
Explor Med. 2025;6:1001346 | https://doi.org/10.37349/emed.2025.1001346 Page 1

© The Author(s) 2025. This is an Open Access article licensed under a Creative Commons Attribution 4.0 International 
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution 
and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Exploration of Medicine

Open Access Review

Molecular diagnostics in clinical oncology: an overview
Evgeny Imyanitov1,2* , Anna Sokolenko1,2

1Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 Saint-Petersburg, Russia
2Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia

*Correspondence: Evgeny Imyanitov, Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 
Saint-Petersburg, Russia. evgeny@imyanitov.spb.ru
Academic Editor: Apostolos Zaravinos, European University Cyprus, Cyprus
Received: April 1, 2025  Accepted: July 2, 2025  Published: July 17, 2025

Cite this article: Imyanitov E, Sokolenko A. Molecular diagnostics in clinical oncology: an overview. Explor Med. 
2025;6:1001346. https://doi.org/10.37349/emed.2025.1001346

Abstract
Molecular diagnostics has become an integral part of modern clinical oncology. There are several dozen 
hereditary cancer syndromes; the detection of germline pathogenic variants in tumor-predisposing genes 
allows for the identification of subjects at-risk as well as guides the administration of cytotoxic and targeted 
drugs. The development of predictive tests for personalized drug-target matching is the best-known 
achievement of molecular oncology. For the time being, these assays are routinely utilized for the 
management of lung, breast, ovarian, colorectal, thyroid, biliary tract, endometrial, urothelial, and other 
malignancies. We are currently witnessing the emergence of practical applications of liquid biopsy. The 
detection of circulating tumor DNA (ctDNA) is a highly sensitive and specific procedure, which is currently 
used for the detection of secondary drug-resistant mutations, and holds great promise for the monitoring of 
malignant disease in oncological patients and early cancer detection in healthy individuals. While the 
utilization of molecular tests is currently limited to particular categories of cancer patients, their use is 
likely to become significantly more widespread in the near future. This trend will affect educational 
standards, requiring practicing physicians to become more familiar with molecular biology, and, vice versa, 
claiming some fluency in clinical oncology from laboratory specialists.
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Introduction
Molecular diagnostics is a complex of technologies aimed at detection of alterations in individual genes and 
gene-encoded molecules (RNA, proteins) for clinical purposes. This field emerged several decades ago, 
starting from the identification of selected tumor-specific protein markers [1]. A breakthrough in molecular 
genetics, i.e., the development of polymerase chain reaction (PCR), conventional and, particularly, next-
generation sequencing (NGS), ultrasensitive methods of DNA analysis, etc., as well as the completion of the 
Human Genome Project shifted the focus of molecular diagnostics towards the profiling of alterations in 
genes and their transcripts. Advances in molecular medicine have changed the daily practice of clinical 
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oncologists. Timely identification of subjects with hereditary forms of cancer is a mandatory component of 
the examination of cancer patients. Many targeted therapies are tailored to particular genetic alterations in 
tumor cells; therefore, mutation-drug matching has become a part of clinical routine [2] (Table 1). We are 
now witnessing significant progress in liquid biopsy, i.e., DNA-based non-invasive monitoring of the course 
of cancer disease [3]. This article provides an overview of the applications of molecular diagnostics in 
various areas of clinical oncology.

Table 1. Druggable genetic alterations in different tumor types

Target Frequency of actionable mutations Examples of targeted drugs

Lung cancer
EGFR ex19del, L858R 10–20% in Europeans; 40–70% in Asians; 

more common in females and non-smokers
EGFR inhibitors (erlotinib, gefitinib, afatinib, 
osimertinib, etc.)

ALK fusions 5%; more common in young patients, 
females, and non-smokers

ALK inhibitors (crizotinib, alectinib, lorlatinib, etc.)

RET fusions 4%; more common in young patients, 
females, and non-smokers

RET inhibitors (selpercatinib, pralsetinib)

ROS1 fusions 1.5–2%; more common in young patients, 
females, and non-smokers

ROS1 inhibitors (crizotinib, entrectinib, 
repotrectinib)

NTRK1-3 fusions 0.2%; more common in young patients, 
females, and non-smokers

NTRK inhibitors (entrectinib, larotrectinib)

HER2 amplification 1% HER2 inhibitors (trastuzumab, pertuzumab)
HER2 exon 20 insertions 2–3% HER2 inhibitors (trastuzumab deruxtecan, 

pyrotinib)
MET exon 14 skipping 2.5%; more common in elderly patients MET inhibitors (capmatinib, tepotinib, crizotinib)
BRAF V600E, V600K, and 
other V600 mutations

2% BRAF inhibitors (vemurafenib, dabrafenib, 
encorafenib) in combination with MEK inhibitors

KRAS G12C 10%; significantly more common in smokers KRASG12C inhibitors (sotorasib, adagrasib)
Breast cancer
BRCA1/2 mutation 7–10%; more common in patients with 

clinical signs of hereditary disease
Platinum compounds, PARP inhibitors (olaparib, 
talazoparib, niraparib, rucaparib)

PTEN mutation 5% AKT inhibitor (capivasertib)
PIK3CA mutation 40% AKT inhibitor (capivasertib), PI3K inhibitor 

