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Abstract
Cancer immunotherapy is one of the renowned therapeutic approaches worldwide, where its intervention 
has scaled further than conventional therapy. This review targets oncology researchers, immunotherapy 
clinicians, and public health policymakers and aims to address novel strategies for overcoming the barriers 
that exploit the implementation of interleukin-12 (IL-12) in cancer immunotherapy. Moreover, it 
emphasizes the translational challenges and clinical implications for global health interventions. IL-12 
cytokine therapy is a specialized type of cancer immunotherapy that involves the systemic or local 
administration of IL-12 to the targeted tumor microenvironment. Over the years, IL-12 therapy has shown 
a promising approach in its therapeutic potential in the treatment of various cancer diseases. The molecular 
structure of IL-12 depicts its potential for stimulating the immune system. IL-12 enhances the production of 
interferon-gamma (IFN-γ), a specialized cytokine used for the potential treatment of malignant melanoma 
and other cancer diseases. However, despite its potent antitumor effects, IL-12 therapy has been limited by 
considerable toxicity observed in preclinical studies, raising concerns about its safety profile. To fully 
harness IL-12’s therapeutic potential, researchers should prioritize translational studies that mitigate 
toxicity and improve delivery mechanisms. This includes innovative approaches such as vector-based 
delivery systems (e.g., viral vectors and nanoparticle carriers), localized gene therapy platforms, and 
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synergistic combination regimens that reduce systemic exposure while enhancing efficacy. Policymakers 
should promote flexible regulatory frameworks to accommodate adaptive clinical trial designs, while 
funding bodies are encouraged to support high-impact translational research that accelerates the safe 
clinical application of IL-12 and similar immunotherapeutic agents.
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Introduction
Millions of lives were saved over the years through the invention of immunotherapy when the world knew 
less about vaccination. This occurred in 1796 when Edward Jenner developed a protective immunity 
against smallpox [1]. His invention of immunotherapeutic vaccines has significantly influenced the 
evolution of cancer immunotherapy. An emerging report in ancient Egypt 300 years ago from now, towards 
the 19th century, states a spontaneous vanishing of inflammation and tumor progression. However, the 
significance of immune system interventions in cancer repression was yet to be sorted [2]. Over time, the 
landscape of cancer immunotherapy has evolved to incorporate the intervention of cytokine therapy. In 
1992 and 1998, metastatic renal cell carcinoma (RCC) and metastatic melanoma, respectively, were 
approved to be treated by interleukin-2 (IL-2) due to its spontaneous regressive effect upon administration 
[3]. Cancer immunotherapy has revolutionized oncology by harnessing the immune system’s intrinsic 
ability to detect and eradicate malignant cells. Unlike conventional therapies such as chemotherapy and 
radiation, which directly target tumor cells, immunotherapy aims to stimulate or restore the immune 
response against cancer, leading to potentially durable and long-lasting remissions [4]. Key 
immunotherapeutic strategies include immune checkpoint inhibitors, which block inhibitory pathways like 
programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and CTLA-4 to reinvigorate 
exhausted T cells [5]; adoptive cell therapies such as chimeric antigen receptor (CAR) T-cell therapy, which 
engineers patient T cells to recognize tumor antigens [6] specifically; oncolytic virotherapy that uses 
genetically modified viruses to selectively infect and kill cancer cells while stimulating anti-tumor immunity 
[7]; and cytokine-based treatments that modulate the immune milieu to enhance immune cell activation 
[8]. These modalities have led to unprecedented clinical successes in various malignancies, including 
melanoma, non-small cell lung cancer, and hematologic cancers, transforming previously lethal diagnoses 
into manageable conditions for some patients [9]. However, challenges remain. Immune-related adverse 
effects due to systemic immune activation can cause significant toxicity [10]. Efficient delivery of 
immunotherapeutic agents to the tumor microenvironment (TME) is often hindered by physical and 
immunosuppressive barriers [11]. Furthermore, tumors can evade immune detection through mechanisms 
such as antigen loss, immunosuppressive cell recruitment, and metabolic reprogramming, which limit the 
efficacy of current therapies [12]. Against this backdrop, interleukin-12 (IL-12) has emerged as a promising 
cytokine-based immunotherapy due to its potent ability to activate innate and adaptive immune responses.

Cytokines are proteins essential for the stimulation of both adaptive and innate immune responses. It 
has unveiled a significant approach to the repressive effect of cancer progression [13]. Its advancement in 
therapeutic efficacy has been greatly reviewed in TMEs, combination immunotherapy with checkpoint 
blockade, and advanced cytokine-based immunotherapy [13]. In the past 4 decades, cytokines have 
emerged and passed through several clinical trials, in which some were later approved by the FDA to be 
used for clinical cancer treatments. Interferon-alpha (IFN-α) and IL-2 are two top cytokines approved by 
the FDA to treat malignant melanoma and metastatic melanoma, respectively. Moreover, Proleukin (IL-2) is 
also approved for the treatment of metastatic RCC. However, some other cytokines underwent several 
clinical trials and are subject to potential cytokine therapies, such as IL-12 [14].

IL-12 is a heterodimer molecule that promotes the differentiation of T helper cell type 1 (Th1) and 
plays a key role in cell-mediated type of immunity. The structure of IL-12 consists of two covalently bound 
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subunits, namely IL-12p35 and IL-12p40, measured in kilodaltons, which are co-dependently produced by 
antigen-presenting cells (APCs). IL-12, alongside its family, induces the production of interferon-gamma 
(IFN-γ) and enlargement and proliferation of T cells [15]. From the Protein Data Bank (PDB), the structure 
of p40 monomeric subunits of IL-12 is determined to a resolution of 2.5 Å. This subunit structure reveals 
similarities in cytokine receptors. Furthermore, upon encountering a foreign body, it is verily secreted to 
induce proinflammatory functions and activate natural killer (NK) cells to combat the foreign bodies. This 
shows the significant role it plays in pathological processes and autoimmune diseases [16]. IL-12 has been 
recognized for its potent immunomodulatory and anti-tumor properties, primarily due to its ability to 
upregulate IFN-γ production, which plays a critical role in promoting apoptosis and exerting cytotoxic 
effects against tumor cells [17]. Moreover, IL-12 has demonstrated non-toxic, dose-dependent inhibition of 
tumor metastasis in experimental models [18], further supporting its therapeutic promise. Despite these 
compelling biological effects, the translation of IL-12-based strategies into clinical cancer immunotherapy 
remains significantly hindered by several challenges. These include systemic toxicity at therapeutic doses, 
complexities in delivery mechanisms, immune regulation dynamics, and limited integration into current 
clinical protocols. Nonetheless, it continues to be praised for its multifunctional potential in cancer therapy, 
which includes activation of cytotoxic T lymphocytes (CTLs), anti-angiogenic activity, enhancement of 
chemotherapeutic efficacy, and potential utility in combination therapies and localized delivery strategies 
[13, 15, 16]. Given its broad immunotherapeutic profile and capacity to modulate the TME, this study is 
justified in seeking to explore and overcome the barriers to the implementation of IL-12-based strategies in 
cancer immunotherapy. Understanding the translational challenges, optimizing clinical integration, and 
evaluating public health implications will be essential steps in advancing IL-12 from experimental promise 
to clinical practice. This review aims to provide a comprehensive assessment of scientific, clinical, and 
public health barriers to IL-12 cancer immunotherapy and offer strategic solutions for its successful 
translation and integration into cancer care systems.

