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Abstract
Aim: Because of severe immunosuppression, coinfections continue to be a major cause of morbidity and 
mortality in HIV-infected patients. As the primary method currently used for diagnosing coinfections in 
HIV-infected patients, conventional microbiological tests (CMTs) often suffer from limitations such as 
prolonged processing times and low sensitivity, which may delay the initiation of appropriate treatment. 
This retrospective study aims to explore the applicability of metagenomic next-generation sequencing 
(mNGS) as a diagnostic tool compared with CMT.
Methods: A retrospective study was conducted on HIV-infected patients with coinfections admitted to 
Peking Union Medical College Hospital between November 2022 and November 2024. A receiver operating 
characteristic (ROC) curve was generated to evaluate the predictors and determine their sensitivities and 
specificities. The comprehensive final clinical diagnosis (FCD) was used as the reference standard for 
evaluating the diagnostic performance of CMT and mNGS. Then, treatment adjustments and outcomes after 
mNGS and CMT of the HIV-infected patients were also assessed.
Results: The areas under the ROC curve (AUCs) for CMT and mNGS were 0.600 and 0.775, respectively. 
When mNGS was combined with CMT, the AUC was 0.833. The sensitivity and specificity of mNGS were 
80% and 75%, whereas those of CMT were 20% and 100%. When mNGS was combined with CMT, the 
sensitivity increased to 86.67%. Among the 15 coinfected HIV patients, 8 patients underwent treatment 
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adjustments on the basis of mNGS results and achieved effective treatment, whereas only 1 patient 
underwent treatment adjustments solely on the basis of CMT and achieved effective treatment.
Conclusions: Compared with CMT, mNGS has a better detection rate. mNGS provides an alternative and 
promising method for identifying coinfections in HIV-positive patients. Thus, the combination of mNGS and 
CMT is a better diagnostic strategy for coinfections in HIV patients.
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Introduction
The global burden of human immunodeficiency virus (HIV) remains a significant challenge to public health 
worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), approximately 1.3 
million new HIV infections were reported in 2023, culminating in an estimated 39.9 million individuals 
living with HIV by the end of the year. Additionally, 630,000 deaths were attributed to HIV-related illnesses 
globally in the same year [1]. A considerable proportion of HIV-related morbidity and mortality is driven by 
opportunistic coinfections, which exploit the compromised immune systems of HIV-positive individuals [2–
4]. Therefore, early and accurate identification of coinfecting pathogens is critical for optimizing 
antimicrobial therapy and improving clinical outcomes [5].

Conventional microbiological tests (CMTs), including culture, parasitological microscopy, quantitative 
polymerase chain reaction (qPCR), serological tests, and biochemical assays, remain the cornerstone of 
diagnostic approaches for HIV-related coinfections. However, these methodologies have significant 
limitations. For example, microbial isolation through culture often requires prolonged incubation periods 
and demonstrates low sensitivity, particularly for slow-growing or unculturable pathogens such as 
Mycobacterium tuberculosis (MTB) and Pneumocystis jirovecii (P. jirovecii), both of which are common in 
HIV coinfections [6, 7]. Similarly, the performance of qPCR is constrained by its reliance on prior knowledge 
of target pathogens, limiting its utility for detecting emerging, rare, or unexpected pathogens. On the other 
hand, serological tests are prone to false-negative results in HIV patients due to weakened immune 
responses. Furthermore, the inability of CMTs to reliably detect mixed infections or atypical pathogens 
frequently delays appropriate therapeutic interventions.

In recent years, metagenomic next-generation sequencing (mNGS) has emerged as a transformative 
diagnostic tool in clinical laboratories. Unlike CMTs, mNGS is culture-independent, unbiased, high-
throughput, and capable of detecting a broader range of pathogens with higher accuracy and speed. This 
technology has shown particular promise in diagnosing HIV-related coinfections, including pulmonary and 
central nervous system (CNS) infections. Nevertheless, despite growing evidence supporting the utility of 
mNGS, comparative analyses of its diagnostic performance relative to CMTs across diverse infection types 
in HIV patients remain limited.

This study aims to evaluate the diagnostic utility of mNGS for coinfections in HIV-positive individuals 
and to explore its implications for personalized therapy and clinical decision-making.