(alpelisib)
AKT1 mutation 4% AKT inhibitor (capivasertib)
Ovarian cancer
BRCA1/2 mutation 25–40% Platinum compounds, mitomycin C, PARP 

inhibitors (olaparib, talazoparib, niraparib, 
rucaparib)

Colorectal cancer
BRAF V600E 4–8% BRAF inhibitor (encorafenib) plus EGFR inhibitor 

(cetuximab)
POLE mutation < 1% Immune checkpoint inhibitors (pembrolizumab, 

nivolumab, etc.)
HER2 amplification 1–2% HER2 inhibitors (trastuzumab, pertuzumab, 

lapatinib, etc.)
Pancreatic cancer
BRCA2 mutation 2% PARP inhibitors (olaparib, talazoparib, niraparib, 

rucaparib)
PALB2 mutation 0.5% PARP inhibitors (olaparib, talazoparib, niraparib, 

rucaparib)
KRAS G12C 2% KRASG12C inhibitors (sotorasib, adagrasib)
Biliary tract tumors
FGFR2 fusion or activating 
mutation

20% FGFR inhibitors (futibatinib, pemigatinib, 
infigratinib)

HER2 amplification or 
mutation

4% HER2 inhibitors (trastuzumab, pertuzumab, 
trastuzumab deruxtecan, pyrotinib)

BRAF V600E 2% BRAF inhibitors (vemurafenib, dabrafenib, 
encorafenib) in combination with MEK inhibitors
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Table 1. Druggable genetic alterations in different tumor types (continued)

Target Frequency of actionable mutations Examples of targeted drugs

Melanoma
BRAF V600E 60% BRAF inhibitors (vemurafenib, dabrafenib, 

encorafenib) in combination with MEK inhibitors
KIT mutation 15% in acral and mucosal melanomas KIT inhibitors (imatinib, nilotinib, dasatinib)
Thyroid cancer
RET activating mutation 10–25% of medullary carcinomas RET inhibitors (selpercatinib, pralsetinib)
BRAF V600E Up to 50% of papillary carcinomas BRAF inhibitors (vemurafenib, dabrafenib, 

encorafenib) in combination with MEK inhibitors
RET fusion 10% of papillary carcinomas RET inhibitors (selpercatinib, pralsetinib)
Endometrial cancer
POLE mutation 8% Immune checkpoint inhibitors (pembrolizumab, 

nivolumab, etc.)
HER2 amplification 10% HER2 inhibitors (trastuzumab, pertuzumab)
Urothelial cancer
FGFR3 activating mutation 15–20% FGFR inhibitors (erdafitinib, futibatinib, 

pemigatinib, infigratinib)
HER2 amplification or 
mutation

20–30% HER2 inhibitors (trastuzumab, pertuzumab, 
trastuzumab deruxtecan, pyrotinib)

Molecular tests for particular tumor types
Lung cancer

Molecular analysis of lung cancer is currently limited to non-squamous non-small cell lung carcinomas, 
while there are virtually no advances in DNA-assisted guidance of the treatment of squamous and small-cell 
lung malignancies. Histological diagnosis of lung cancer is often complicated; therefore, it is recommended 
to test patients with high probability of actionable genetic findings, i.e., women and non-smokers, 
irrespective of tumor histology [4–6].

EGFR gene mutations are the most common druggable alterations in lung adenocarcinomas. They 
account for approximately 10–20% of patients of European race and 40–70% of subjects of Asian ancestry. 
Although these manifold differences in racial distribution of EGFR mutations were acknowledged 
immediately after their discovery, the causes of this phenomenon remain unknown. EGFR mutations are 
significantly more common in females and non-smokers [7]. EGFR exon 19 deletions (ex19del) are 
associated with higher tumor sensitivity to EGFR tyrosine kinase inhibitors (TKIs) and demonstrate similar 
frequencies in patients of various ages. EGFR L858R mutations are particularly common in elderly subjects 
[8].

Approximately 20% of EGFR genetic events are defined in scientific literature as “rare” or “uncommon” 
mutations, i.e., they are represented by other than ex19del or L858R alterations [9]. The majority of these 
uncommon lesions are druggable by conventional inhibitors, with the exception of EGFR exon 20 insertions 
which require a distinct category of drugs [9–11]. Early EGFR PCR kits focused mainly on the detection of 
hotspot ex19del and L858R mutations, while current standards of EGFR testing call for comprehensive 
analysis of exons 18–21.

The cumulative frequency of tyrosine kinase gene rearrangements is around 10%, being 5% for ALK, 
4% for RET, 1.5–2% for ROS1, and around 0.2% for the NTRK receptor family (NTRK1, NTRK2, and NTRK3). 
These fusions are strongly associated with young patient age, female gender, and non-smoking status. 
Reliable and time-efficient detection of gene fusions still presents a challenge, despite significant advances 
in techniques for molecular analysis. RNA hybridization-based NGS is the most proficient technology in this 
respect; however, its routine utilization remains limited due to extraordinary complexity, high costs, and 
significant turn-around time. Amplicon-based RNA and DNA NGS are more accessible, but these techniques 
have a risk of missing some translocations. Immunohistochemistry (IHC) analysis is widely used for ALK 
testing, and, to a lesser extent, for ROS1 and pan-NTRK screening, despite having significant drawbacks with 
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regard to specificity and sensitivity. There are several elegant techniques for rapid and cost-efficient 
detection of ALK, ROS1, RET, and NTRK1-3 gene fusions that address the disadvantages described above, but 
their use is restricted to facilities that have managed to achieve scrupulous in-house adjustment and 
validation of these laboratory-developed protocols [6].