Method
A narrative-oriented literature search was conducted in PubMed, Scopus, and Google Scholar databases for 
articles published in English with no limit to publication date on barriers to the implementation of IL-12-
based strategies in cancer immunotherapy, while priority was given to articles published in the last ten 
years for currency of data. The search strings combined Medical Subject Headings (MeSH) and free-text 
terms related to IL-12 and cancer immunotherapy, such as (“interleukin-12” OR “IL-12”) AND (“cancer 
immunotherapy” OR “cytokine therapy”) AND (“delivery system” OR “vector” OR “toxicity” OR “tumor 
microenvironment”). Articles were eligible if they reported IL-12 as a therapeutic agent (systemic or local), 
delivery strategies, safety/toxicity, TME interactions, and translational/public-health implications and were 
primary research (pre-clinical or clinical) or high-quality reviews relevant to the studyʼs objective of 
exploring current challenges and potential solutions to the clinical application of IL-12-based cancer 
therapies that informed gaps in evidence. Relevant references within selected articles were also reviewed 
to ensure a comprehensive synthesis of the literature. All records were imported into the Zotero reference 
manager; automatic de-duplication was followed by manual verification of titles, authors, and Digital Object 
Identifiers. Two reviewers independently screened titles/abstracts, then full texts, resolving disagreements 
by consensus. After full-text appraisal, the extracted information was subjected to an inductive thematic 
analysis. Emerging recurrent concepts were iteratively coded and clustered into predefined, yet data-
driven, thematic domains as stated below.

Biological basis of IL-12 in immunotherapy;1.

Therapeutic strategies involving IL-12;2.

Implementation barriers in clinical translation;3.

Public health and equity considerations;4.

Future perspectives and innovative solutions;5.

Recommendations for translational and public health advancement.6.
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The findings were narratively integrated qualitatively under the key thematic headings identified 
through an iterative review of recurring concepts to highlight consensus, controversies, and knowledge 
gaps relevant to advancing IL-12-based cancer therapy.

Biological basis of IL-12 in immunotherapy
IL-12 is one of the groups of the class one hematopoietic family of cytokines, consisting of soluble 
heterodimers, α subunit (IL-12p35) and the β subunit (IL-12p40). The latter is linked to the former through 
disulfide bonds formed between IL-12p35 (C96) and the IL-12p40 (C199) subunit for human IL-12 [19, 20]. 
IL-12 signals through a heterodimeric receptor composed of IL-12 receptor β1 (IL-12Rβ1) and β2 (IL-
12Rβ2) subunits, which in turn activate the Janus kinase (JAK) and signal transducer and activator of 
transcription (STAT) pathways [19, 21]. Although IL-12 can activate multiple STAT proteins, STAT4 is the 
predominant and most functionally relevant isoform in mammalian systems [22]. After binding to the 
receptor, the tyrosine kinase Tyk2 will be activated by IL-12Rβ1 and IL-12Rβ2 associated with JAK2, giving 
the addition of phosphate to the receptorʼs intracellular domains and recruitment of the STAT4 
transcription factor. Phosphorylated STAT4 forms a dimer and moves to the nucleus to induce transcription 
of genes involved in Th1 differentiation and IFN-γ production [15, 21].

One of the crucial components of innate immunity is the NK cell, which is a cytotoxic cell and also 
known as a solid producer of immune-regulatory cytokines such as IFN-γ. IL-12 upregulates the production 
of NK cellsʼ cytotoxicity by activating receptors such as NKG2D and enhancing effector molecules such as 
perforin and TNF-related apoptosis-inducing ligand (TRAIL), which mediate tumor cell lysis [23, 24]. To 
combat HER2+ malignancies, IL-12 works together with the Fc portion of IgG (FcγRIII) with engagement on 
NK cells to amplify IFN-γ production, an important mechanism for antibody-dependent cellular cytotoxicity 
(ADCC) [25]. It also activates NK cells through STAT4 and extracellular signal-regulated kinases 1 and 2 
(ERK1/2) phosphorylation, boosting their anti-tumor response [24, 26]. The IFN-γ production is central to 
IL-12’s immunostimulatory effects, allowing it to further amplify through cross-talk with B cells. B cells 
provide IL-18 and cell-in-contact signals necessary for optimal IFN-γ secretion by NK cells in response to 
IL-12 [27]. This cytokine cascade polarizes immune responses toward Th1 immunity, enhancing antigen 
presentation and macrophage activation [24, 25]. In CTLs, the synergistic effects of IL-12 and IL-2 bring 
about expansion and overcome effector functions, mainly in T-cell receptor (TCR)αβ+ and TCRγδ+ subsets 
[28]. It boosts CTL-driven tumor elimination by facilitating granzyme B production and maintaining 
metabolic health through PI3K/Akt signaling [29]. Stimulation of NK cells with IL-12/IL-15/IL-18 creates 
enduring effector cell populations that can secrete substantial amounts of IFN-γ and exhibit antitumor 
effectiveness when transferred adoptively [30]. The combined role of IL-12 in potentiating innate and 
adaptive cytotoxicity, coupled with its ability to sustain IFN-γ-driven inflammation, proves its therapeutic 
potential in cancer immunotherapy [26, 30].

In 2010, a study by Sorensen et al. [31] showed the exact mechanism of the anti-angiogenic effect of IL-
12. The study used B16 transfected to express IL-12 (B16/IL-12), providing constant, local production of 
IL-12. The finding, along with others, indicated that the anti-angiogenic properties of IL-12 occur by 
suppressing pro-angiogenic factors like vascular endothelial growth factor (VEGF) and matrix 
metalloproteinase (MMP)-9 through IFN-γ-dependent mechanisms. In TME, IL-12 normalizes chaotic 
vasculature by downregulating VEGF receptor 3 (VEGFR3), reducing vessel leakiness, and improving 
immune cell infiltration. This vascular remodeling enhances chemotherapeutic delivery and immune-
mediated tumor suppression [31, 32]. Studies have shown that the anti-tumor properties of IL-12 primarily 
operate through two key mechanisms: immune activation and direct inhibition of angiogenesis. In the 
immune activation pathway, IL-12 enhances cluster differentiation (CD)8+ T cell cytotoxicity and NK cell-
mediated tumor lysis by upregulating granzyme B and perforin. Additionally, IL-12-induced IFN-γ 
production polarizes macrophages toward antitumor phenotypes and enhances antigen presentation, 
further strengthening the immune response against tumor cells [32, 33]. Complementing these early 
observations, Savid-Frontera et al. [34] demonstrated that hydrodynamic gene transfer of as little as 1 µg of 
IL-12 cDNA can achieve transient systemic cytokine levels (~2.5 ng mL–1 at 24 h) that suppress B16 and 
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EL4 tumor growth, reduce platelet endothelial cell adhesion molecule (PECAM)-positive tumor vasculature, 
and markedly increase CD45+/CD8+ leukocyte infiltration—all without the severe toxicity seen at the higher 
5 µg dose. Their work highlights hydrodynamic delivery as a practical, dose-tunable platform for exploiting 
IL-12’s dual IFN-γ-dependent anti-angiogenic mechanisms while mitigating safety concerns, thereby 
offering a contemporary avenue for translating IL-12 gene therapy into the clinic [34].