Materials and methods
Study population

This retrospective study included HIV-positive patients with suspected coinfections who were admitted to 
Peking Union Medical College Hospital between November 2022 and November 2024. All enrolled patients 
underwent both mNGS and CMT. mNGS was performed on the basis of the comprehensive clinical judgment 
of the infectious disease physicians, who also determined the appropriate type of specimen to be submitted. 
According to a published study, the final clinical diagnosis (FCD) was established by consensus among three 
infectious disease physicians [8]. This study was approved by the Ethics Committee of Peking Union 
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Medical College Hospital (Approval Number: I-24PJ0589), and all participants provided written informed 
consent.

Inclusion criteria

Patients > 18 years old;•

HIV-positive diagnosis confirmed by laboratory screening and CDC confirmatory testing;•

Hospitalized patients suspected of coinfection, meeting at least one criterion: (i) new-onset fever 
unresponsive to antibiotics; (ii) afebrile with imaging suggestive of coinfection;

•

Patients who had completed mNGS and CMT testing.•

Exclusion criteria

Patients with repeated mNGS testing.•

Data collection

Clinical data were collected from electronic medical records and patient interviews, including the following:

General patient information: sex, age, antiretroviral therapy (ART) status, clinical presentation (e.g., 
fever, organ-specific symptoms), and treatment outcomes (recovery, death, discharge).

•

Routine blood and inflammatory marker tests: Blood tests were performed within 24 h of sample 
collection for mNGS and included total white blood cell (WBC) count, neutrophil percentage (N%), C-
reactive protein (CRP), lactate dehydrogenase (LDH), interleukin (IL-6, IL-8, and IL-10), tumor 
necrosis factor-alpha (TNF-α), and procalcitonin (PCT) tests.

•

HIV-related immunological markers, such as the HIV viral load and CD4+/CD8+ T-cell ratio, were 
collected to evaluate the immune status of patients.

•

CMT results: The results included culture, parasitological microscopy, qPCR, serological tests [e.g., 
antigen-antibody reactions, galactomannan (GM) test, and (1,3)-β-D-glucan (G) test], Xpert-MTB, and 
the T-cell spot test for MTB (T-spot test).

•

Specimen collection protocols

Specimen collection was guided by the suspected site(s) of infection and followed standardized protocols 
established by the Pathogen Microbiology Testing Laboratory at Peking Union Medical College Hospital.

Cerebrospinal fluid (CSF): A minimum of 1.5 mL was collected in sterile, additive-free sealed tubes.•

Bronchoalveolar lavage fluid (BALF): At least 5 mL of BALF was collected.•

Pleural and peritoneal fluids: A minimum of 10 mL was collected in sterile sealed tubes.•

Pathological tissues: Tissues from lymph nodes, the brain, or other sites were surgically obtained, 
placed in sterile containers, and moistened with 1 mL of saline. A sample volume greater than 1 cubic 
centimeter was preferred.

•

Blood and bone marrow samples: A volume of 3–5 mL was collected via cell-free DNA blood 
collection tubes, which were gently inverted 10 times to ensure thorough mixing with the 
preservative.

•

The samples were transported promptly: Blood and bone marrow samples were maintained at room 
temperature, whereas non-blood samples were stored and transported at 2–8°C within 2 h. Repeated 
freeze-thawing and vigorous shaking of the samples during transportation were strictly avoided.

mNGS procedure

The samples were processed according to the laboratory’s SOP. Genomic DNA was extracted via the Micro 
Sample Genomic DNA Kit (Tiangen Biotech, Beijing, China), and DNA fragmentation was performed via the 
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Genomic DNA Fragmentation Kit (VISION MEDICALS, Guangzhou, China). Libraries were prepared via the 
Nextera XT DNA Library Preparation Kit (Illumina, USA) following standard PCR cycling conditions. Library 
quality was assessed with a Qsep1 Bio-Fragment Analyzer, and qualified libraries were sequenced on an 
Illumina NextSeq CN500 sequencer with 75 cycles of single-end sequencing, ensuring a minimum of 20 M 
data per library. Sequencing data were processed with Trimmomatic to remove low-quality sequences, 
short reads, and adaptors, and analyzed via platforms from Guangzhou VISION MEDICALS and PUMCH’s in-
house pipeline for microbial sequence identification. The mNGS results were interpreted by a 
multidisciplinary team, which included bioinformaticians, clinical laboratory specialists, and infectious 
disease experts at PUMCH.