The medical significance of error-free ALK, ROS1, RET, and NTRK1-3 testing is perhaps the highest 
among all known predictive markers. For example, earlier studies suggested that patients with metastatic 
ALK-driven lung cancer may gain up to 7 years in their life expectancy upon targeted therapy, and these 
estimates are likely to exceed 10 years with more modern drugs [12, 13]. In addition to the above genes, 
NRG1 rearrangements appear to be more or less actionable; however, their testing has not been yet 
incorporated in minimal diagnostic standards due to the low occurrence of these fusions (around 0.2%) 
and moderate survival benefit from matched therapies [14, 15].

Activating MET mutations result in exon 14 skipping, thus significantly increasing the half-life of this 
tyrosine kinase. Their occurrence reaches approximately 2.5%. These events are confined to elderly 
patients, with almost all mutation-positive subjects being well above 70 years old [16, 17]. Surprisingly, IHC 
cannot be used for preliminary screening of these mutations. Exon 14 skipping MET alterations can be 
detected either by RNA-based NGS or specifically adjusted PCR allele-specific expression tests [18]. MET 
amplification coupled with gene overexpression is also associated with potential tumor sensitivity to MET 
inhibitors, although this variety of molecular testing and clinical attitudes towards MET-amplified tumors 
have not been standardized yet [19, 20].

BRAF activation occurs in approximately 4% of lung carcinomas. Only substitutions affecting codon 
600 are druggable; they are observed in less than 2% of tumors. BRAF V600-mutated malignancies are 
treated with a combination of BRAF and MEK inhibitors [6, 21]. Other BRAF alterations are represented by 
exon 11 mutations, non-codon-600 substitutions located in exon 15, and gene rearrangements. None of the 
latter events are clearly actionable [22].

HER2 amplification accompanied by gene overexpression plays a driving role in approximately 1% of 
lung carcinomas. These tumors can be managed by various anti-HER2 therapeutic agents [23–25]. Some 
lung malignancies produce excessive amounts of this receptor tyrosine kinase without being HER2-
dependent. The analysis of other mutated genes in MAPK pathway, particularly RAS mutations, may help to 
discriminate between driver and passenger HER2 amplifications [25]. Activating HER2 mutations, mainly 
exon 20 insertions, occur in approximately 2–3% of lung carcinomas. These tumors can be targeted by 
novel low-weight TKIs or HER2 antibody-drug conjugates [26, 27].

KRAS mutations are seen in 30% of lung carcinomas. KRAS G12C substitution is amenable to therapy by 
sotorasib or adagrasib [28]. While actionable alterations affecting EGFR, BRAF, MET, HER2, ALK, RET, ROS1, 
and NTRK1-3 oncogenes are strongly associated with the lack of smoking history, KRAS G12C substitutions 
occur almost exclusively in smokers, with the frequency about 1 out of 6–7 tobacco-related cancers [29]. 
KRAS G12C also serves as a marker of lung cancer sensitivity to immune therapy, because smoking-induced 
lung malignancies have a high tumor mutation burden (TMB) [30]. Non-G12C KRAS mutations are not 
necessarily associated with smoking history and cannot be targeted by currently approved drugs.

EGFR, BRAF, MET, HER2, ALK, RET, ROS1, and NTRK1-3 targeted drugs render the best overall survival 
when applied in the first line [31]. Current laboratory facilities rarely provide comprehensive genetic 
profiling of lung carcinomas within an acceptable time frame, which is around two weeks or fewer. 
Consequently, many patients carrying druggable mutations start their therapy with non-specific 
interventions. Significant shortening of the turn-around time for the comprehensive analysis of actionable 
mutations is a primary need for lung cancer management [6].

Germline genetic testing is rarely applied to lung cancer patients, although the substantial incidence of 
these tumors in young non-smoking subjects remains an enigma. There are a few dozen subjects across the 
world, mainly of North American ancestry, who developed this disease due to inheritance of the EGFR 
T790M mutation [32]. In the practical sense, oncologists have to be aware of Li-Fraumeni syndrome, i.e., 
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TP53 pathogenic variants, as a likely cause of young-onset lung cancer. Li-Fraumeni syndrome includes 
predisposition to early-onset breast, soft-tissue, brain, and hematological malignancies, so the combination 
of lung cancer with these tumors within a given patient or family calls for germline genetic testing. Of 
particular note, Li-Fraumeni related lung cancers almost always carry somatic EGFR mutations [33, 34].

Breast cancer

While molecular testing for lung cancer is focused mainly on the analysis of somatic mutations, germline 
DNA sequencing forms the backbone for genetic examination of breast cancer patients. Women with clinical 
features of hereditary cancer predisposition, e.g., younger than 50–55 years, or having family history of 
breast or ovarian cancer, or with triple-negative receptor phenotype, or with bilateral appearance of breast 
cancer disease, have to undergo testing for germline pathogenic variants in BRCA1 and BRCA2 genes. 
Historically, BRCA1/2 analysis was viewed as a purely cancer predisposition test aimed to estimate the risk 
of the development of the second tumor as well as to reveal mutation carriers among family members. The 
discovery of the vulnerability of BRCA1/2-driven tumors to DNA double-strand break-inducing agents, such 
as platinum compounds and PARP inhibitors, shifted the focus towards predictive value of BRCA1/2 testing 
[35–37].