It’s worthy to delve into the dual functions of IFN-γ, both its inhibitory nature and pro-tumorigenic 
role. In recent studies, it was reported that low-dose IFN-γ was injected into the lateral tail vein of mice, 
which showcases the pro-tumorigenic function of IFN-γ. Large lung metastatic nodes were observed in 
comparison with cancer cells treated with a neutral solvent [35]. Furthermore, IFN-γ enables the evolution 
of cancer stem cells to metastatic cancer stem cells due to its induction by chemokine receptors [36]. These 
chemokines are essentially known to attract the immune cells to the site of infections and inflammation, yet 
play a role in angiogenesis and cancer metastasis, most specifically C-X-C motif chemokine ligand 9 
(CXCL9). A report by Ding et al. [37] showcases a broader analysis of the anti-cancer effect and pro-
tumorigenic effect of CXCL9. It is well justified that CXCL9 exhibits a tumor-suppressing effect by recruiting 
tumor-infiltrating CD8+ and NK cells, which deteriorate angiogenesis. Likewise, in breast cancer, melanoma, 
lung cancer, head and neck cancer, and chronic lymphocytic leukemia, CXCL9 is found to be overexpressed, 
whereby it serves as a detective biomarker in cancer prognosis. In conclusion, the dynamic function of 
CXCL9 might be due to its complex role in tumor immunity, while the contrary roles are due to its 
receptor’s splice variants, C-X-C motif chemokine receptor 3 isoform A (CXCR3A) and CXCR3B [38].

For direct angiogenesis inhibition, IL-12 blocks pathological neovascularization in corneal and tumor 
models by inducing IFN-γ, which suppresses endothelial cell proliferation and destabilizes nascent vessels 
[39–41]. This effect persists in immunodeficient mice, indicating innate immunity-independent pathways 
[40, 41]. The inhibitory or stimulatory roles that preserve self-tolerance and modulate immune responses 
are regulated by immune checkpoint pathways [42]. The anti-tumor immunity is enhanced by the 
synergetic effect of IL-12 and immune checkpoint inhibitors. Combining IL-12 with PD-1/PD-L1 inhibitors 
like avelumab, durvalumab, nivolumab, or pembrolizumab amplifies cytotoxic T and NK cell infiltration, the 
production of IFN-γ, and tumor regression, even surmounting resistance [39]. The TME is further 
transformed toward a Th1 response by IL-12 mRNA therapies (e.g., MEDI1191). In addition, IL-12 with 
CTLA-4 blockade boosts effector T cells and reduces regulatory T cells, achieving complete tumor 
regression in preclinical models [43, 44]. The promising efficacy of these combinations demonstrates and 
amplifies the benefit of immunotherapy. As mentioned earlier, the integration of IL-12 and IL-2 
demonstrates synergistic antitumor effects in various cancer models. This therapy triggers tumor 
regression through multiple mechanisms, including enhanced CD8+ T cell and NK cell responses [45, 46]. 
The treatment results in increased tumor infiltration by CD4+ and CD8+ T cells, generation of tumor-specific 
CTLs, and establishment of protective antitumor memory [46]. The antitumor effects are critically 
dependent on endogenous IFN-γ production and an intact Fas/FasL pathway, which contribute to both 
antiangiogenic effects and direct tumor cell killing [47]. The synergistic interaction between IL-12 and IL-2 
provides complementary immunoregulatory signals, making this combination a promising approach for 
cancer immunotherapy [48].

IL-23, a family of IL-12, and TME

IL-23 is a cytokine that belongs to the family of IL-12. Itʼs a heterodimeric proinflammatory cytokine. They 
share a common subunit, p40, which covalently binds to the p35 unit with IL-12 [49]. IL-23 is mainly 
produced by dendritic cells and macrophages. The IL-23 receptor is composed of the IL-12 receptor (IL-
12RB1) that signals through tyrosine kinase-2, as discussed initially. IL-23R induces the activity of STAT3 
by signaling through JAK2 [50]. IL-23 is linked with the evasion of tumor immunity and inflammation and 
was first discovered to play a pro-tumorigenic role [51]. IL-23 is also evident to be involved in the 
enlargement of breast cancer cells and tumor metastasis. However, the blockade of the genetic makeup of 
IL-23 resulted in cytotoxic T-cell tumor infiltration via the TME [52]. TMEs are the ecosystem around the 
tumor, consisting of both malignant and non-malignant components, as well as the associated signalling 
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molecules they release. These components are the deciding factor of tumor growth, spread, and inhibition. 
Moreover, targeting specific TME cells poses a greater hurdle in the realm of cancer immunotherapy [53]. 
Thus, more research on the target of the TME would be essential.

Therapeutic strategies involving IL-12
Various preclinical trials have shown the therapeutic usage of IL-12, administered intravenously, 
intraperitoneally, subcutaneously, or intratumorally, in genetically modified mice, as it has demonstrated 
the ability to prevent or slow down the growth rate of tumor cells [32]. It can be administered alone or in 
combination with other known therapies to maximize its effectiveness against cancer cells and mitigate 
side effects associated with the direct delivery of IL-12.

Mono-therapy approaches

Mono-therapy approaches in the therapeutic use of IL-12 consist of recombinant IL-12 and plasmid-based 
delivery, often administered through intratumoral injection. Recombinant human IL-12 (rhIL-12), an 
immunoregulatory protein produced via genetic engineering technology, is used due to its high purity, 
activity, and relatively low concentration (Table 1) [54]. It becomes the only agent that can not only 
improve immune response but also form and regenerate blood cells (hematopoietic function). Intratumoral 
administration of plasmid-encoding IL-12 has shown robust anti-tumor activity, serving as a promising 
strategy against cancer cells, which allows the patients’ cells to produce IL-12 after treatment with plasmid-
encoding IL-12, stimulating the immune cells and enhancing antitumor responses [18]. This method is used 
in place of the direct administration of IL-12, as it helps to overcome the toxic effects caused by the 
overproduction of IFN-γ and reduced delivery of IL-12 to the tumor cells. Although IL-12 monotherapy in 
cancer immunotherapy offers potent antitumor immune activation through NK and T cells and IFN-γ 
induction, it is limited by severe systemic toxicities, a narrow therapeutic window, and lack of tumor 
specificity that causes off-target effects and restricts clinical dosing [22, 55].

