness of the new diagnostic framework in terms of prevention, risk stratification, and 
overall clinical outcomes.

In conclusion, risk stratification in MASLD can no longer rely solely on histological assessment. An 
integrated approach is essential—combining clinical scoring systems, advanced imaging techniques, 
specific biomarkers, and systemic risk profiles—to enable early identification of high-risk patients and 
guide them toward personalized, multidisciplinary therapeutic pathways.

Conclusions and future perspectives
The transition from NAFLD to MASLD represents a paradigmatic shift in modern hepatology. It repositions 
the liver not merely as a passive target of metabolic dysfunction but as the epicenter of a systemic 
pathological network.

The new definition, grounded in positive diagnostic criteria, enables more accurate risk stratification, 
broader clinical inclusivity, and earlier identification of at-risk patients.

Nonetheless, several challenges remain: uneven adoption of the nomenclature, lack of standardized 
coding in international classification systems, and variability in clinical application across healthcare 
settings.
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On the therapeutic front, available options are expanding, yet only a few have received formal 
regulatory approval. Variability in treatment response, high costs, and regulatory limitations advise caution 
in widespread clinical implementation.

Three key directions will shape future developments:

Precision medicine: The application of biomarkers derived from “omics” approaches and advanced 
phenotypic profiling will enable identification of clinically meaningful subgroups and more targeted 
therapeutic responses.

Predictive technologies: Algorithms based on artificial intelligence and big data will facilitate early 
diagnosis of “silent progressors” and enhance endpoints in clinical trials.

Integration into health systems: MASLD must be recognized as a systemic disease, necessitating 
targeted screening, multidisciplinary care pathways, and public health policies centered on prevention and 
equitable access.

Clinical, societal, and system-level impact

The adoption of the MASLD definition carries significant clinical and societal implications. From the patient 
perspective, a definition based on positive criteria may enhance understanding and acceptance of the 
diagnosis, while reducing stigma associated with terms like “non-alcoholic” or “cryptogenic.” At the 
regulatory and insurance levels, MASLD allows for clearer and more appropriate categorization of patients 
eligible for screening and treatment—although full inclusion in reimbursement packages remains to be 
confirmed.

From a public health policy standpoint, this redefinition provides a valuable opportunity to revise 
eligibility criteria for hepatology and metabolic services.

MASLD and community-based medicine: a new operational challenge

MASLD also has substantial implications for general practice, diabetology, and community cardiology. 
Primary care physicians will need to update metabolic screening protocols, incorporating more precise 
algorithms that also capture normal-weight patients with metabolic dysfunction. Diabetology networks will 
be required to integrate liver assessment into care pathways for type 2 diabetes, while community 
cardiologists should include MASLD in cardiovascular risk assessment—particularly in younger patients or 
those with visceral obesity.

This integrated, interdisciplinary approach may help bridge the traditional divide between hepatology 
and internal medicine, advancing a systemic view of chronic disease management.

Moreover, the adoption of the MASLD terminology may reduce the social stigma associated with 
NAFLD, shifting the focus from notions of “blame” (e.g., lifestyle or presumed alcohol misuse) toward the 
biological and pathogenetic complexity of the disease.

Future directions: integration, prediction, personalization

To address these limitations, the term MASLD was introduced in 2023. This new definition maintains the 
emphasis on metabolic dysfunction while allowing for the inclusion of individuals with moderate alcohol 
consumption. According to MASLD criteria, hepatic steatosis—documented by imaging, histology, or 
biomarkers—must be accompanied by at least one cardiometabolic risk factor such as obesity, prediabetes 
or diabetes, dyslipidemia, or arterial hypertension [8]. By adopting positive and inclusive criteria, MASLD 
facilitates improved risk stratification, supports clinical trial enrollment, and better reflects the real-world 
heterogeneity of patients.
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