Several issues regarding germline DNA analysis in breast cancer patients remain disputable. The 
increasing availability of NGS calls into question current attitudes towards the selection of breast cancer 
patients based on clinical criteria for hereditary syndromes. Some experts suggest universal BRCA1/2 
testing for all consecutive patients with breast cancer [38–40]. It is beyond doubt that this practice will 
eventually take place, although some essential nuances, e.g., clinical decisions with regard to chance finding 
of germline BRCA1/2 pathogenic variants in family history-negative elderly women, have been neither 
discussed nor properly investigated.

The technical drawbacks of existing technologies for NGS analysis are rarely acknowledged in medical 
literature. For example, many NGS services cannot reliably detect so-called large gene rearrangements 
(LGRs), i.e., gross deletions or duplications involving one or several exons of BRCA1/2 genes [41]. 
Importantly, patients with BRCA1/2 LGRs are the best responders to PARP inhibitors, so this is a significant 
deficiency in that current DNA testing practices are likely to miss women with the most prolonged benefit 
from targeted therapy [42, 43].

The extension of NGS panels beyond BRCA1/2 is a particularly difficult topic. CHEK2 and ATM genes are 
the most common and established contributors to breast cancer predisposition after BRCA1/2; however, 
the clinical significance of the testing of these genes is unclear because they appear to be associated with 
only a two-fold increase of the risk of malignant disease [44–46]. Furthermore, ATM- and CHEK2-associated 
tumors apparently do not have a therapeutic window for PARP inhibitors [47, 48]. Similar concerns are 
applicable towards BLM and NBS1 gene testing [49, 50].

A recent study provided novel insights into the testing of moderately penetrant breast cancer 
predisposing genes. Many genes associated with hereditary cancer syndromes render a relatively 
insignificant increase in cancer risk in heterozygous mutation carriers but are associated with fatal medical 
conditions in subjects with biallelic gene abnormalities. The inclusion of BLM in the breast cancer NGS 
diagnostic panel led to the identification of a woman with Bloom syndrome, who remained surprisingly 
healthy until she developed a malignancy. These chance findings may have profound impact both for the 
well-being of particular patients and for medical research. Indeed, compensatory mechanisms in subjects 
with otherwise fatal mutations deserve detailed investigations, as they may suggest novel treatments for 
life-threatening conditions [51].

The analysis of TP53 germline mutations may reveal subjects with Li-Fraumeni syndrome, thus calling 
for genetic analysis of family members; it is particularly relevant to women with young-onset breast cancer 
[52]. Tumors arising in these patients have a high frequency of HER2 gene amplification and 
overexpression [53]. Li-Fraumeni syndrome is a severe condition, so many carriers of the TP53 mutation 
cannot transmit this defect to children due to limited life span or decreased chances to find a spouse. At the 
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same time, a significant portion of subjects with this disease have de novo alteration in the TP53 gene, so 
they do not have a family history of cancer disease [54].

PTEN mutations are associated with Cowden syndrome [55]. It is of interest that clinical activity of the 
AKT inhibitor, capivasertib, has already been demonstrated for breast patients with somatic PTEN 
mutations, therefore, this drug deserves studies in subjects with hereditary PTEN-related tumors [56].

Several “BRCA1/2-like” genes, i.e., members of DNA repair by homologous recombination pathway, 
have been incorporated in breast cancer genetic testing relatively recently. Perhaps only PALB2 may be 
regarded as a true equivalent of BRCA genes [40, 57]. Some RAD и FANC family members, e.g., RAD51C and 
RAD51D, demonstrated more or less consistent association with breast cancer, although neither the degree 
of the increase in cancer risk nor the somatic status of the remaining allele of the involved gene, and 
consequently, tumor sensitivity to PARP inhibitors, have been investigated in sufficient detail [58, 59]. 
Similar limitations apply to BRIP1 and BARD1 genes [40, 45, 59]. The impact of other genes from RAD и 
FANC families is even less studied. Overall, it is important to continue the analysis of rapidly growing data 
sets in order to clean diagnostic NGS gene lists from irrelevant genes while encouraging sequencing of 
novel breast cancer predisposing loci.

Somatic analysis of breast tumors is limited to the testing of only a few genes in metastatic hormone 
receptor-positive HER2-negative carcinomas. Some of these tumors are intrinsically resistant to endocrine 
therapy due to activation of PI3K/PTEN/AKT pathway. Patients with PIK3CA mutations may benefit from 
the addition of PI3K inhibitors to fulvestrant [60]. Capivasertib has somewhat larger indications, as it also 
demonstrated activity in women with somatic mutations affecting PTEN or AKT [61]. Importantly, a breast 
cancer study involving comprehensive genetic profiling, i.e., exhaustive analysis of all potential drug targets, 
demonstrated no benefit from extended testing for somatic mutations [62].