Table 1. Therapeutic strategies involving IL-12 in cancer immunotherapy

Strategy Key features Merits Limitations Key 
references

Monotherapy Recombinant IL-12 or plasmid-based 
IL-12, often through intratumoral 
injection

-Potent activation of NK 
and T cells

-Induces IFN-γ
-Simple administration

-Severe systemic toxicity

-Narrow therapeutic window

-Lack of tumor specificity, 
off-target effects

[17, 39]

Combination 
therapy

IL-12 with chemotherapy, 
radiotherapy, or immune checkpoint 
inhibitors

-Synergistic antitumor 
effects

-Can overcome 
resistance
-Modulates tumor 
microenvironment

-Increased risk of systemic 
toxicity (mainly due to IFN-γ)

-Complex dosing and 
management

[62]

Vector-based 
approach

Viral vectors, nanoparticles, or cell 
based delivery

-Localized sustained IL-
12 expression

-Reduced systemic 
toxicity

-Enhanced immune 
activation

-Vector immunogenicity

-Risk of insertional

-Variable transfection 
efficiency

[39, 63]

Targeted 
delivery

Tumor-localized expression, gene 
therapy, oncolytic virus, 
immunocytokines

-Improved tumor 
specificity
-Reduced off-target 
toxicity
-Enhanced 
pharmacokinetics

-Incomplete tumor 
penetration
-Potential immunogenicity of 
fusion protein
-Off-tissue binding 

[63]

IL-12: interleukin-12; NK: natural killer; IFN-γ: interferon-gamma
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Combination therapies

Cancer was originally treated through the traditional (chemotherapy and radiotherapy) and conventional 
approaches, all of which may be accompanied by severe side effects [56]. Due to this limitation, IL-12 was 
used with these known therapies as a more efficient treatment to mitigate these side effects [57]. 
Chemotherapy is one of the most commonly known therapies used to inhibit the growth of cancerous cells 
in the body. Chemotherapeutic drugs (e.g., cisplatin) damage normal body cells as they inhibit the growth of 
cancer cells through cell apoptosis and the induction of cell cycle arrest, leading to side effects such as 
weakness, nausea, vomiting, and anemia [58]. IL-12 in combination with chemotherapy has been reported 
in several preclinical trials to demonstrate significant cytotoxic effects in immunogenic tumors when 
administered immediately after chemotherapy, highlighting the significance of early treatment [32]. 
Radiotherapy is another major method used to inhibit cancer cells’ growth within a specific region or those 
that have spread to nearby lymph nodes [54]. Radiotherapy inhibits the spread of tumor cells through DNA 
damage, which leads to cell death, and is accompanied by side effects such as genetic mutations [59]. These 
side effects can be prevented through the combination of IL-12 with radiotherapy, which has been reported 
to cure different forms of cancer in animal models [60]. Checkpoint inhibitors, a class of immunotherapy 
drugs, are molecules that improve the host immune system against tumor cells by blocking the checkpoint 
pathway to allow the T cells to recognize and attack cancer cells [61]. IL-12 combined with chemotherapy, 
radiotherapy, targeted agents, or immune checkpoint inhibitors enhances antitumor efficacy by 
synergistically modulating the TME and overcoming resistance; however, they are often accompanied by 
increased systemic toxicities, mainly due to elevated IFN-γ levels and immune activation, which limits 
dosing and necessitates careful management [61, 62]. Using IL-12, an immunomodulator, with 
immunotherapy would increase the effectiveness of this approach; further clinical studies are required to 
determine the effectiveness of this combination.

Vector-based approaches
This comprises the use of viral vectors, nanoparticles, or cell-based IL-12 delivery approaches. Viral vectors 
(such as the adenovirus, herpes simplex virus, and vaccinia virus), as a means of delivering IL-12 to cancer 
cells in various tumor models, have demonstrated antitumor effects by inducing both innate and 
generalized immune responses [63]. Nanoparticles are small, ultrafine particles used as a means through 
which the IL-12 gene or protein is delivered to tumor cells. The use of this approach has significantly 
reduced systemic toxicity caused to other normal cells by the direct administration of IL-12 [64]. Cell-based 
IL-12 delivery has been proposed as an effective means of delivering IL-12 to tumor cells. Cells such as 
mesenchymal stroma cells, T cells (neoantigen-reactive T cells and engineered T cells), dendritic cells, and 
NK cells are used in the delivery of this therapeutic agent [63]. Vector-based IL-12 delivery enables 
localized, sustained cytokine expression within tumors, reducing systemic toxicity and improving immune 
activation, but challenges include vector immunogenicity, potential insertional mutagenesis, and variable 
transfection efficiency that may limit clinical efficacy [39, 62].

Targeted delivery

This refers to methods (such as tumor-localized expression, gene therapy, and oncolytic virus) used to 
directly target tumor cells. When IL-12 is used as a targeted delivery against tumor-localized expression, it 
stimulates the lymphoid cells, consisting of the T cells, NK cells, and innate lymphoid cells (Table 1). This 
stimulation also leads to an increase in the secretion of IFN-γ, a dual-role cytokine in the TME, which can 
either support tumor cells’ progression or inhibit their growth [32]. Despite the controversy regarding the 
activity of IFN-γ, many researchers still emphasize its repressive effect. Studies have proven that the effect 
of IFN-γ depends on its concentration in the TME. Therefore, low-dose IFN-γ upregulates the metastatic 
effect, and high-dose treatment of IFN-γ represses tumor growth [65]. Upon treatment with IL-12, IFN-γ’s 
role is shifted to its antitumor ability, inhibiting angiogenesis. On the other hand, the required 
concentration of IFN-γ needed to exert this inhibitory effect is yet to be known. However, more studies are 
required. Gene therapy approaches deliver IL-12 to the tumor cells at a relatively low concentration until 
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the tumor eventually disappears over time, enhancing the cytotoxic effects of this cytokine and overcoming 
the toxic effects caused by the administration of recombinant IL-12 in large doses [66]. Oncolytic viruses 
(such as the Vaccinia virus, Sendai virus, parvovirus, Newcastle disease virus, etc.) are viruses used to 
deliver IL-12 to cancer cells. They are either naturally occurring or genetically modified and multiply 
themselves in tumor cells, causing cell apoptosis without causing damage to the natural body cells. Studies 
have reported that the delivery of IL-12 via oncolytic agents has shown significant anti-tumor potential and 
also a reduction in side effects accompanied by the administration of large doses of IL-12 [67–69].