Statistical analysis

All the statistical analyses and figures were generated via SPSS Statistics 27.0 and GraphPad Prism 10 
software. Numerical variables are presented as medians with interquartile ranges (IQRs), whereas 
categorical variables are summarized by counts and percentages. A receiver operating characteristic (ROC) 
curve was used to evaluate the predictors and determine their sensitivities and specificities.

Results
Samples and patient characteristics

A total of 19 HIV-positive patients (median age: 37 years; range: 19–57 years) who met the inclusion 
criteria were included in the study. All patients were male (100%). The clinical and laboratory 
characteristics of these patients are presented in Table 1. Despite receiving ART, 18 patients had a 
CD4/CD8 ratio significantly below the normal range, indicating incomplete immune reconstitution. One 
patient (5.3%) had a CD4/CD8 ratio of 2.03, which was close to the reference range for healthy individuals 
(1.4–2.0).

Table 1. Clinical features of the enrolled HIV-positive patients.

Characteristic, n = 19 Clinical symptoms, n (%) Sites of infection, n (%) Underlying diseases, n 
(%)

Age (years), median 
(Q1, Q3)

37 (32, 50) Fever 12 
(63.2)

Central nervous 
system

6 
(31.6)

Syphilis 5 
(26.3)

Gender (male), n (%) 19 (100%) Headache 4 
(21.1)

Lung 3 
(15.8)

Hepatitis B 2 
(10.5)

WBC ( 109/L), median 
(Q1, Q3)

5.19 (3.13, 
11.41)

Abdominal 5 
(26.3)

Liver 3 
(15.8)

Lymphoma 2 
(10.5)

Lymphocyte ( 109/L), 
median (Q1, Q3)

1.17 (0.59, 
1.86)

Cough 1 (5.3) Peritoneal cavity 1 (5.3) Hypertension 2 
(10.5)

CD4/CD8, median (Q1, 
Q3), n

0.21 (0.09, 
0.37), 18

Fatigue or limb 
weakness

3 
(15.8)

Pleural cavity 1 (5.3) Coronary 
atherosclerosis

1 (5.3)

LDH (U/L), median (Q1, 
Q3), n

226.00 
(162.00, 
378.50), 13

Consciousness 
disorder

1 (5.3) Retina 1 (5.3) Tuberculous 
meningitis

1 (5.3)

CRP (mg/L), median 
(Q1, Q3), n

23.60 (1.76, 
75.91), 17

Decreased vision 1 (5.3) No-coinfection 4 
(21.1)

Abdominal 
infection

1 (5.3)

PCT (ng/mL), median 
(Q1, Q3), n

0.39 (0.20, 
1.04), 10

mNGS positive 10 
(52.6)

HIV viral load 
(copies/mL), median 
(Q1, Q3), n

81.00 (20.00, 
620.00), 19

Both mNGS and 
CMT positive

2 
(10.5)

Anti-HIV treatment, n 
(%)

19 (100%) Both mNGS and 
CMT negative

3 
(15.8)

CRP: C-reactive protein; HIV: human immunodeficiency virus; LDH: lactate dehydrogenase; mNGS: metagenomic next-
generation sequencing; PCT: procalcitonin; Q1: first quartile (25th percentile); Q3: third quartile (75th percentile); WBC: white 
blood cell.
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The specimen types from the 19 patients were analyzed (Table 2). The most commonly collected 
specimen type was CSF (7/19, 36.8%), followed by blood samples (4/19, 21.1%), liver puncture fluid 
(3/19, 15.8%), and tissue samples (2/19, 10.5%). Additionally, pleural fluid, bone marrow, and BALF were 
each collected from one patient (1/19, 5.3% each). A schematic of the study profile is shown in Figure 1.

Table 2. Distributions of sample types.

Specimen n (%)

CSF 7 (36.8)
Plasma 4 (21.1)
Liver puncture fluid 3 (15.8)
Tissue 2 (10.5)
Pleural fluid 1 (5.3)
Bone marrow 1 (5.3)
BALF 1 (5.3)
CSF: cerebrospinal fluid; BALF: bronchoalveolar lavage fluid.