Ovarian cancer

Ovarian cancer, being a common disease, has an unusually high proportion of patients who developed this 
disease due to germline genetic defects. As many as 25–40% of women with high-grade serous carcinoma 
of the ovary carry pathogenic alleles in BRCA1 or BRCA2 genes [63, 64]. Unlike for breast cancer, the 
selection of patients based on clinical criteria, such as young onset or family history, is discouraged; hence, 
all consecutive patients with high-grade ovarian cancer disease need to be tested for germline BRCA1/2 
mutations [65]. The addition of new genes to this list is even more questionable than for breast cancer. 
Given that current NGS panels tend to pool together all cancer-predisposing genes in the same test, not a 
mere DNA analysis but the medical interpretation of the obtained data is likely to possess some problem in 
the future.

Approximately 30% of high-grade serous ovarian carcinomas do not have apparent alterations in 
BRCA1/2 or similar genes but resemble BRCA1/2-driven tumors by genomic architecture as well as by 
sensitivity to PARP inhibitors and platinum compounds. This feature was historically defined as BRCAness, 
although in the current literature the term “homologous recombination deficiency” (HRD) is more common. 
HRD testing is utilized for the selection of patients for the treatment by PARP inhibitors. HRD analysis is a 
highly complex, expensive, and time-consuming test that involves NGS-based genome scanning followed by 
the bioinformatics analysis of the integrity of chromosomal arms [66].

Colorectal cancer

Molecular testing for colorectal cancer is no less complex than that for lung cancer, although it is often 
mistakenly perceived by oncologists as a relatively straightforward pipeline. The utmost challenge lies in 
the comprehensive detection of mutations in KRAS and NRAS genes. These substitutions occur at 
frequencies of approximately 50% and 5%, respectively, with surprisingly little impact of ethnic or 
geographic variations [67]. RAS testing guides the choice between anti-EGFR antibodies and bevacizumab 
when considering the addition to chemotherapy backbone. While patients with wild-type KRAS and NRAS 
derive significant benefit from cetuximab or panitumumab, erroneous administration of these drugs to 
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subjects with mutations, which were missed by laboratory tests, is associated with the risk of stimulation of 
tumor growth [68].

Initial clinical trials on anti-EGFR antibodies relied on PCR testing for a limited repertoire of RAS 
hotspot mutations [69]. Subsequent studies utilized Sanger sequencing, which may be prone to false-
negative results when the proportion of the tumor cells in the sample is low [68]. This disadvantage can be 
overcome by NGS testing or by the use of relatively sophisticated laboratory procedures combining allele-
specific PCR, high-resolution melting (HRM) analysis, pyrosequencing, etc. [67]. Importantly, unlike for lung 
cancer, molecular analysis of colorectal tumors is not a particularly time-sensitive procedure. Clinical 
studies demonstrate that the choice between anti-EGFR antibodies and bevacizumab can be safely 
postponed until the second cycle of chemotherapy; therefore, one month is an acceptable turn-around time 
for RAS testing [70].

The analysis of BRAF codon 600 mutations is not complicated. BRAF V600E substitutions occur in 
4–8% of colorectal carcinomas and are associated with significantly worsened disease outcomes [67, 71]. 
BRAF inhibition alone or in combination with MEK downregulation is not effective due to collateral 
activation of EGFR-driven signaling cascade. The efficacy of combined administration of BRAF-targeted 
drugs and anti-EGFR therapeutic antibodies has been demonstrated in several clinical trials involving 
different agents; however, formal approval for colorectal cancer treatment has been granted only to 
encorafenib and cetuximab [72].

Microsatellite instability (MSI), i.e., accumulation of multiple alterations in tandem nucleotide repeats, 
reflects the deficient mismatch repair (dMMR). This mechanism of tumor development is relevant to 
approximately 5–10% of colorectal carcinomas. Two distinct routes underlie the emergence of MSI. Some 
colorectal cancer patients have developed their disease due to heterozygous germline defects in one of the 
dMMR genes (MLH1, MSH2, MSH6, PMS2, or EPCAM). This condition is called Lynch syndrome (hereditary 
non-polyposis colorectal cancer); the majority of patients belonging to this category are aged below 
50 years and/or have family history of colorectal or endometrial cancer. In addition to young-onset 
patients, MSI is characteristic of elderly subjects. Indeed, colorectal carcinomas arising in patients aged 
above 70–80 years frequently have somatic inactivation of the MLH1 gene due to methylation of its 
promoter.

MSI tumors have an excessive number of mutations and, consequently, are highly immunogenic, have 
relatively low relapse rates after surgery, and can be efficiently managed by therapeutic inhibitors of 
immune checkpoints. The incidence of MSI demonstrates pronounced interstudy variations, depending on 
the proportion of localized and metastatic tumors, population-specific contribution of Lynch syndrome in 
cancer incidence, prevalence of elderly people among analyzed patients, and, possibly, technical nuances of 
MSI detection [73]. MSI is often combined with activating events in MAPK pathway genes, particularly 
KRAS, NRAS, and BRAF mutations. Up to a third of KRAS/NRAS/BRAF mutation-negative tumors carry 
druggable rearrangements in receptor tyrosine kinases [74].

POLE mutation testing has been introduced into clinical practice relatively recently. POLE encodes for 
DNA polymerase, so the tumors with altered POLE accumulate an excessive number of mutations. Clinical 
significance of POLE mutations is essentially similar to that for MSI-H, as they are associated with high 
tumor responsiveness to immune therapy and may indicate the presence of hereditary cancer syndrome 
[75].