Implementation barriers in clinical translation
Biological and clinical barriers

Despite the sturdy antitumor activity of IL-12, systemic administration of IL-12 was shown to be 
remarkably toxic in preclinical studies. Systemic inflammation and cytokine storms are facilitated by IL-12 
through inducing IFN-γ production, activating immune cells, and driving Th1 responses, linking innate and 
adaptive immunity, but causing damage when disrupted [16]. Systemic toxicity arises predominantly from 
excessive IFN-γ production and the induction of proinflammatory cytokines, including TNF-α, IL-6, and IL-
8, which trigger cytokine release syndromes and severe inflammatory reactions [70]. Furthermore, IL-12 
administration perturbs immunoregulatory balances within the TME, promoting immune suppression 
through the recruitment of regulatory T-cells and myeloid-derived suppressor cells (MDSCs) [39]. These 
immunoregulatory dynamics pose significant barriers to achieving sustained antitumor activity while 
maintaining patient safety [39]. In a phase II study by Jenks (1996), a maximal dose of 0.5 μg/kg per day led 
to acute side effects in 12 out of 17 patients and the death of two patients. Surprisingly, the same dose per 
day was found to be tolerable in patients who enrolled in the phase I study. It was observed that the 
difference in toxicity between phase I and II trials was due to a change in the dosage schedule. The phase I 
study employed a single tester dose of IL-12 a week before the multiple-dose regimen, and this blunted the 
toxicity induced by subsequent doses [17]. Broadly, the acute effect of discouraging tumor response in 
phase II trials reduced the enthusiasm for IL-12 as systemic cancer immunotherapy; hence, there is a need 
for a safer, targeted delivery method.

Another study by DeBonis et al. [71] investigated the IL-12 pharmacokinetics desensitization after 
repeated doses using a mathematical model approach. In a comparison of two mechanisms, such as 
increased clearance via receptor-mediated serum removal and reduced bioavailability due to IL-12 
sequestration in lymphatic tissues, it was noted that the reduced bioavailability model fits accurately for a 
clinical trial, indicating that IL-12 retention in lymph nodes limits its entry into the bloodstream. Notably, 
the reduced bioavailability model fits accurately for a clinical trial, indicating that IL-12 retention in lymph 
nodes limits its entry into the bloodstream. The levels of IL-12 were predicted using the model, and 
delivery strategies were explored to reduce systemic exposure, aiding a safer therapeutic approach. An 
intricate system, made up of various cells, signaling molecules, and extracellular matrix, is the TME [72], 
which promotes the metastasis of cancer through various mechanisms, including altered cell-cell 
communication via TGF-β, Wnt, and Hedgehog pathways [73]; ECM remodeling by MMPs [74]; immune 
evasion through tumor-associated macrophages and MDSCs [75]; angiogenesis driven by VEGF [76]; and 
metabolic re-modulation that disrupts immune cell function [77]. These mechanisms build an oncogenic 
environment that promotes tumor survival, invasion, and resistance to therapies. The ability of IL-12 to 
induce multiple inflammatory cytokines such as GM-CSF, TNF-α, IL-8, IL-6, IL-15, and IL-18 [78] and to 
activate NK cells [79] to enhance the function of DCs, such as their maturation and antigen presentation 
[80], and to prime naïve T cells is presumed to be its result as a vaccine adjuvant [81].

Technological and regulatory barriers

Regardless of the improvement of IL-12 delivery, numerous challenges impede its application. The fusion of 
IL-12 with extracellular matrix or immune factors through systemic administration helps prolong half-life 
and reduce off-target effects, but still with toxicity risk [63]. The virus-based delivery system, though 
efficient, poses immune neutralization, heterogeneity, and gene integration risks [82]. Non-viral carriers 
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such as nanoparticles and vesicles decrease cytotoxicity, mutagenicity, and immunogenicity, but with 
instability, easy inactivation, and low gene expression. In addition, cell-based IL-12 delivery, even with 
prospects, struggles with poor cell productivity, transduction inefficiency, in vivo rejection, and patient 
variability [39]. These limitations outline the need for iterative enhancement to improve antitumor efficacy 
while improving delivery systems. The inconsistencies in dosage, delivery methods, and therapeutic 
outcomes for IL-12 formulation and administration across studies are a result of the absence of 
standardized protocols. This difference aggravates the appraisal of safety, efficacy, and reproducibility, 
hindering clinical translation. Moreover, differences in vector design, dosing schedules, and formulation 
stability [83, 84] further challenge regulatory approval and large-scale application. Establishing 
standardized guidelines is essential to optimize IL-12-based therapies and ensure consistent clinical results 
[83].

Health system and economic barriers

The widespread implementation of IL-12-based cancer immunotherapies is majorly impeded due to the 
health system and economic barriers, especially in the aspects of cost production, scalability, access in low- 
and middle-income countries (LMICs), and incorporation into standard cancer care. The production and 
scalability of IL-12 is one significant challenge related to IL-12. According to Liu et al. [81] and Medrano et 
al. [85], the production of biologically active IL-12 by using plants has shown potential as an affordable and 
scalable approach. Single-chain versions of murine and chicken IL-12 have been produced by using 
transgenic tobacco plants and root cultures. They showed accurate post-translational modifications, 
including glycosylation and biological activity, successfully compared to IL-12 obtained from animal cells 
[81, 85]. Moreover, biologically active human IL-12 has been generated and secreted by using plant cell 
suspension cultures [86]. HEK 293 cells in mammalian systems have been developed to isolate high yields 
of pure, bioactive human IL-12 without relying on affinity tags by using a simple heparin-affinity 
purification approach [87]. These approaches in production and purification methods may aid in 
addressing the high costs involved in IL-12 production.

In addition, research shows that the accessibility of IL-12-based cancer immunotherapies remains 
inadequate in LMICs, mainly due to financial constraints, limited infrastructure, and issues of systemic 
healthcare. Presently, research has prioritized localized delivery methods for IL-12, with the purpose of 
improving its antitumor effectiveness while reducing systemic toxicity [39]. An eminent approach includes 
the utilization of genetically modified T cells engineered to express IL-12 in a controllable way, which has 
shown significant tumor regression without any harmful impact in preclinical studies [26]. IL-12 remains 
insufficient in LMICs due to persistent healthcare inequity, despite its therapeutic relevance and access to 
immuno-oncology interventions. However, when IL-12 was delivered systemically, limited success and 
substantial toxicity were revealed through early clinical trials [17, 88]. Additionally, just-concluded 
investigations have turned in the direction of innovative delivery strategies aimed at increasing IL-12 
concentration within the TME while decreasing systemic side effects. Although hurdles persist, ongoing 
clinical efforts are actively assessing these novel approaches to fully leverage IL-12’s antitumor capabilities 
while addressing its associated toxicities [89].

Public health and equity considerations
Despite prior hindrances from systemic toxicity in IL-12, localized delivery strategies have shown robust 
antitumor effects with minimal adverse events in preclinical studies [39]. As mentioned in the earlier part 
of this review, IL-12 works synergistically with other cytokines and treatment modalities to influence 
antitumor activity and control the TME. Thus, its anti-angiogenic characteristics and ability to control 
tumor-associated macrophages contribute more to its treatment potential [90]. Nguyen et al. [39] 
highlighted that ongoing clinical trials are investigating various IL-12 delivery strategies. Besides, genetic 
polymorphisms in IL-12 genes may affect cancer vulnerability and could have predictive or prognostic 
significance in future oncogenic applications [90]. Generally, IL-12-based therapies show promise for 
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addressing global cancer issues through multifaceted mechanisms. However, integration in public health 
poses significant equity challenges.