Figure 1. Schematic of the study profile. CMT: conventional microbiological test; HIV: human immunodeficiency virus; mNGS: 
metagenomic next-generation sequencing.

Consistency assay of mNGS and CMT results in coinfections

On the basis of the FCD, 15 patients (78.9%, 15/19) were confirmed to have coinfections. Among these, 14 
had confirmed microbiological findings, which included 13 single infections and 1 mixed infection (2 
pathogens, fungi and viruses). The remaining patient had a viral infection, and the patient exhibited 
decreased blood counts and bone marrow proliferation, which was attributed to both viral infection and 
medication-related effects. The remaining four patients (21.1%) did not have confirmed coinfections: one 
was diagnosed with severe mitral regurgitation (MR) and heart failure, one with leukoaraiosis, one with 
limb weakness and atrophy, and one with an unclear cause of dural enhancement.

Using FCD as the standard, 16 strains from 10 types of pathogens were identified, including 3 types (4 
strains, 25%) of bacteria, 2 types (5 strains, 31.3%) of fungi, 3 types (3 strains, 18.8%) of viruses, and 2 
types (4 strains, 25%) of parasites. mNGS identified 8 types of pathogens, whereas CMT identified only 3 
types. Both mNGS and CMT detected Penicillium marneffei (a fungus) in one patient. Seven types were 
detected only by mNGS: bacteria (Mycobacterium gordonae and Mycobacterium tuberculosis), fungi 
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(Aspergillus flavus), viruses (Epstein-Barr virus, cytomegalovirus, parvovirus B19), and parasites 
(Entamoeba histolytica). A consistency assay for pathogen detection between mNGS and CMT is shown in 
Figure 2.

Figure 2. Distribution of pathogens.

Among the 15 coinfected HIV-positive patients, 2 (10.5%, 2/19) were positive by both mNGS and 
CMTs, while 3 (15.8%, 3/19) were negative by both methods among the 4 noncoinfected patients; the 
consistency of mNGS and CMTs was 26.3% (5/19). Overall, 15 patients were FCD-positive, with 12 positive 
mNGS detections; the true-positive (TP) rate was 80% (12/15), and 3 patients (20%, 3/15) were false 
negatives (FNs). In CMT, 3 patients (3/15, 20%) had consistent FCD, and the FN rate was 80% (12/15). ROC 
curve analysis revealed that mNGS had better diagnostic performance. The sensitivity, specificity, and area 
under the ROC curve (AUC) for mNGS were 80%, 75%, and 0.775, respectively. In contrast, the 
corresponding values for CMT were 20%, 100%, and 0.600. When the combination of mNGS and CMT was 
used as a diagnostic strategy, the sensitivity, specificity, and AUC increased to 86.67%, 75%, and 0.833, 
respectively. These values are shown in Figure 3.

Adjustments of antimicrobial therapy and outcomes after mNGS and CMTs

For the 4 HIV patients without coinfections, FCD combined with mNGS and CMT results facilitated 
therapeutic adjustments, specifically the discontinuation of unnecessary antibiotic treatment. Among the 
remaining 15 coinfected HIV patients, 10 patients underwent treatment adjustments on the basis of mNGS 
results, of which 8 patients achieved effective treatment, 1 patient was lost to follow-up, and 1 patient 
experienced treatment failure. In addition, 2 patients underwent treatment adjustments guided by the 
combined results of mNGS and CMT, both of whom were successfully treated. Furthermore, one patient was 
treated on the basis of only CMT results with effective outcomes, whereas two other patients were 
effectively treated on the basis of empirical therapy. A Sankey diagram is shown in Figure 4.

Discussion
Owing to the immunodeficiency associated with HIV infection, patients with HIV are more susceptible to a 
wide range of infections. HIV/AIDS not only facilitates the occurrence of diseases caused by opportunistic 
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Figure 3. Comparison of the diagnostic value between mNGS and CMTs. AUC: area under the receiver operating 
characteristic curve; CMT: conventional microbiological test; mNGS: metagenomic next-generation sequencing.