HER2 amplification followed by gene overexpression is detected in approximately 1–2% of colorectal 
cancers. It is essential for treatment decisions to ensure that HER2 activation plays a driver but not a 
passenger role in a given tumor, i.e., at least to exclude the presence of KRAS mutations [25]. HER2-positive 
KRAS-negative tumors can be efficiently managed by a number of HER2-targeted drugs [76, 77].

Pancreatic cancer

KRAS mutations are detected in approximately 80–90% of pancreatic carcinomas [78]. The majority of 
them are currently not druggable, although KRAS G12C substitution, which is rare in pancreatic 



Explor Med. 2025;6:1001346 | https://doi.org/10.37349/emed.2025.1001346 Page 8

malignancies, can be managed by sotarasib or adagrasib [79, 80]. KRAS mutation-negative tumors often 
carry genetic alterations associated with sensitivity to available drugs, particularly BRAF V600E 
substitutions and rearrangements involving receptor tyrosine kinases (NTRK1-3, ALK, etc.). Approximately 
1–2% of pancreatic tumors are microsatellite-unstable [81].

The contribution of germline pathogenic variants is a controversial topic. It is beyond doubt that 
heterozygous inactivating variants in BRCA2, and possibly PALB2 genes, are associated with the 
development of pancreatic tumors in some individuals, and these tumors arise via inactivation of the 
remaining allele of the involved gene, being, therefore, highly sensitive to platinum compounds and PARP 
inhibitors. The impact of BRCA1, which is similar to BRCA2 with regard to the spectrum of associated cancer 
types and the biological role, is less proven, both for the increase of the disease risk and for the tumor 
sensitivity to DNA double-strand inducing agents [82, 83]. Other genetic causes of pancreatic cancer are 
exceptionally rare.

Biliary tract tumors

Activating mutations and rearrangements affecting the FGFR2 gene are the most common events in this 
variety of tumors: they are detected in approximately 1 out of 5 biliary tract carcinomas. HER2 activation in 
this cancer type occurs via gene amplification and overexpression as well as via point mutations; overall, 
HER2 upregulation is observed in approximately 4% of biliary tumors. In addition, 2% of biliary 
carcinomas carry V600E substitution in the BRAF oncogene, and 2% of cases are microsatellite unstable. 
Intrahepatic cholangiocarcinomas, but not other tumors from this category, have frequent involvement of 
FGFR2 receptor tyrosine kinase and IDH1/2 genes. In total, more than a third of biliary malignancies are 
amenable to targeted therapy [84].

Melanoma

Approximately 60% of cutaneous melanomas carry BRAF V600E substitution. These tumors are often 
associated with excessive ultraviolet exposure and, therefore, a high mutation burden and increased 
antigenic load. The optimal sequence of BRAF inhibitors and immune oncology drugs depends on the 
particular clinical situation [85, 86]. The incidence of NRAS mutations in melanomas of the skin approaches 
15% [87]. These alterations are not currently druggable; however, it is advisable to perform NRAS testing: 
the presence of NRAS mutations confirms BRAF-negative status of the tumor, while the absence of this 
event may call, at least in some circumstances, for the search of other alterations in MAPK signaling 
pathway [88]. Approximately 15% of mucous and acral melanomas carry activating events in KIT receptor 
tyrosine kinase; unfortunately, only a portion of KIT mutations are druggable by available KIT inhibitors 
[89].

Thyroid cancer

Medullary thyroid carcinomas are characterized by the high occurrence of activating mutations in RET 
receptor tyrosine kinase. Importantly, this histological diagnosis calls for germline RET testing irrespective 
of other clinical features, such as age or family history, as 10–25% of consecutive medullary thyroid 
carcinomas are hereditary in nature. In addition to germline mutations, a significant portion of these 
tumors arise due to somatic events affecting the same oncogene. Papillary thyroid cancers have a totally 
distinct spectrum of druggable genetic events. Approximately half of these carcinomas carry BRAF V600E 
substitutions. A significant portion of papillary tumors contain druggable rearrangements: RET fusions are 
relatively common, while NTRK and ALK translocations occur at moderate frequency [90, 91].

Perhaps the most striking molecular feature of thyroid cancer is a commonality of scenarios involving 
RET oncogene activation, especially given recent invention of RET inhibitors. While medullary cancers 
develop via mutation-driven activation of RET kinase, papillary tumors often arise due to the emergence of 
rearrangements affecting this oncogene [90, 91].
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Endometrial carcinomas

Endometrial carcinomas have the highest rate of MSI among common tumor types: this event is detected in 
approximately 20% of malignancies belonging to this category. Although the majority of MSI-positive 
uterine cancers are sporadic, the possible presence of Lynch syndrome and, consequently, germline testing 
should be considered in patients with young-onset disease and/or a family history of endometrial or 
colorectal cancers. POLE mutations are also a mandatory component of DNA analysis in endometrial cancer 
patients. A subset of endometrial tumors carry amplified and overexpressed HER2 oncogene and, therefore, 
are amenable to therapeutic HER2 inhibition [92, 93].