Globally, the utilization of IL-12-based therapies could have profound implications for cancer burden 
reduction, particularly in regions with a high incidence of immunogenic tumors [17, 91]. However, 
disparities in manufacturing capacity, regulatory approval pathway, and affordability contribute to unequal 
access. For instance, LMICs may face limitations in adopting IL-12 immunotherapy due to high costs, lack of 
infrastructure for localized delivery systems, and challenges in integrating these therapies into public 
health programs [91]. Concrete, scalable solutions include (i) technology-transfer partnerships that enable 
regional fill-and-finish facilities to produce GMP-grade IL-12 at reduced cost; (ii) tiered-pricing agreements 
similar to those negotiated for antiretrovirals; and (iii) integration of IL-12 administration into existing 
chemotherapy day-units and district-hospital surgical suites to leverage established supply chains and 
staffing [92, 93].

Considering the analysis of the National Cancer databases, there are significant disparities in access to 
novel cancer immunotherapies. Elements including age, sex, socioeconomic status, income levels, insurance 
type, and residential education impact the implementation of these treatments. Non-Hispanic Black 
patients encounter worse survival results, even when receiving immunotherapy, which is a result of race 
and ethnicity [94]. Another study revealed that bias remains before and after FDA approval of checkpoint 
inhibitors, notably impacting Black and Hispanic patients with no insurance or Medicaid and those with 
humble household incomes [95]. The result of Gupta et al. [96] confirmed that patients living in areas with 
lower educational attainment and economic resources are unlikely to receive immunotherapy, mainly 
among non-Hispanic White patients. Understanding and addressing these disparities requires a multilevel 
approach targeting individual and social policy levels and the healthcare system, with increased power at 
higher levels to overcome challenges in access to immunotherapy and clinical trials [97]. Community-
engaged, decentralized clinical-trial networks, such as mobile infusion vans linked to tele-oncology hubs, 
can bring IL-12 studies directly to underserved neighborhoods, increase minority enrollment, and generate 
real-world effectiveness data relevant to resource-limited settings [98].

The discovery of dose-limiting toxicities (DLTs) of IL-12 in prior clinical experiments has allowed 
cancer researchers to find out how to successfully administer IL-12 to tumors, achieving treatments for 
different cancers while escaping the associated harmful effects. Discoveries now utilize strategies including 
nanoparticles, fusion proteins, and mRNA formulation to enhance local IL-12 delivery within tumors, hence 
reducing systemic exposure [89]. Notably, thermostable, lyophilized mRNA-lipid nanoparticles (LNPs) can 
be reconstituted at peripheral clinics without a continuous cold chain, while polymeric slow-release depots 
have enabled single-visit dosing schedules that cut patient travel costs by > 70% in LMIC pilot programs. 
These approaches show promise in enhancing IL-12’s therapeutic index and are being tested in clinical 
trials [99, 100]. Simultaneously, the WHO Model List of Essential Medicines (EML) and EML for Children 
(EMLc) have undergone updates to ensure that recommended cancer medicines offer significant clinical 
benefits, including improving overall survival and enhancing the quality of life [101]. Opportunities to 
access essential medicines for non-communicable diseases, such as cancer, remain a significant burden as 
countries work towards Universal Health Coverage (UHC), and as such, it demands strengthened healthcare 
systems, evidence-based priority setting, and financial resources [102].

Moreover, ethical concerns in experimental therapies pose a burden that must be addressed carefully 
to ensure patient safety and uphold ethical standards. So far, the therapies have faced issues such as toxicity 
management, informed consent, clinical trial design, and balancing risk with potential benefits. To protect 
patients from harm, healthcare providers must focus more on rigorous dose escalation studies, as this will 
allow for the identification of maximum tolerated doses (MTDs). An example can be seen in a study by 
Minnar et al. [103], which identified the MTDs based on the number of DLTs. The results indicated that 
NSH-IL-12 (a fusion of IL-12 and the NSH antibody) was controlled well up to a dose of 16.8 µg/kg. 
Researchers must also focus on developing tumor-targeted delivery systems (e.g., membrane-anchored IL-
12-T cells) to minimize off-target effects [104]. In clinical trial design, researchers must include an 
appropriate dosing schedule and ensure equity in the recruitment of patients [105]. Although localized IL-
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12 may introduce new ethical considerations, which may be addressed accordingly, it must be given 
attention, as it can reduce systemic toxicity. Researchers must transparently communicate these trade-offs 
during trial enrollment and continually reassess protocols as new safety data emerge [103, 105]. Engaging 
ethicists, oncologists, and patient advocates collaboratively is crucial for addressing these challenges and 
promoting IL-12 as a transformative cancer treatment.

Smith-Graziani and Flowers [106] reported that issues such as socioeconomic, geographic, and 
systemic barriers pose equity barriers for underserved communities in immunotherapy for rare and 
treatment-resistant cancers. Their marginalization in clinical trials reduces safety and efficacy data and, as 
such, sustains disparities. Insurance coverage limitations, high costs, and transportation challenges reduce 
access to and treatment adherence. Distrust of medical research, language barriers, and provider biases 
further hinder equitable delivery. Innovations such as localized IL-12 delivery systems that reduce toxicity 
and treatment frequency may improve feasibility in resource-limited settings by lowering infrastructure 
requirements, decreasing treatment costs, and enabling administration in decentralized or community-
based clinics [39]. Pilot implementation studies in sub-Saharan Africa have demonstrated that nurse-led 
intratumoral injections, supported by smartphone-based adverse-event reporting, are feasible in district 
hospitals lacking advanced radiotherapy units, providing a template for scale-up. Minority participation can 
increase through decentralized trials and community engagement, as demonstrated by initiatives such as 
the National Cancer Institute Community Oncology Research Program, which demonstrates that 
community-based research networks enhance access, trust, and participation among underrepresented 
populations [106]. Addressing the above barriers is crucial to minimizing disparities in IL-12 
immunotherapy access and outcomes in the underprivileged community. Decisively, addressing the 
challenges faced by the public requires multidimensional approaches that will integrate equity-focused 
frameworks into research design, regulatory policy, and healthcare delivery. Simultaneously, achieving fair 
and effective results necessitates promising affordability, increasing access for underserved groups, and 
fostering inclusive clinical research.