Figure 4. Sankey diagram demonstrating the treatment adjustments and outcomes based on mNGS and CMT in HIV 
patients with coinfections. This figure was generated via the RAWGraphs website https://rawgraphs.io. CMT: conventional 
microbiological test; HIV: human immunodeficiency virus; mNGS: metagenomic next-generation sequencing.

pathogens that seldom infect healthy individuals but also substantially exacerbates the clinical 
manifestations of other pathogens. Common coinfections include tuberculosis, fungal infections, and P. 
jirovecii pneumonia. For example, tuberculosis is more likely to cause active disease in individuals with HIV 
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[4, 9], whereas coinfection with HBV more rapidly leads to liver damage, significantly increasing the risk of 
mortality [10, 11]. The viral envelope glycoproteins of HIV indirectly promote the occurrence and 
progression of these coinfections by modulating viral replication efficiency and facilitating immune evasion 
[12].

These coinfections substantially increase morbidity and mortality among HIV-infected patients. 
Therefore, it is not surprising that coinfections in HIV/AIDS patients should receive more attention from 
the global health community. Although CMTs based primarily on culture remain the gold standard for 
identifying pathogenic microorganisms, the mycological culture process is cumbersome, time-consuming, 
and has a low positive detection rate. For example, the culture of certain fungi may take several weeks, and 
many pathogens cannot be cultured at all. In this study, among seven patients ultimately diagnosed with 
fungal infections, only two yielded positive culture results. Although the GM or G test results were positive 
in these cases, the results suggest the possibility of fungal infection, but cannot identify specific pathogens. 
This diagnostic uncertainty may lead to empirical antifungal therapy, which carries a degree of therapeutic 
uncertainty.

mNGS offers a rapid and comprehensive pathogen detection method for infectious diseases. The 
adoption of mNGS technologies in clinical diagnostics is increasing, and several studies have reported the 
application of mNGS in central neurological infections of HIV patients, including tuberculosis meningitis 
and neurosyphilis [13–15], as well as in sepsis and pneumocystis [6, 16]. However, research 
comprehensively evaluating the suitability of mNGS across diverse types of coinfections in HIV-infected 
patients remains limited. In this study, we retrospectively analyzed the diagnostic efficacy of the mNGS 
method on the basis of different types of samples to evaluate its diagnostic value for coinfections in HIV-
positive patients. These results indicate that mNGS has broader pathogen coverage than CMTs do, 
suggesting that mNGS has greater diagnostic sensitivity and accuracy than CMTs do, underscoring its 
potential clinical utility in identifying coinfections in HIV-infected individuals.

Our study was limited to a single-center design with a relatively small sample size, which may have 
introduced potential selection bias. Although mNGS has been accepted and applied in HIV-infected patients, 
there are currently no standardized guidelines for interpreting test reports in this population. In cases in 
which mNGS detects multiple potential pathogenic microorganisms, low-abundance viruses (such as 
circovirus, Epstein-Barr virus, and cytomegalovirus) and commonly colonizing bacteria (such as 
Staphylococcus epidermidis) are often subjectively classified as nonpathogenic. However, the interpretation 
criteria in our study were based on previously established evidence from similar sequencing platforms and 
sample populations. In practice, a more comprehensive approach should be adopted, taking into account 
the unique susceptibility of HIV-infected patients to opportunistic infections, to enable more accurate 
clinical judgments. Finally, while our study highlights the positive impact of mNGS on clinical decision-
making, the economic burden of routine mNGS implementation in clinical practice must be carefully 
evaluated. The high cost of mNGS may limit its accessibility, particularly in resource-limited settings where 
the HIV prevalence is highest. Future studies are needed to address these limitations.

In addition to mNGS, several novel pathogen nucleic acid detection methods have been developed. For 
example, the target-navigated CBT-Cys “Stapling” technique, coupled with the CRISPR/Cas12a amplification 
technique, integrates enzyme-free ligation with CRISPR/Cas12a-mediated cleavage amplification. This 
approach uses rolling circle amplification (RCA) to generate abundant target amplicons, which 
subsequently trigger CRISPR-mediated signal amplification, resulting in significantly increased detection 
sensitivity. This dual amplification strategy is particularly suitable for the sensitive detection of low-
abundance pathogen nucleic acids, thereby facilitating early diagnosis and infection monitoring [17]. 
Therefore, with ongoing technological advancements, detection methods for coinfections in HIV patients 
are expected to become increasingly sophisticated and effective in the future.
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