Prostate cancer

Similar to pancreatic cancer, the involvement of BRCA2 germline mutations in the pathogenesis of prostate 
cancer is beyond any reasonable doubt, while the role of the BRCA1 gene is far less clear [82, 94, 95]. 
Castrate-resistant prostate cancer patients are recommended to undergo testing for somatic mutations in 
homologous recombination repair (HRR) genes. The HRR test is sometimes confused with the HRD assay, 
given that both tests are intended to reveal tumors with sensitivity to PARP inhibitors and extend their 
spectrum beyond BRCA-driven carcinomas. As already explained above, the HRD test relies on the genomic 
scanning of the tumor karyotype and identifies instances of “BRCA-like” chromosomal instability. In 
contrast, the HRR assay is not capable of revealing the consequences of deficient homologous 
recombination, but instead simply supports the analysis for somatic mutations in genes presumably 
involved in this pathway.

The most well-known HRR panels contains up to 15 genes, including BRCA1 and BRCA2 [94, 96]. The 
reliance on HRR gene analysis has significant limitations. First of all, even the detection of a somatic 
mutation in a well-known gene, like BRCA2, does not guarantee the inactivation of the remaining gene 
allele, i.e., functional BRCA2 inactivation [43]. Furthermore, several genes, which have been included in 
HRR panels, do not play a role in rendering tumor responsiveness to DNA double-strand break inducing 
agents [97]. ATM and CHEK2 are relevant examples in this respect, because they usually do not undergo 
somatic biallelic inactivation even in tumors with germline pathogenic variants. Furthermore, there are 
several lines of evidence suggesting that ATM and CHEK2 deficiency is not associated with tumor sensitivity 
to PARP inhibitors or platinum compounds [47, 48]. Molecular genetic testing for prostate cancer deserves 
to undergo substantial revision in the next few years.

Urothelial carcinomas

FGFR3 up-regulation is the most common druggable event in urothelial cancers. Somewhat surprisingly, 
activation of this receptor tyrosine kinase is observed in more than a quarter of localized cancers, while this 
estimate falls to about 15–20% in metastatic forms of this disease. The majority of alterations are point 
mutations affecting “hot codons”. However, some carcinomas arise due to FGFR3 gene rearrangements. 
Alterations in other genes belonging to the FGFR family are significantly less common. A significant portion 
of urothelial malignancies have evidence of activation of the HER2 oncogene via point mutation or gene 
amplification followed by overexpression. MSI is detected in up to 1% of tumors of this type [98].

Agnostic administration of anticancer drugs
The term agnostic originates from the Greek word “gnosis” (knowledge). Agnostic choice of therapy means 
the reliance on molecular data irrespective of the knowledge of tumor histology. Although being intuitively 
attractive, this approach tends to ignore many important nuances, for example, the molecular context of 
druggable mutations. For instance, BRAF V600-mutated melanomas can be efficiently managed by BRAF 
inhibitors administered either alone or in combination with MEK antagonists. This treatment is ineffective 
in colorectal carcinomas because these malignancies express significant amounts of EGFR receptor and, 
therefore, are capable of escaping this treatment via the collateral pathway. However, appropriate 
modification of this therapy, i.e., the addition of anti-EGFR therapeutic antibodies to BRAF inhibitors, allows 
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to achieve tumor shrinkage. Despite all these limitations, the feasibility of the agnostic approach is beyond 
any reasonable doubt, and this attitude towards the use of cancer drugs will be increasingly utilized in the 
future [99].

Integrative genomic tests
The majority of molecular tests utilized in clinical oncology rely on the analysis of single activating or 
inactivating events on a gene-by-gene basis. There is a distinct category of assays which aim at the 
evaluation of integrative characteristics of the human genome. These assays are significantly more complex, 
deal with continuous variables, and use certain thresholds. Furthermore, they are more or less agnostic, i.e., 
relevant to a diverse spectrum of tumor types. Well-known examples of integrative tests include MSI, HRD, 
and TMB (Table 2). MSI and HRD have been described above in the sections devoted to colorectal and 
ovarian cancers, respectively.

Table 2. Integrative genomic tests in molecular oncology [30, 66, 73, 81, 82, 86, 92–94, 98]

Genomic 
feature

Definition Methods Tumor types Drugs

MSI Accumulation of 
mutations in 
microsatellite repeats 
as a result of 
mismatch repair 
deficiency

PCR (BAT25, BAT26, 
NR21, NR24, NR27)

IHC for MMR proteins

NGS (whole-genome, 
whole-exome, targeted 
panels)

Colorectal, endometrial, 
pancreatic, biliary, and 
urothelial cancers

Immune checkpoint inhibitors 
(pembrolizumab, nivolumab, etc.)

TMB Total number of 
somatic mutations; 
TMB-high refers to 
more than 10 
mutations per 
megabase

NGS (whole-genome, 
whole-exome, targeted 
panels)

Carcinogen-related 
cancers (smoking-induced 
lung cancer, ultraviolet-
associated skin 
melanoma), POLE-, 
POLD1-, or MUTYH-
associated cancers

Immune checkpoint inhibitors 
(pembrolizumab, nivolumab, etc.)