Future perspectives and innovative solutions
A potential avenue for future research includes the development of two-dimensional nano-biomaterials 
coupled with engineered IL-12 variants. Graphene, a cutting-edge 2D nanoparticle that enhances direct 
penetration of the lipid makeup TME and has an exact effect on the direct nucleus of the targeted tumor cell, 
is another approach yet to be well elucidated [107]. Moreover, the short lifespan of cytokine-mediated 
therapy is due to their small molecular weight, which is subjected to poor pharmacokinetic properties upon 
systemic administration. The small weight enables quick renal clearance, which leads to a short half-life of 
the cytokines. In the end, it would require continuous administration of IL-12 to meet its dose requirement, 
but unfortunately, the continuity would result in low therapeutic potential due to toxicity [108]. Therefore, 
the abundant administration of IL-12 would result in a greater level of toxicity, which accounts for its 
potential to combat many healthy cells before arriving at the targeted tumor site. Thus, protein engineering 
has been a promising approach in elucidating the systemic and local administration of IL-12 in solid tumor 
therapy. In a study, an engineered cytokine (IL-12) was evaluated upon administration within a specific 
duration of dose contents, showcasing greater specificity to the targeted TME. However, this research has 
reported the lower bioavailability of IL-12 in the system in regard to low toxicity [109]. Another recent 
study by Horton et al. [28] shows that the absence of IL-12 receptor expression within a T-cell could lead to 
a primary resistance effect of systemic administration of IL-12 to the targeted tumor cell. Therein, the 
resistance can be reduced by the mechanistic combinations of IL-2 and an engineered variant of IL-12, 
which could reduce therapeutic DLT. Future studies should systematically screen and characterize novel IL-
12 splice variants and fusion constructs (e.g., IL-12–IL-23 chimeras) that retain antitumor potency while 
minimizing pro-inflammatory signaling.

In the context of the innovative solution in overcoming the barriers to the administration of IL-12 in 
cancer immunotherapy, understanding of vast aspects of oncology and its smart drug administration would 
be crucial. Despite all the advancements in cancer research and high resistance effect of cancer therapy, 
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conventional therapy is still the most commonly used therapy. Elucidating nanoparticle smart drug 
administration would be crucial to bringing IL-12 cytokine-mediated therapy to life. The polymer 
nanoparticle has been a great watch-out in the studies of immunotherapy due to its essential properties of 
biocompatibility, smaller size, biodegradability, and very high stimulation of the immune system [110]. 
Studies have proven nanoparticles to be significant contributors to the success of cancer immunotherapy. It 
has shown the effect of activation of APC; likewise, it is an immunosuppressive agent of TME. It also allows 
the uptake of immunostimulatory cytokines for the induction of B-cell and T-cell responses. Whereas, they 
act as an adjuvant [111]. This nanoparticle systemic-delivery effect engulfs the cytokines to be delivered to 
the targeted TME for easy transmission and proactiveness of the IL-12 without losing its pharmacokinetic 
properties. With this mechanism, the lifespan of the cytokines is elongated for it to exert the intended effect 
at the site of action [112]. Emerging research has also highlighted the role of tumor cell metabolism and 
post-translational modifications in shaping immune responses to cytokine therapies. Modulation of post-
translational modifications such as lysine vitcylation and succinylation has emerged as a novel strategy to 
enhance STAT1-mediated immune responses, offering potential synergy with IL-12-based cancer 
immunotherapies. These approaches may unlock new avenues to improve efficacy while mitigating 
systemic toxicity [113]. Combining IL-12 with checkpoint inhibitors, oncolytic viruses, or adoptive cell 
therapies warrants dedicated preclinical pipelines to identify synergistic schedules (e.g., IL-12 priming 
followed by anti-PD-1) and to define biomarkers that predict additive toxicity.

Despite the advancement in cancer immunotherapy, the emerging resistive effect experienced by some 
individuals has posed a greater threat to the future of cancer immunotherapy and its relevance. This issue 
called for many oncologists to depict another preclinical intervention, which leads to the identification of 
some predictive and prognostic biomarkers in elucidating and understanding the mechanism of action of 
cytokine therapy with immune checkpoint blockade (ICB) [114]. The mechanistic ICB has shown a durable 
antitumor effect on metastatic melanoma and other types of tumor cells [115]. Verily, the interactions of 
PD-1/PD-L1 within the system could counter the defeat of cancer cells with the use of the immune system. 
Studies have now shown that the anti-tumor properties of IL-12 primarily operate through two key 
mechanisms: immune activation and direct inhibition of angiogenesis. In the immune activation pathway, 
IL-12 enhances CD8+ T cell cytotoxicity and NK cell-mediated tumor lysis by upregulating granzyme B and 
perforin as discussed earlier. Additionally, IL-12-induced IFN-γ production polarizes macrophages toward 
antitumor phenotypes and enhances antigen presentation, further strengthening the immune response 
against tumor cells [116]. These approaches of personalized immunotherapy guided with biomarkers and 
genomes are another promising future perspective and innovation in enabling a precise administration of 
IL-12 to the targeted TME. Refining IL-12 dosing schedules, such as ultra-low continuous infusion versus 
high-intensity pulses, should be prioritized in phase I trials, with adaptive designs to balance efficacy and 
cytokine-release syndrome risk [117].

The recent advancement in technology of utilizing mRNA-based delivery of IL-12 and CRISPR-assisted 
gene editing to make a precise and localized IL-12 expression, with reduced off-target effect, has been 
greatly appreciated. In the local administration of IL-12 encapsulated within LNPs, research shows a potent 
inhibitory effect of IL-12 against cancer cells, with a statistical preference of 91.26% outperforming IFN-γ 
and IL-7 in both a syngeneic mouse model and a humanized model [75]. Without prevailing systemic 
toxicity, intravenous administration of IL-12 LNP encapsulation shows a 0.5 in 1 reduction of liver tumor 
burden in the MYC hepatocellular carcinoma model through CD8+ T cell activation [118]. One of the 
profound delivery-targeted strategies lies in the administration of a low dose of IL-12 mRNA. In reference, 
the administration of 0.5 µg of IL-12 mRNA achieves tumor regression in melanoma and colorectal tumor 
models when combined with anti-PD-L1 [119]. As it’s understood that mRNA-mediated IL-12 enables dose-
controlled administration [75], CRISPR enables the induction of a specific tumor and prevents constitutive 
expression risk [119]. In recent research, where a novel CAR-T product is being engineered from the 
CRISPR system called RB-312, upon encountering a specific antigen, the product is being activated to 
extinguish the antigen. Once the antigen vanishes, the antigenic stimulus vanishes as well, which is because 
of reducing systemic toxicity [119]. IL-12, serving as an adjuvant, enhances the effectiveness in immune 
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activation of dendritic cell maturation and production of IFN-γ when combined in a cancer vaccine [91, 
120]. Within CAR-T strategies of administering IL-12, research shows that ovarian and breast cancer 
models were administered with an engineered membrane-bound IL-12, resulting in a prompt elimination 
of antigen-negative tumors, outperforming the usual CAR-T cell therapy [121]. The road ahead must also 
confront manufacturing scalability, regulatory hurdles for gene-edited products, and the risk of immune 
escape driven by chronic IL-12 exposure, challenges that future investigations should model in clinically 
relevant settings. The aforementioned future perspectives are renowned and a novel approach that tends to 
reduce systemic toxicity in the administration of IL-12. Provided are innovative solutions that call the 
attention of researchers to achieving global cancer freedom.

Recommendations for translational and public health advancement
Despite the significant anti-tumor activity of IL-12, it has encountered an enormous setback since the late 
1990s in its use due to the systemic toxicity associated with the administration of IL-12 to tumor cells [39]. 
However, several approaches have been developed to offer solutions to each delivery strategy’s limitations, 
reducing the toxicity level associated with the systemic administration of IL-12, the most commonly 
reported being neutropenia and thrombocytopenia [104]. With this improvement, IL-12 can finally fulfill its 
antitumor potential in cancer immunotherapy. Translational research consortia play a significant role in 
bridging the gap between laboratory testing and the pharmacological use of IL-12 in tumor cells and 
providing possible solutions to the limitations of its systemic administration. In a study reported by Dong et 
al. [63], the fusion of IL-12 to extracellular matrix proteins, collagens, and immune factors significantly 
increased its antitumor potential, thereby inhibiting cancer cells more effectively and with no systemic 
toxicity. They also stated that the use of viral vectors (such as the oncolytic viruses, poxvirus, adenovirus, 
and vaccinia virus) as a delivery system for IL-12 has significantly reduced the toxicity associated with the 
systemic administration of IL-12 and enhanced antitumor effects by inducing both innate and adaptive 
immune responses. An extracellular matrix fusion protein that consists of the human monoclonal IgG1 
antibody NHS76 fused at each CH3 C-terminus to human IL-12, NHS-IL12, is a fusion protein that is 
structured to target single- and double-stranded DNA in regions consisting of dead cells due to insufficient 
oxygen supply within solid tumors [103]. NHS-IL12 has demonstrated significant Th1 immune activation 
and the ability to slow down or inhibit tumor cells by activating NK cells and CD8+ T lymphocytes. With this 
great approach, IL-12 administration to cancer cells would have barely any systemic toxicity.

Global health partnerships (GHPs) are collaborative networks guided by equity, which involve complex 
relationships between individuals and organizations from low-income, middle-income, or high-income 
countries around the world based on past collaborative work [122], for instance, the therapeutic use of IL-
12 in cancer immunotherapy. The GHP’s main goal is to provide everyone with equal access to essential 
health services and products, irrespective of their economic income, to improve global health. Also, senior 
health workers have taken bold steps towards overcoming the barrier of accessing adequate health 
facilities across the world by forming a body called the Future of Health (FOH) [123]. These bodies came 
together and identified actions that can be taken to overcome this major health challenge, which include 
leadership prioritization and accountability, designing and implementing comprehensive measures to 
overcome inequity, defining, monitoring, and measuring progress on equity access, and fostering 
partnerships with other bodies that enhance the future of equitable access of individuals to quality health 
services and products.

The importance of strengthening health systems to improve immunotherapy readiness and access is 
highlighted by current research. The disparities in patients’ access to cancer care and outcomes are a result 
of novel, improved cancer diagnosis and treatment [97]. However, as disparities in access to 
immunotherapy persist, interventions at the policy level, healthcare systems, and multilevel approaches 
targeting individuals are necessary to ensure equitable access to clinical trials and regular care. 
Technologies like e-health can improve patient adherence and communication for immunotherapy, possibly 
reducing costs and improving outcomes [124]. Data-driven health systems strengthening interventions at 
the district level have shown promise in improving facility readiness, including infrastructure, clinical 
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services, and medical equipment to provide quality care [125]. The National Cancer Institute Minority-
Underserved Community Oncology Research Program and the Affordable Care Act, which are sponsored by 
the government and have expanded clinical trials and high-quality cancer care, have shown promising 
efficacy [97]. Therefore, it is essential to reinforce health systems’ preparedness to improve overall 
healthcare delivery and outcomes.

Despite the development of improved therapies for IL-12, financial constraints pose a significant 
limitation on its use, particularly in LMICs. This limits the accessibility of individuals to the use of this 
therapeutic agent in cancer immunotherapy, leading to poor global health [126]. To overcome this price 
constraint and ensure the sustainability of healthcare systems funded by the public, various strategies have 
been developed. One of these strategies is the value-based pricing (VBP) for innovative drugs such as 
immune-oncology (I-O) drugs, which determines the benefits a particular patient gains from an antitumor 
innovative drug to estimate its best price [127], although the implementation of VBP is still undecided in 
the United States. To rationalize global clinical trials and approval processes, regulatory bodies should 
collaborate on IL-12 immunotherapy standards. Clinical trials can also be accelerated by the International 
Council for Harmonization (ICH) through the development of harmonized guidelines specific to 
immunomodulatory agents like IL-12, ensuring consistent evaluation criteria across regions. Implementing 
adaptive trial designs, seamless phase II/III trials, and master protocols can also improve efficiency by 
enabling modifications based on provisional results. These designs have shown promise in accelerating the 
development of treatments, particularly in accelerating the development of treatments, especially in 
oncology [128].

Conclusions
IL-12 holds vast potential in transforming cancer immunotherapy through its potent immunostimulatory 
activity, such as T cell and NK cell activation and promotion of anti-tumor immunity. Nevertheless, its 
clinical translation is hindered by several key barriers. These include hurdles in targeted delivery, 
immunosuppressive TME, and DLTs. The improvements in gene therapy, nanoparticle delivery systems, 
localized administration, and combination regimens with checkpoint inhibitors may also provide significant 
opportunities to overcome these limitations while reducing associated risks. To generate strong and 
sustained anti-tumor responses, IL-12 can activate T lymphocytes and NK cells while enhancing antigen 
presentation, thus helping to bridge innate and adaptive immunity. The comprehensive and multifaceted 
mechanism of IL-12 can also be exploited across multiple cancer types, in contrast to immunotherapies that 
target limited pathways. With the advancements in delivery systems, IL-12 has the potential to overcome 
immune resistance and enhance the efficacy of checkpoint inhibitors, influencing stronger and more 
resilient clinical responses and marking a turning point in cancer immunotherapy. To realize this potential, 
researchers should focus on translational studies that address toxicity and safer delivery systems. Clinicians 
are urged to back trials investigating safe, personalized IL-12 applications. Policymakers should facilitate a 
regulatory framework that allows adaptive trial designs, and funders must support high-impact 
translational research that accelerates clinical innovations. These cooperative initiatives can improve the 
safe and effective adoption of treatments based on IL-12. To achieve an equitable, accessible, and 
sustainable future where IL-12 is an integral part of cancer care and inclusive research methods, 
international collaboration, and customized technologies that guarantee all populations take advantage of 
IL-12ʼs therapeutic potential, realizing an egalitarian, accessible, and sustainable future. In the upcoming 
years, IL-12 may serve as the basis for cancer immunotherapy with additional development.
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