HRD Failure to repair DNA 
double-strand breaks 
using homologous 
recombination

Analysis of germline and 
somatic mutations in HR 
genes
Analysis of complex 
genomic rearrangements 
and genomic instability 
scores (HRD score, 
HRDetect, CHORD)
Functional assays 
(RAD51 foci analysis)

High-grade serous ovarian 
carcinomas, triple-negative 
breast carcinomas, 
pancreatic cancer, prostate 
cancer

DNA-damaging cytotoxic drugs 
(platinum, mitomycin C, 
cyclophosphamide, doxorubicin, 
etc.), PARP inhibitors (olaparib, 
rucaparib, niraparib, talazoparib)

HRD: homologous recombination deficiency; IHC: immunohistochemistry; MSI: microsatellite instability; NGS: next-generation 
sequencing; PCR: polymerase chain reaction; TMB: tumor mutation burden

TMB reflects the total number of mutations in the human genome and correlates tightly with tumor 
antigenicity, and, consequently, with the efficacy of immune therapy. Initially, TMB was defined as a total 
number of coding events identified upon whole-exome sequencing. TMB is commonly estimated by 
multigene NGS assays consisting of several hundred genes. High TMB is characteristic of carcinogen-
induced tumors, particularly lung cancer in smokers or melanomas caused by excessive ultraviolet 
irradiation. Some types of DNA repair deficiency, for example, dMMR, as well as mutations in DNA 
polymerase genes, e.g., POLE, cause an extraordinarily high increase of TMB [100, 101].

Complex genomic profiling
NGS technologies allow for characterization of individual tumor genome within several days. Many 
commercial services as well as in-house protocols aim at simultaneous analysis of all actionable genetic 
events in order to assist the choice of the best therapy and warn about hereditary cancer syndromes. The 
number of predictive genes does not exceed a few dozen, with only a few of them being sufficiently 
validated (EGFR, HER2, BRAF, ALK, ROS1, RET, MET, NTRK1-3, FGFR1-4, IDH1/2, PIK3CA, etc.). Similarly, only 
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a few dozen genes have been convincingly shown to be implicated in the pathogenesis of hereditary cancer 
syndromes. In addition to single-gene analysis, an “ideal” NGS-assay should consider integrative 
characteristics of the tumor genome, such as MSI, TMB, and HRD, with the latter test being particularly 
complicated.

Despite their obvious utility, current NGS diagnostic services have significant disadvantages. The vast 
majority of available NGS panels pool together truly actionable genes and genes with presumable 
significance [99]. Consequently, many reported genomic findings are not at all helpful but actually 
misleading. Technical drawbacks of currently utilized NGS procedures are essential: for example, many NGS 
tests are unable to reliably detect gene rearrangements or gross deletions and duplications.

Clinical feasibility of complex genomic profiling, i.e., the chances of finding an actionable event in a 
given tumor, is not always clearly understood by practicing oncologists or cancer patients. For example, 
NGS has limited added value in lung cancer patients with known driver mutations in MAPK pathway genes 
or with a history of heavy smoking. Prospective studies revealed low utility of complex genomic profiling in 
patients with breast cancer [62]. At the same time, complex genomic profiling seems highly relevant to rare 
tumors or cancers of unknown primary site [102]. Increasing availability of NGS will certainly facilitate the 
use of multigene testing, together with or instead of conventional single-target assays.

Liquid biopsy
All tumors carry a certain number of somatic mutations. As some tumor cells undergo decay, possibly due 
to apoptosis, they shed DNA into the bloodstream. Mutated DNA can be detected with the highest level of 
sensitivity and specificity: some available technologies, for example, specific modifications of droplet digital 
PCR or NGS, are capable of detecting a single mutated gene copy in the presence of a few thousand normal 
gene counterparts [3]. Historically, the analysis of circulating tumor DNA (ctDNA) proved to be useful as a 
replacement for tissue biopsy, for example, for the detection of treatment-induced EGFR T790M mutations 
[103]. The use of ctDNA for the analysis of primary chemonaive tumors looks less feasible, as all tumors 
undergo morphological investigation upon diagnosis and, therefore, are available for DNA and RNA testing.

The most impressive achievement of liquid biopsy is its ability to monitor the course of cancer disease. 
Several studies have confirmed that patients with residual ctDNA after surgery benefit from adjuvant 
therapy, while the clearance of ctDNA allows to omit the postsurgical use of anticancer drugs [104]. Liquid 
biopsy allows for almost immediate assessment of tumor sensitivity to a given therapy, thus providing an 
opportunity for timely modification of the treatment [105]. The most attractive feature of the analysis of 
tumor-derived DNA and proteins in human plasma is the promise for cancer screening: there are ongoing 
studies that appear to provide sound support to this concept [106].

Liquid biopsy has a significant disadvantage: it is currently performed at the limit of sensitivity and 
specificity of available technologies, so both false-negative and false-positive results are often observed for 
the time being. A recent animal study utilized interference with serum nucleases and liver-resident 
macrophages to minimize ctDNA decay and improve the performance of liquid biopsy. This approach 
resulted in a dramatic improvement in the sensitivity of ctDNA detection, and may be utilized in humans if 
proven to be safe [107].

Conclusions
Progress in understanding the mechanisms of cancer progression resulted in the dramatic breakthrough in 
the development of novel cancer treatments and the invention of a multitude of molecular diagnostic 
techniques. Cancer management has become a multidisciplinary field of medicine requiring constant 
interaction and mutual understanding between surgeons, medical oncologists, radiologists, morphologists, 
molecular geneticists, etc. Current professional requirements imply that practicing physicians should have 
significant fluency in molecular medicine, while laboratory diagnostic specialists need to be sufficiently 
familiar with the clinical value of molecular genetic tests. This combined expertise renders a great promise 
for improving treatment outcomes in cancer patients.
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